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A LINEAR TIME ALGORITHM FOR THE LOWEST COMMON ANCESTORS PROBLEM

Dov Harel

Abstract

We investigate tﬁo‘lowest common ancestors (LCA) problems on
trees. We give a linear time algorithm for the‘off-line problem, on
a random accéss machine (RAM). The half-line problem is one ih
which LCA queries on a fixed tree are arriving on line. We extend ‘ !
our RAM algorithm to answer each individual query in 0(1) time, with
0(n) preprocessing time. Tarjan observed that this result helps to
explicate the difference in power between RAM and pointer machines.

We also show how to modify our algoritﬁm to achieve a linear
preprocessing time, optimal query time, algorithm on a reference

machine.

1.0 Introduction

In [AHUT76] three lowest common ancestors (LCA) problems are discussed.
In the first one, which is called the on-line oblem, we assume that eries,
which are pairs of vertices, arrive on line, and the tree changes dynamically.
An 0(n log n) algorithm is given‘for the execution of n LCA queries and LINK
commands. The on-line problem is discussed also by [M79], where seme
improvements of the previous result are given; mainly with regard to space
complexity. The latter paper also gives an application of the on-line
algorithm to detection of negative cycles in sparse graphs.

The second problem which is discussed in [AHU76], the off-line blem,
is one in wthh we are allowed to look at the entire sequence of queries
before producing any answers. The algorithm given there, which is also
referred to in exercise 4.38 of [AHUTA4], is a well-known use of the disjoint
UNION_FIND algorithm, which is analyzed in [T75, T77] An n—query'problem has
time complex1ty 0(n a(n)), where afn) is related to an inverse of |
Ackermann's function. In [T77] it is shown that e(n a(n)) operatlons are

necessary . for solving the union-find problem on a reference machlne._ Thé )

model of computation used reference machlnes, does not allow indexing,




although TarJan conJectured that this restriction is not essential for the

- lower bound. A .natural question is whether O(n a(n)) is a lower bound for“'lb.
the lowest common ancestors problem as well. In this paper, section 3, we

show that the answer is negative if we allow the use -of indeXing The problem?!
investigated in section 3 1S somewhat more general than the verSibn of [AHU76]'v
in that we do not assume ‘that the number of queries is equal to the size of |

the tree

In section 4 we discuss a Version of a problem of 1ntermediate difficulty
Afrom [AHU76] Ve assume that the tree is fixed and that queries are arr1v1ng,
on-line. Follow1ng [T801] we will refer to this problem as the half-line’

probleml We give an O(n) preproceSSing time algorithm which answers each LCA
ﬂ'query in. 0(1) time, which is an exten51on of our off-line algorithm to thet
fhalf-line case. TarJan [T80] gives a. lower bound.of L):(log log n) tlme

per query on the performanee ‘of a reference machine [T77], and thus observes
that our results help to explicate ‘the difference in power between random p
access machines-and pointer manipulating machines.  We also show how to apply;,ff
our methods to;pointer;machines to get an-O(log log n) query time with~only |
O(n)-preprbcessing time‘ The previous algorithm [AHU76] requires

e(n log log n) preproceSSing ‘time: = .
2.0 Threads and Inorder Numbers

Throughout this paper, we assume that each node in a binary tree- has Zero -
or two children. By a complete binary tree we mean a binary tree all of whose

leaves are at'the.same ‘depth. All logarithms are to the base two.

In order to search for lowest common ancestors efficiently we w111
introduce threads in our binary trees, which are, in fact the same threads usedﬁ‘
in,[HL79]; -These are wvery similar to the threads which were used by [GMPR77] A
for B-trees. .If x is'a leaf node, define its right thread written R THREAD(X)
to be ‘its lowest right ancestor that is, its successor in inorder If X. is an
internal node, define R _THREAD(x) to be its rightmost. leaf’ descendant that 1S
the last node we visit if we repeatedly follow right links from x. The left
j;read of x, L THREAD(X), is defined symmetrically Note that- ‘those threads are
different from the traditional threads which appear commonly in the literature
[PT60,K68,580]'in that traditional threads are kept only at leaves. - -
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In addition to threads, we will keep with each node x its inorder number,
written NUM(x), which is the position of x in the inorder tfavefsai sequence of”

the tree. That is, NUM(x)=i iff x is the ith pode in the sequence.

Using threads and inordervnumbers we can compute a number of other
quantities in 0(1) time. For example, let RIGHTMOST (x) (resp. LEFTMOST(X)).be
the rightmost (resp. leftmost) descendant of x. Then»RIGHTMOST(x) could be

calculated as’

if x is a leaf then x else R_THREAD(X);

Given two nodes x and y in T with NUM(x) < NUM(y) the interval I(x,y) is
defined by I(x,y) = {z in T | NUM(x) < NUM(z) < NUM(y)}. The distance between x
and y in T, denoted d(x,y), is the cardihality of I(x,y), and is easily
calculated by d(x,y) = NUM(y) - NUM(x) + 1. 'The reason is that NUM ié a 1-1
corréspondence between I(x,y) and the interval [NUM(x),NUM(y)] in the natural
numbers domaln. ‘For a node x of T we will denote by T(x) the subtree of T
rooted at x.. The rank of x, wrltten r(x), is defined differently for binary or
general trees. For binary trees we use the tradltlonal definition [NRT73,LT79]
r(x) is defined to be one plus the number of descendapts of x. For general
trees we use r(x) to denote the number of leaf descendants of x. The reader is
warned that the ranks used in this paper aré not to be confused with the rank
groups that are uséd.in [AHU76]‘in a partial analysis of the union-find -

structure.

Given two nodes x and y we can in 0(1) time answer questions like "js x an
ancestor of y?" Let x, (resp. X,) be LEFTMOST (x) (resp. RIGHTMOST(x)) and let y,
and ¥, defined similarly with respect to y; then x is an ancestor of y. iff T(y)

is a subtree of T(x) iff [NUM(y,) NUM(y,)] is a subset of [NUM(x ), NUM(x,)],
which could be answered in 0(1) time.

Let LRA(x) (resp. LLA(x)) denote the lowest right ancestor (resp. the
lowest left ancestor) of x; then LRA(x) is computable by

LRA(x) = R THREAD(RIGHTMOST(X))

Notice that either LRA(x) or LLA(x) is the parent of x, and thus PARENT (x) can
be found in 0(1) time. Notice also that the successor of x in inorder, written
NEXT(x), is computable in 0(1) time by
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if x is a leaf then R_THREAD(x)
else LEFTMOST (RIGHT(x));

Many of the above remarks apply . to threadedAbihary search’trees with keys -
playing the role of the inorder numbers. In [BL79] a finger search proceduré is
given which does not require neighbor pointers, but uses threads instead. "It is
also shown in the above paper how to update the threads with a constant amoﬁnt
of effort per rotation in a binary tree; thus threads may‘be superior to
neighbor pointers in situations ﬁhere rotations are used to rebalance the tree
(e.g. AVL trees [AVL62,K73,S80], BB(x) trees [NR73], the Dichromatic Framework
[GST78] ete.)

it ﬁill sometimes be convenient to add the tree as a parameter of the
function. For example LRA(X,T) meahs.the lowest right ancestor of x in T. This
notation is useful when some nodes are elements of more than one tree. Also, if
T is some tree, and x is a node of T we will use T(x) to denote the subtree of T

rooted at x.

3.0 The Qff-Line Problem

By the off-line lowest common ancestors problem, abbreviated hereéfter as
OFLCA, we mean the foliowing. Given a tree T on n nodes, and a list Q of q
pairs of vertices of T, which we call queries, find for each pair (x,y) the
iowest common ancestor of x and y in T. We assume that we are allowed to read
the entire list Q, as well as the tree T, before'produéing an answer to ahy of

the queries.

In section 3.1 we give an O(n + g) algorithm for the OFLCA problem on
coﬁplete binary trees, and in section 3.2 we show how to.extend the algorithm in
3.1 to any balanced binary‘tree. Section 3.3 contains a linear transformation
of the problem on general trees to an OFLCA problem on union trees, and finally
in section 3.4 we show how to linearly transform the problem on union trees to

an OFLCA problem on balanced binary trees.
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3.1 A Linear ﬂime Algorithm for Complete Binary Trees

Let T be a complete binary tree of height h, and let Q be a list of g
queries on T. . We will show how to answer all the queries in linear timé in the
size of the input, that is, in d(n + q) time. First notice that, without loss
of generality, we may assume that for any query (x,y), x and y are not ancéstors
of each other, since using threads such queries could clearly be answered in
" linear time. Second we may assume, again w1thout loss of generallty, that
queries pertain only to leaves. That is, if q=(x,y) is a query, we may assume
that x and y are leaves, since otherwise we can replace X by LEFTMOST(x), and y
by LEFTMOST (y), without affecting'the answer to the query.

To illustrate the idea behind our algorithm, we first show how to answer a
single query efficiently, in a complete threaded binary tree with indrder
numbers., Let x and y be leaves in T, such that x precedes y in inorder (i.e.
NUM(x) < NUM(y)), and let d be the linear distance between x and y in T,

d = d(x,y). Examine the following procedure.

procedure FIND_LCAO(x,y);

begin
vV iz X;
while v is not an ancestor of y do v := LRA(V);
return v,

end;

, - Claim Q0. The procedure FIND_LCAO(x,y) returns the lowest common ancestor
~of x and y, in 0(log d) steps.

- Proof. ‘Assume that the while loop of FIND_LCAO was entered at least once.

Leﬁ»vo be the last value v éccepts before it subtends y, and let v1>be the right
child of vy Then the complete subtree rooted at\v1 lies‘between b's aqd y.

Since clearly the time complexity of the program is 0(log r(vo)) and p(vo) is

0(d) the claim follows. . . : (1

"In order to answer all oueries in linéar time, we will use bucketting
technlques ‘which w1ll first give 1ncorrect approx1mate answers., From each
approximate answer, the correct answer is computable in"0(1) tlme per query,
w1th_the aid of the threads.




Page 6

The algorithm consists of two main procedures, the first of which is called
PARTITION, and is responsible for the following two tasks. First, it threads
the tree in the fashion discussed in section 2, calculating and storing inorder

numbers, ranks, and heights at all the nodes. It then uses those fields to

a) Partition the tree into h sets C. which correspond to the levels of T.

C;={x i rx) =2 }, and C; is ordered by inorder.

b) Partition the queries into h buckets, denoted by Bi’ with

- {g=(x,y) in @2} < d(x,y) < 2'*'}, and B, is ordered by
increasing NUM(x). '

Clearly, all the above could be accompllshed in 0(n + gq) time. (For

example (b) can be accomplished by a two pass radix sort on the gueries, querles

using <L 1log d(x,y) - , NUM(x)> as the key of the query (x,y). )

The‘procedure FIND_CA finds, for each query q=(x%,y) in Bi’ the ancestor of '

x in Ci' written C_ANCESTOR(x,i). For each i, we do this by merging the queries
in B into the cut C; in such a way that each v 6 C. is followed by all the
querles g=(x,y) in Q for whlch X is a descendant of v. This merge takes

o(icC,1 it .B ) time. Flnally the simple procedure FIND_LCA1 computes the lowest
common ancestor of x and y, LCA(x,y), from.C_ANCESTOR(x,i) in one or two steps.

The procedures PARTITION, FIND_CA, and FIND_LCA1 are given in the appendix.

To see that the time complexity of FIND_CAIis linear, notice that during
the ith iteration of the main for loop, v can be advanced at most |B, ! steps, |

and q can be advanced up to a total of ICi} steps, giving a total time of

ofic, I+}Bi{)'for’the 10

h, the ICiJ-s sum up to n, since Cy, 'i=1...h.is a partition of T, and the IBiI-s
sum up to q, since Bi’ i=1...h is a partition of Q. Thus the total time spent
by FIND_CA is O(n + q). ' '

iteration through the main 1oop. Summing up from 1 to

Let g=(x,y) be a query in B,, and let u ‘be C_ANCESTOR(x,1) in Cj.
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angnxgtiga_1; u is not an ancestor of y.

Proof, - r(u) = 21 5o the cardinality of T(u) is 2-1. The cardinality of
the interval I(x,y), on the other hand, is d(x,y) 2_21, so I(x,y) can not be a

subset of T(u), and thus y is not a descendant of u. » 0
| Observation 2. Let v = LRA(u) and w = LRA(v). Then w is an ancestor of y.
| .
Proof. Denote the right child of w by z. 1r(z) 2_21+1 and so

i T(2) 1 > 21*1_4. 1If w is not an ancestor of y then T(z) lies strictly between x

and y, which implies that d(x,y),z'IT(z)l +2 > 2" Tnis is a contradiction

to the fact that (since (x,y) is in Bi) d(x,y) < 2#*1. o 0
It follows from the above. argument that FIND_LCA1(x,y) correctly computes

the lowest common ancestor of x and y, which completes the proof of the

folloWing lemma.

Lemma 1. Our algorithm sqlves a g-query OFLCA.problem on an n-node
complete binary tree in 0(n + q) time. T

It is worth noting at this point>that the concepts and algorithms in this
section extend naturally to BB(x) trees [NR73], which in fact motivated my

approach. Fdrther extensions are given in the following sections.

3.2 Extending the Result to Balanced Binary Irees

In this section we show hdw to extend the result of the;previous'section fb
any balanced bindry tree. By é balanced binary tree we mean a tree T, onn
nodes, with height h(T) which is O(log n). Let T be a balanced binary tree on n
nodes. Let h be the he;ght of T, and assume h < k' log n for some cdnstant k.

We will see later that the constant k may appear as a_muitiplicatiVe constant in J
the time complexity of our modified élgorithm, depending on the model of

computation we use.

~ We will first try the following simple minded approach. let T# denote the
complete binary tree of height h. We can look at‘T* as an extension of T, and

, . , . # . .
clearly we can answer the queries on T as queriles on T . 8Since we have a linear

: . # _ .
algorlthm for T, it may seem that this algorithm is also a linear algorithm for
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: ' .
T. The trouble is that T  have many more nodes than T, in fact may have 8 (n®)

nodes, rather than 0(n).

Although the above approach fails, a refinment of this same idea‘yields a
linear algorithm for T. The idea is that in fact we have to traverse only-the
original tree T, and the cut sets Ci’ are the levels of T. The only necessary
change is that we have to use the ranks, and the inorder numbers, with respect
to T , rather than with respect to T. Those however, can be calculated 1n
linear time in the size of T. Clearly r(x, ¥ ) = h-depth(x)+1 and.so the
T*-ranks of the nodes in T can be calculated in O(n) time. A slightly more
1nterest1ng clalm is that we can assign NUM(x, T ) to nodes in T without
traversing T , but rather by traversing T only. Procedure COMPUTE_NUM is given

in the appendix.

: # . *
Lemma 2. Procedure COMPUTE_NUM(T,T ) correctly computes NUM(x,T ) for any
x in T, '

Proof. Recall that each node in T has zero or two children.. For Such
trees the set of leaves is dense in their inorder sequence, thus at any p01nt
during the run of COMPUTE NUM exactly one of x and y is a leaf. G01ng from a
leaf x to a non leaf y we add r(RIGHT(x),T ) which is one plus the number of

#* .
nodes between x and y in T . A similar argument holds when we g0 from a non

i
i

leaf x to a leaf y. ' ' !

. Tn order to establish the extension of our algorithm to T we have to make
certain modifications. First,‘we have to béar in mind that although we may’
assume that queries are about leaves of T, those nodes may very well be

. %
nonleaves in T . The following lemma shows that this is not a real problem.

Lemma 3. Let x and y be two nodes of T which are not ancestors of each
other, w1th X precedlng y in inorder. Let
d(x,y,T ) = NUM(y,T ) - NUM(x, T )y + 1. If ot < d(x,y,T ) < 21*1 then at least
one of thqse two nodes has an ancestorhy in Ci’ which is not an ancestor of the

other.

' # # :
Proof. Assume that r(x,T ) < r(y,T ), that is, x lies on a lower level
"
“than y in T, We will show that in thls case X has an ancestor in C, which is

not an ancestor of y. (The case r(y,T ) £ r(x, T ) is symmetrlcal )

(]
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First notice that by an argunent gimilar to the one in Lemma 2, x and y do

not have a common ancestor in C We now have to show that x has an ancestor in

Ci' Notice that since both T (RIGHT(x)) and T (LEFT(y)) lie strictly between x
and y, in the inorder sequence of ¥ we have

r(x,™) < r(RIGHT(x),T") + r(LEFT(y),T") < 2i*

‘ * . ‘ .
and since r(x,T") is an integral power of two it must be that r(x,T ) £ 21}

Another fine p01nt which arises when tuning our algorithm to general b1nary
_ balanced trees, is that the distances in T between nodes of T, d(x,y,T ), are
G(nk). If our model of computation allows us to compute logarithms in 0(1)

time this causes no problem. What if our repertoire consists of addition,
subtraction, multiplication, and division only? Since the problem ié'off line,
we may sort the distances d(q,T'), in linear time, using a k-pass radix sort,
and by tranersing the ordered list, remembering increasing‘poweré of 2, we can
compute all the required logarithms in O(k n) time. In fact, we can do better
tnan that., By first building a table of exponents of size n, we get

L log jJ, for 2 < j<nin 0(1) time by indexing into the table. For numbers
2<d<nk, we can find the representation of d as a base n number, by performing k
divisions by n, and by examining the hlghest nonzero coefficient we can figure

L log d | exactly. This trick is important when dealing with the half—line
problem.

For this version of the problem it is convenient to assume that if (x,y) is

# * :
a query then r(x,T ) < r(y,T ), rather than to assume NUM(x) < NUM(y). We can

partition T into the ordered C__sets in linear time. Likewise if
: .
= {g=(x,y) | 28 <Aty 1) < 2M),

then we can partition the queries.into the buckéts Bi’ such that each Bi is
ordered by increasing NUM(x), in O(n + q) time. Combining these remarks with

Lemma 2 and Lemma 3, we get

Lemma 4. There exists a simple modification of the algbrithm in section
3.1 which solves the OFLCA problem for balanced binary trees in O(n + q) time.

]
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3.3 Linear Reduction of General Trees to Union Trees,

In this section we show how to transform the OFLCA problem on general trees
to an OFLCA problem on union trees, thereby.achieving height which is 0(log n).
By a union tree we mean a tree which is built as a result of repeated UNION 7
operations, using the well—known UNION_FIND structure, with the weighted unlon
rule, but without executing any FIND operatlons. Using our previous convention,
when we have two nodes, x and y, which are members of two different trees, T1

and T2, we use the notation LCA(x,y,T;) for the lowest common ancestor of x and

y inT,, for i=1,2. ‘ : ‘ ' g
Let T be some general tree, not necessarily a binary tree. As was

mentioned before for binary trees, we may assume that all the queries on T are

about leaves. We will build a union tree, which will be called U, with the

following properties.

a) The nodes of U are the leaves of T. With each node of U we keep someA

additional information, as will be specified later.

b) Using the information stored in U, we can compute efficiently lowest

common ancestors in T from lowest common ancestors in U.

We will now see how to build U, from T, in linear time. The heart of the
procedure is a postorder traversal of T. At each node of T we keep a pointer,
'SET(x), to the root of the union tree containing the set of all the leaves below

X which have been visited so far. When visiting a node x of T, we union the
sets SET(y), over all the children y of x.  The use of the UNION structure for
representing the sets is the standard one, and thus we will suppress the-
details. In addition to the standard weight fields and parent pointers, we keep
the>following information at each leaf u of T: |

a) The set of u'é children in U, on a doubly linked list.
/

b) T_NODE(u) which is a pointer to the node x in T which was visited at the

~ point in time when u became a child of its parent in'U.

¢) TIME(u) which is an integer designating the point in time, during the
traversal of T, when u became a child of its parent in U. If we imagine
that children are édded in-a 1eft-tb-right fashion, then TIME(u) is the
postorder number of u in U (with the exception of the root r of U for
which TIME(r) = 0).
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'Throughogt the rest of this section we will identify the nodes of U with -
the sets represented by them. We assume that the time variable t. is initialized
to 0. The procedures BUILD_SET(x) and UNION(u,v,x) are given below U is the -
result of calling BUILD_; SET on the root of T.

procedure BUILD_SET(x);
begin _
. if x is a leaf then
begin !
T NODE(x) := null;
 TIME(x) :=
‘SET(x) := {x};
end else
begin _
VSET(x) 1= @
for each child y of x do
begln h
BUILD, SET(y),
SET(x) := UNION(SET(x),SET(y),x);
end;
end;
end;:

procedure UNION(u,v,x);
begin
comment union the sets represented by the nodes u and v, as roots of the
respective union trees, while visiting the node x of T.
perform the weighted union of u and Vv;
wlog asseme_that‘u became a c¢hild of v;
add u at the end of the children list of v;
t :=t + 1;
" TIME(u) := t;
T _NODE(u) := x;
return v;

end;
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Lemma 5. Let u and v be two nodes of U (1eaveé of T) and let w be the

lowest common ancestor of u and v in U, LCA(u,v,U). We will distinguish between

|
| two cases.
\
a) w is either u or v. Assume without loss of generality that w = u, and

let W, be the child of w which is an ancestor of v. Then T_NODE(w1) is

the lowest common ancestor of u and v in T, LCA(u,v,T).

b) w# uand w # v. Let w, and w1 be the children of w- which -are the
ancestors of u and v respectively, and assume that‘TIME(wo) < TIME(w1).

Then T_NODE(w,) = LCA(u,V,T).

Proof sketch. Examine the U forest at the point'in time t, during the d

traversal of T, just prior to adding v, as a child of w. If at time 't we were .
‘ at the node x of T, then x is the lowest common ancestor in T of any pair

‘ (u' v') such that u' is in the subtree U(w) and v' is in U(w ). . Since while

\

addlng w, as a ch11d of w we set T_NODE(w;) := X, the claim follows. : _ ' ]

The following notation will be useful. If w is an ancestor of uin U

define the tree function ANC(u,w) on U by:

ANC(u,w) := if u # w then the ancestor of u in U
which is a child.of w in U else null;

Let L denote the set of leaves of U. To complete the reduction we have to
compute ( ANC(u,w) , ANC(v,w) ) for each pair (u,v) in L, where w = LCA(u,v,U).

To do this in linear time we can compute for each w in U the set

Alw) = {(u,v) | (u,v) is in L and w = LCA(ﬁ,y,U)},

and A(w) is ordered by increasing.postorder numbers, POST_NUM(u). We also keep
for each node w in U the liSt'of its children C(w) ordered from left to right.

By traversing A(w) and C(w) simultaneously, we can compute ANC(u,w) for every u
which is the first coordinate of‘some query q=(u,v) in A(w), in time

O(IA(w)) + |C(w)!). By summing up over all the nodes w in.U we get 0(n + q).

The argument is similar to the one given for the linearity of FIND_CA. Since we '
can repeat the above argument with the sets A(w) ordered by the second

coordinate clearly we can compute ( ANC(u,w) , ANC(v;w) ) for each query (u,v)

in L, where w = LCA(u,v,U), in O(n + q) time. As a conclusion from Lemma 5 and

the above argument, we get
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Lemma 6. Given a set of q pairs of leaves of T and their lowest'qommon

ancestors in U, we can compute the lowest common ancestors in T in O(n + q)

time.
3.4 Linear Reduction of Union Trees to Balanced Bipary Trees

Let U be a union tree on n nodes. Note that each node in U may have
arbitrarily many children; we want to convert it into a binary tree. For the -
purpose of this discussion, we will color the nodes of U in green. We will add
nodes, which we shall refer to as red nodes, in between green nodes, to get a B
tree which we shall refer to as a binarization of U, as follows. If u is a node
of U, with k children in U, we cut off all the children of u, make u a root of a-
red binary tree with k leaves, and then replace the leaves of that tree by the
original green children of u. '

Lemma 7. In O(n) time we can compute a binarization B of U, suéh that the
height of B is bounded by three times the height of U.

Proof. We will define the rank r(x,U) to be the number of leaves in the
subtree of U which is rooted at x. To binarize U we will classify its nodes

according to their rank groups by defining:
¢, = (x| 2 <rx,0) <21

Thus every node x belongs to rank group { log r(x,U)J +1 which will be referred
to as the index of x in . We will assume that with each node u of U we keep a

h

linked list L(u) of non-empty buckets Bi' The it bucket Bi contains the set of

children of u which belong to rank group Gi* We further assume that each list
L(u) is ordered by increasing order of the indices i. This representation could
be achieved in linear time by a two pass radix sort on U, using

< DF_NUM( PARENT(x) ) , | log r(x,U)J +1 > as the sorting key for node x. To
binarize U we process its nodes in postorder. While at node x we pair its
children in two phases. ’

During the first phase, which is called BALANCED_PAIRING, we repeatedly
eliminate pairs of nodes from the ith bucket by making the two nodes the
children of a new red node, which is ingerted into the 1+15% pbucket.” At the end
of this process we insert the remaining single element of Bi (if any) into an
initially empty queue Q. At the end of phase 1 all the elements of the queue
belong to different rank groups.
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During the second phase, which i1s called SKEWING, we put the elements of Q
as the right children of new red nodes which lie on a left leaning path which is
rooted at x. The path is created so that the heavy elements of Q lie closer to
the root x. The procedures PAIR; BALANCED_PAIRING, and SKEWING aré given in the
appendix.

One can easily convince himself that we spend only 0(1) time for
introducing a new red node, and thus that the time it takes to binarize all of U
is 0(n).

To see that the height of the resulting binary tree B is logarithmic in n
we use a technique which was suggested to us by Scott Huddleston and is similar
to techniques of Guibas and Sedgewick [GS78]. We label the edges of B by 0's

and 1's as follows: if x is a balanced node then label the edges which

correspond to its children by a 0. We distinguish between balanced nodes which

are the nodes which were introduced during the BALANCED_PAIRING phase, and
skewed nodes which are the nodes which are introduced during the skewing phase.

If x is skewed then label its left child edge by a 0 and its righﬁ child edge by

a1, Let X = XyXq...X, be some path from the root x, of B to some leaf x,, and
let P, be the label of the edge from x;_, to its child x,. To bound k we will
count separately the number of 0's and 1's in the strlng P = PoPqe. Dy ‘Note
that if p, = 0 then x; belongs to a lower rank group than its parent x;_j.

Since there are only | log n] rank groups the number of 0's in p is bounded by
log n. Likewise, since blocks of consecutive ones are separated by zeroes there

are at most log n blocks of consecutive ones. Finally, note that if

Y = 1 then Xy must be green (i.e. a node of U) and since there are at

s = P
i i+1
most log n nodes on any path from X, to a leaf of U the total number of
_consecutive ones is also bounded by log n. Thus the number of 1's in p is

bounded by 2 log n and k £ 3 log n.

Since we can keep at éach red node a pointer to its lowest green ancestof;
we can easily compute lowest common ancestors in U from lowest common ancestors
in B. Now to answer q queries on a general tree T, we first transform T into U,
and then binarize U into B, by Lemma 7. By Lemma 4 we can answer the queries on
B in linear time, and thus we can compute the lowest common ancestors in U in

linear time. Finally by Lemma 6 we can compute the iowest common ancestors in T

from the lowest common ancestors in U, in linear time and so we have:

8
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Theorem 1. The‘OFLCA problem on general trees is doable in linear time on

a random access machine.

4.0 The Half-Line Problem

By the half=line problem we mean the following. Given a fixed tree T on n
vertices we assume that queries, namely pairs (x,y) of vertices of T, are
arriving on-line. Whenever a pair of vertices arrives we want to compute their
lowest common ancestor. It may require a substantial amount of time to answer a
single query if all we are given is the initial tree. If however we are allowed
to preprocess the tree we may be able to answer each individual query much
faster. We are interested in the time it takes to answer each individual query,
which we will refer to as query time, and in the time it takes to preprocess the
tree, which we will refer to as preprocessing time. We note that the problem is
equivalent to the problem of intermediate difficulty which is presented in
[AHU76], in which all the LINK commands preceded all the LCA commands. In that
case the size of the tree is the length of the linking sequence (assuming that
the sequence results in a single tree) and the time it takes to build the tree
is proportional to the number of LINK commands. Thus the preprocessing‘time
corresponds to the time it takes to process the LINK-ing sequence, which was
o(n log log n) in the above paper. The time for answering a single query in
the above paper was ©(log log n). We will see that the half-line problem helps
to ekplicate the difference in power between pointer manipulating machines and
random access machines, as was suggested‘to us by R. E. Tarjan [T80]. He showed
that in fact the above stated query fime is the best poésible-for a pointer
manipulating machine. We will show how by using our techniques on a RAM one can
greatly improve over the above stated time bounds. In fact there is an
algorithm that uses 0(n) preprocessing time and has 0(1) query time.‘ After
reading an earlier draft of this paper, where we claimed an O(n log*n)

algorithm, Tarjan [T80] encouraged us to obtain a linear algorithm.

In section 4.1 we discuss the half-line problem on complete binary trees.
This section includes Tarjan's lower bound for pointér manipulating machines,
and the improvement achievable using indexing on a RAM. In section 4.2 we
extend the results of section 4.1 to general trees. Section 4.3 includes an
improvement over previous results [AHU76] for pointer manipulating machines.
The preprocessing time which is 6(n log log n) in the above paper could be
improved to be O(n) without increasing the 0(log log n) query time, which is

optimal by Tarjan's theorem.
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4,1 The Half-Line Problem on Balanced Binary Treeg

We will start this section by proving a lower bound on the query time on a
pointer manipulating machine. Following Tarjan [T77,T80] we make the following
assumptions about the model of computation. We assume that the tree is
represented by a linked structure, with each tree vertex represented by a single
node (record). The structure may contain additional nodes not representing any
tree vertex. With each node we keep a fixed number of pointers, independent of

the tree size. We may take this number to be 2.

Theorem 2 [T80]. Let T be a complete binary tree with n leaves. Any
pointer machine requires () (log log n) time to answer an LCA query in the

worst case, independent of the representation of the tree.

Proof. The key point is that from any node in our structure at most 2J+1_4
nodes are accessible in j steps or less. Let k be such thét all LCA queries can
be answered in k steps or less. For each leaf x of T let A denote the set of
nodes representing tree vertices which are accessible from x in k steps or less.
Let w be a node of T and u and v be its left and right children. We claim that
either w belongs to A for every leaf x in T(u), or w belongs to A for every
leaf y of T(v). Otherw1se there would be a pair of leaves (x,y), x in T(u), and
y in T(v), such that w = LCA(x,y) but w is not accessible from either x or y in
less than k+1 steps, contradicting the choice of k. We conclude that W oceurs

in at least half the sets A of its descendants x. If w belongs to the ALl
level for 0 < i < h=1logn then w has 21 jear descendants, and thus w occurs in

at least 21‘1 Ax sets. Since there are 2h -1 nodes at level i we see that the
ith level contributes
oh-1 2i--1 h=1 _ 972

= 2

occurrences to the union of the sets Ax' There are log n levels, and so if L ’ : |

represents the set of leaves of T we have:

P iAl > n/2 log n
x6eL '

Since for any leaf x we have 1A_| < 2K*1 we get:

n 2k+1 > n/2 log n
which implies that

k> log logn -2 - : 0
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An interesting fact is that a complete tree, which is uéed in the proof of
the lower bound for pointer manipﬁlating machines, is perhaps the "easiest" case
for a random access machine. This result is more precisély'stated by the N
following lemma. This lemma is Just a special case of the much more general
result which will be proved later (Theorem 3). The reason for stating this
result separatély is that its proof is so simple, and yet the main idea is

perhaps helpful for understanding the proof of the general case.

Lemma 8. Let T be a complete binary tree with n leaves. There exists an

algorithm which achieves 0(n) preprocessing time, and 0(1) query time. )

Proof. As we have seen before (observations 1 and 2 of section 3.1) in
order to answer an LCA query in 0(1) time it is sufficient to answer in 0(1)

time queries of the following form:

given a leaf x of T, and an integer d, find an ancestor y of x with

r(y) = 2%, where i = | log d J . : o

If we keep the nodes of T of rank 2i, ordered from left to right in an array of

‘ length n / 21 we could index directly into the appropriate ancestor of x. All

|
we need is the position p of x in the left-to-right order of the leaves of T,
and we could find the required y by using I p / Zi 7 as an index. Note that
we do not assume that the log of d is computable in 0(1) time. We use a table
lookup to compute logarithms, and clearly setting up the table takes'only linear
time. .One can easily verify that we could accomplish all the preprocessing we
need in linear time. ! o ’ o n
4,2 The Half-Line Problem on General Irees

We will now tackle the general case. Let T be some tree of size n, U be
the corresponding union tree, and B be the binarization of U. It may be b
convenient to think of T, U, and B as three separate trees, although in our
notation we will assume that each leaf of T is a node of both U and B. From our
exposition in section 3 it follows that in order to answer LCA queries on T in
0(1) time it is sufficient to be able to answer in 0(1) time querles of the

following two types:

IIQQ.Q.QH§21=
i+1

- Given a leaf X, of B, and an_ integer my, ol < m < 21, find an
1 .

ancestor Yo of x with r(zO,B )
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Type 1 query:

Given a leaf X, of U, and an ancestor z, of x, in U, find the child ¥,

of z, which is an ancestor of x, in U.
The reason queries of type 0 are of interest is that given two leaves u and v of
T, from the answers to certain queries of type 0 which are computable in o(1)
time we can find w' = LCA(u,v,B) in 0(1) time (section 3.2). From w' we can
compute w = LCA(u,v,U) in 0(1) time (section 3.4). Queries of type 1 are. of
interest because, roughly speaking, they allow us to compute the children of w
which subtend u and v. Formally, we can compute the pair '
( ANC(u,w) ANC(v,w) ) in 0(1) time, and from this pair LCA(u v, T) is

computable in constant time (section 3.3).

Some definitions concerning balance in trees will be useful. Given a
general tree T, and a constant ¢, a node x of T will be called Locally Balanced
of degree ¢, LB(c), if the height of the subtree 6f T rooted at x is bounded by
¢ times log !T(x)!, i.e., h(T(x)) < c log iT(x)i. -We call a tree T Globally
Balanced of degree ¢, GB(c) if every node x of T is LB(e). The class of GB
trees is very wide and it 1ncludes all the types of balanced trees which are
commonly used for storage of 1nformat10n in computer science such as B-trees,
AVL-trees, and BB(x) trees. In particular note that U is GB(1) and its
binarization B is GB(3). Note that the rank r(x) of a node x is a good measure
of the size of the subtree T(x) which is rooted at x, i.e., that
r(x) = Q(iT(x)I, for all the balanced trees used in this paper. Thﬁs we may
replace |T(x)! by r(x) which is convenient because of the additive_property of

ranks; if C is the set of children of x then:

r(x) = S r-(y)
yeC

Let V be some general (not necessarily binary) GB(e) tree. We define a basic

query on V to be a query of the following form:

Bagic query:
Given a leaf x of V, and an integer d, flnd the ancestor y.of x in V
with DEPTH(y) =

We will now show that in fact both'type 0 and type 1 queries are reducible to

basic queries.
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Lemma 9. If we could answer basic queries on a GB tree in 0(1) time, then

we could answer type 0 and type 1 queries in 0(1) time.

Proof. Let Xy, My, and y, be as in the definition of a type 0- query; let
X, z,, and y, be as in the definition of type 1 query; and finally let x, d,
1 1 1 : e ‘
and y be as in the definition of a basic query.

To answer the type 0 query (xo,mo), take V = B, x = xj and d = h - i, where

y'where y is the answer

h is the height of B, and i = L log mo 4. Return yo
to the corresponding basic query. - '

To answer the type 1 query (x1,z1), take V = U, x = ii, and

d = DEPTH(Z1) + 1. Let y be the answer to the basic query thus obtained and
return y1 = y. '

For the rest of this section let V denote some general GB(c) tree on n ‘
veftices. We will show how to preprocess the tree V in 0(n) time such that the
answer to each basic query is computable in 0(1) time. Roughly speaking the
idea is tp "'peel off" some layers of fringe trees from V such that the remaining
"oore tree" is small enough to index into it from'its leaves. For the friﬂge
trees we will build a complete look-up table}for each type of tree which could .
appear as a fringe tree. By a suitable numbering of the fringe trees we can
- first index into the appropriate table to find the postorder number of the
required node in its fringe tree. We can then index into the required node in
the given fringe.tree, all in 0(1) time. The fringe trees. will be small enough
so that the total space used for the tables’in still O(n).

We now give a more formal description of our method. Given some tree T, a
set C of its vertices will be called a tree cut for T if every path P from the
root of T to a leaf intersects C exaétly once (i.e. {P()C! = 1). We pick the

numbers}ab, a1y @, and a; as fo;lows:
» aO = 1;. aq = log log n; a, = log n; az = n
For i < 3 we define the ith ply boundary in V by:
By = {x.! r(x) < a; < r(PARENT(x))}

The ply boundaries are similar to the ones used in [HL79] for BB(x) trees. One

- can easily verify that B, is a tree cut for V, for i = 0, 1, or 2. Notice that

(]
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for general trees the rank of a node is defined to be the number of leaves below

it and thus BO is in fact the set of leaves of V. It will be convenient to add
the set consisting only of the root r of V as a fourth boundary B3_ For
i 6 {0,1,2} we define the i*® p1y P, by:

Pi = {x | x has a descendant in Bi and an ancestor in Bi 1}

o F Bi 1 : For i=1,2 we would like to index from
4

boundary nodes in B into their ancestors in Py Since the width of P, is

"Note that P ()p

o(log ai41) = 8(84 ) we would have to assoclate an array of size Q(a ) w1th

each boundary node. On the other hand .Bi is not necessarlly O(n/a ), and so
the space complexity of‘such a scheme may be excessive. We encounter a similar
problem if we try to associate arrays wdth parents of nodes in Bi only.  The
following definition helps to overcome this problem. We call a node y principal
node of order i or simply principal if y is in P, and all its childnén are in
Bi'

Lemma 10. If x is any node in Pi - B; then x has a principal descendant in

Proof. By our assumption r(x) > a;. If all the children of x have rank

£ a then x is principal. Otherwise x has at least one child y with r(y) > a -
Slnce y is lower than x the proof follows by a simple induction on the height of

x above B_,
i

As we will see laten associating arrays only with;principal nodes of orders
1 or 2 is sufficient for the purpose of indexing into nodes in P1 L)PZ' At

the same time this scheme requires only a linear amount of space.

Let x be a principal node of order i, (i=1 oriz), and let y be its ancestor

in Bi+1' With each such x we associate an array AX[OI: ¢ log a; -] which
contains pointers to the ancestors of x in Pi as follows; if O < d <c log a4 .1

then:

Ax[d] = if x has an ancestor z 6 P; with DEPTH(z,V(y)) =
then z else null; ‘

Notice that c log a,,1 is a sufficient length since by our assumption V is a
GB(e) tree. With each leaf of V we keep pointers to all its boundary ancestors.

With each boundary node x in B, we keep the following fields:

f
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1) DEPTH(X) = the depth of x in V;

2) CPN(x,i) = if PARENT(X) € P, then the Closest Principal Node of order i
below PARENT(x) else null;

Notice that the PO could be represented as the disjoint union:

PO = (.)'V(Y)
i y6B ,
The trees V(y) where y € B, are the fringe trees. The gore tree is what is

left after pruning off the fringe trees. To answer the basic query (x,d) on Vv
we first figure out’ in which ply we have to look for the answer. We notice that
the fringe trees are so small that in fact we could enumerate all the pqéSible
types of those trees and build a cdmblete lookup table fof each type in 0(n)
total time, while preprocessing thé tree. This use of_predomputétion is
reminiscent of the four Russiahs’algorithm for boolean matrix multipiication
[ADKF70,AHUT4] and was suggested to me by George Lueker. We now give the :
details of the construction.

We first give a numbering system. for general trees which will be used for
numbering the fringe trees. Let T be some rooted unlabeled tree of size k. The
degree of a vertex x in T, deg(x) is.deflned to be the number of its children.
Let x1x2...xk be the postorder sequeﬁée of the vertices of T. We define the
Sigpature s of T to be the sequence s = §.,8,...3, where s, = deg(xi).

Lemma 11. T is reconstructible from its signature in linear time.

The proof is easy and is omitted. Notice that although the length of a
signature is @(k log k) it could easily be compressed to 0(k), for example by
using 0's as separators, and blocks of 1's of length d to represent the degree

d. Since

S~ deg(x) =
xeT

this representation requires 0(k) bits. Lemma 11 shows that two trees with the
same signatures are isomorphic. We shall refer to the signature of a tree also
as the type 6f the tree. vThe previous argument shows that the number of trees
of size k is O(Zk), and thus the number of trees of size at most k is O(2k).
wevtake k = log log n we see that the number of trees which can appear as fringe

trees is o(n). For each type s tree, of size at most k, we build a table

Cs[1:k , O:kj‘of size O(kz). If we identify node x with its postorder number
POST_NUM, then ‘ '
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Cs[i,d] = if i has an ancestor j in T of depth d then j elsebo;

A possible implementafion of those tables will use a three dimensional array
cli:k 2k , 1:k , 0:k]. With each x & B1 we keep:

a) A field SIGNATURE(x) which contains the signature of T(x).

22

b) An array B <1 IT(x)!] in which the itB entry; B, [i] contains a pointer

to the ith node of T(x) in postorder.

Assuming that we have all the above fields and tables the following procedure

will answer a basic query on V in 0(1). time.

procedure BASIC_ANSWER(x,d); . o
begin comment asSuming x is a leaf of V and d is an integer 0<£d S,DEPTH(x)
return the ancestor y of x at depth d;
| for j-:= 0 to 3 do XJ := the ancestor of x in Bys
k := the smallest i s.t. DEPTH(xi) < d < DEPTH(xy,4);
vV := u-:=

Xyed Xps1i
d' := d - DEPTH(u);

comment the required y is in ply Pk between the boundary nodes u and v, and
~its depth in V(u) is d'; ’
if k = 0 then
FRINGE_SEARCH:
begin
i := POST_NUM(x);
s := SIGNATURE(u);
J = Cs[i,d'];
y := B [3];
end else’
if d = DEPTH(v) then y := v else
CORE_SEARCH:
bégin‘
Z := CPN(v;k);
y := Az[d'];
end; '
return y;

end;
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Lemma 12. BASIC_ANSWER(x,d) computes the ancestor of x in V at depthd

in 0(1) time.

Proof. The correctness of the FRINGE;SEARCH block follows from the

definitions of signatures and ;f the tables Cs and Bu for signatures s and for
u 6 B1. The correctness of the block CORE_SEARCH follows from the definitions
of principal nodes, of the CPN fields, and of the arrays A for principal nodes
z of order 1 or 2. Notice that once we have entered the CgRE_SEARCH block we
know that d < DEPTH(v) where v = X, is in B,. We can deduce that the required y
is an ancestor of PARENT(v) in Pk' Furthermore, since z = CPN(v) is a prinecipal - -
node which is a descendant of PARENT(v) it must be that y is an ancestor of z in

" ipq+ Thus by the definition of the array i
A we know that A [d'] = y. . , 8

P which lies d' levels down from u = X

Lemma 13. Our algorithm requires O(n) space and preprocessing time.

Proof. By close inspection of our structure one can easily verify that the
preprocessing time is linear in the amount of space used. We therefore have to

show that the tables A_, By, and Cg require a total of 0(n) space. We will
represent the total space used for the tables by:

S =38
At SB + SC

where SA’ SB’ and SC represent the space used up by the corresponding arrays.

Let PRi denote the set of principal nodes of order i.

To bound SA notice that we associated arrays Ay with principal nodes of
order i, for i = 1 or 2. From the definition it follows that two prinecipal
nodes of order i subtend disjoint subtrees, Since the rank of a principal nodé
of order i is at least ai we have:

iPRi{ <n/ ay " (1)

For 1 = 1 or 2 the array Ay associated with each principal node y of order i is
bounded by:

] . (- _ . :
IAy[O‘. ¢ log aj 41l = 1+ c log a; = .0(ay) | (2)
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Lemma 12. BASIC_ANSWER(x,d) computes the ancestor of x in V at depth d
in 0(1) time.

Proof. The correctness of the FRINGE;SEARCH block follows from the
definitions of signétures and of the tables Cs and B for signatures s and for
u 6 B . The correctness of the block CORE_| SEARCH follows from the definitions
of prlncipal nodes, of the CPN fields, and of the arrays A for pplnClpal nodes
2 of order 1 or 2. Notice that once we have entered the CORE_SEARCH block we

know that d < DEPTH(v) where v = X is in B . We can deduce that the required y
is an ancestor of PARENT(v) in Pk' Furthermore, since z = CPN(v) is a principal -
node which is a descendant of PARENT(v) it must be that y is an ancestor of z in
P, which lies d' levels down from u = X

. k+1°
Az we know that AZ[dY] = y.

Thus by the definition of the array

Lemma 13. Our algorithm requires 0(n) space and preprocessing time.

~ Proof. By close inspection of our structure one can easily verify that the
preprocessing time is linear in the amount of space used We. therefore have to

show that the tables A , By and C4 require a total of 0(n) ‘space. We will
represent the total space used for the tables by:

)

S =3 7
st SB + SC

where SA’ SB, and SC represent the space used up by the corresponding arrays.

Let PRi denote the set of principal nodes of order 1i.

To bound S, notice that we associated arrays Ax with principal nodes of

b=d

order i, for i = 1 or 2. From the definition it follows that two principal
nodes of order i subtend disjoint subtrees. Since the rank of a principal.néde

of order i is at least ai we have:
IPR;} <n/a; | ' D

For i = 1 or 2 the array Ay assoc1ated with each prinecipal node y of order iis
bounded by:

. . ) ) A
IAy[O.. ¢ 1og aj 1]. = 1+ c log a; ) = O(ai) : | (2)

We thus get:

a
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Lemma 12. BASIC_ANSWER(x,d) computes the ancestor of x in V at depth d

in 0(1) time.

Proof. The correctness of the FRINGE;SEARCH block follows from the .

definitions of signatures and of the tables C and B for signatures s and for
~ s u :

u & B . The correctness of the block CORE_SEARCH follows from the definitions
of principal nodes, of the CPN fields, and of the arrays A rfor principai nodes
z

z of order 1 or 2. Notice that once we have entered the CORE_SEARCH block we
know that d < DEPTH(v) where v = X_is in B,. We can deduce that the required y

is an ancestor of PARENT(v) in Pk' Furthermore, since z = CPN(v) is a prineipal -

node which is a descendant of PARENT(v) it must be that y is an apcestor of z in

Pk which lies d' levels down from u = X1” Thus by the definition of the array
Az we know that 4 [d'] = y. : '

LLemma 13. Our algorithm requires 0(n) space and preprocessing time.

Brggﬁ. By close inspection of our structure one can easily verify that the
preprocessing time. is linear in the amount of space used. We therefore have to

show that the tables Ax’ By and C4 require a total of 0(n) space. We will
represent the total space used for the tables by:

S =38
| ' SB + SC
where SA’ SB’ and SC represent the space used up by the corresponding arrays.

Let PRi denote the set of principal nodes of order i.

To bound SA notice that we associated.arrays Ay with principal nodes of
order i, for i = 1 or 2. From the definition it follows that two principal
nodes of order i subtend disjoint subtrees. ' Since the rank of a prineipal node
of order i is at least ai we have: ‘

iPR,! <n/ a

i i

For i = 1 or 2 the array Ay associated with .each principal node y of order i is
bounded by: ' :

=A9[0.: ¢ log a;, 41l = 1+ clogay 4 = .0(a;)

We thus get:

(]

(1)

(2)
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and from (1) and (2) we have:

"= 0(n / a1) O(a1) + 0(n / a2) 0(a2) = 0(n)

To bound SB notice that the space used up by each fringe tree T(x) for

X 6 BO is 0(r(x)) and so clearly Sy is 0(n).

To bound SC we note that there are at most 0(21%8 198'1) types of fringe.
trees. Each one requires a table of ‘size 0((log log n)z)u Thus the total space
which is used up is: '

0(log n (log log.n)z)'= o(n)

The main result of this section is summarized in the following theorem

which is a consequence of Lemmas 12 and 13.

Theorem 3. Our algorithm requires O(n) preprocessing time and answers each

individual query in 0(1) time.

This last result is an ektention of Theorem 1 to the halfQIine case. It is
% . S )
.an improvement over an 0(n log n) preprocessing time, 0(log n) query time in an
earlier version of this paper. Tarjan [T80] suggests an alternative proof;

posSibly by using the table compression technique of Tarjan and Yao [TY79].

4.3 More on Pointer Manipulating Machines -

In 4.1 we showed that pointer machines require () (log log n) time per

LCA query in the worst case (Theorem 2). Aho, Hoperoft, and Ullman [AHU76] gave

.an 0(n log log n) preprocessing time and O(log log n) query time algorithm which
is implementable on a pointer machine. It may be of interest to ask whéther
L)(n log log n) is a lower bound on the preprocessing time by any pointer
machine algorithm for the half-line problem. We now éhow that this is not the
case by observing that it is possible to tailor our algorithm to a pointer

machine to achieve optimal query time with linear preprocessing time.

]
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Theorem 4. There is a pointer machine algorithﬁ which achieves 0(n)
preprocessing time with 0(log log ni query time. ‘

Proof Sketech. We first observe that a pointer machiné can partition a GB
tree into the plies described iﬁ 4.2 in linear time. For principal nodes y of
degree 2 we can replace the arrays A& by balanced trees, and so instead of
indexing in 0(1) time we use a log logn search in a balanced tree. The B1
boundary as well as the tables for the fringe trees can be eliminated since in a
GB subtree .of size 0(log n) a brute force upwards search takes O(log log n) time
to answer basic queries. We notice also that computing log d for d < n can be
done by an 0(log log n) search in a preset balanced tree. Those arguments show
that given the union tree U, and its binarization B,vﬁe can answer LCA queries
on the original tree T in 0(log log n) time after préprbcessing U and B in
linear time. U is built in linear time by our algorithm, which requires no
indexing. Also, if the the children of each node in U are given in order of

increasing ranks then our algorithm'computes the binarization B in linear time

. without use .of indexing.

It remains to show that we can order children in U in order of increasing
ranks in linear time on a pointer machine. The key point is to observe that the
distribution of ranks in the U tree is skewed enough to enable such a linear
sort. We use a variant of the finger sort of [GMPR77] to sort all the vertices
in U in order 6f increasing ranks. We first build a complete tree T0 of size

m = 2J,lwhere j = [ log n}, with leaves numbered from 1 to n. The leaves of T

represent buckets. We keep a finger at the leftmost leaf of the tree which is

numbered by one. Given a node x of U with rank r, we insert it into the rth

0

bucket by starting ‘a finger search for this bucket from the finger. The search
takes O(log r) time for a node of rank r. We notice that if x € U then
r(x) < w(x) = {U(x)!. For a union tree U with n vertices and e edges one can
easily prove by induction on the structure that -

= 1log w(x) <

x6U
and thus the total sorting time is O(n + e) 0(n)

An interesting problem which is still open is whether the off-line problem

"is doable in linear time on a pointer machine.
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Pidgin Algol for the Algorithms,

We use the following notation [S80]. Let QUEUE be a queue and x be an element..

QUEUE <= x means: add x at the rear of QUEUE.

X

<= QUEUE means: delete the element at the front of QUEUE, and

assign its value to Xx.
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procedure PARTITION(T,L);
begin comment assuming every query in Q is of the form a=(x,y) where X and y are
leaves, and NUM(x) < NUM(y), partition T into h levels Ci’ and Q into h
buckets Bi; C
thread the tree; _
" for-each node x of T store the inorder number of x in_NUM(x), and initialize
L(x) to the empty list; _
for each query gq=(x,y) calculate d(q)=d(x,y)=NUM(y) - NUM(x) + 1;
while Q is not empty do delete q=(x,y)'from.Q'and add it to L(x);
comment at this point, for every node x, L(x) consists of all the queries of
the form (x,y) for some y; | '
x := the first node of T in inorder;
while x # do
Dbegin | ‘
‘i 1= log r(x);
‘add X at the end of C_;
while L(x) is not empty do
begin . ‘
let g=(x,y) be the first query in L(x);
ji= L logdlx,y) d;
delete q from L(x) and add it at the end of Bj;
end;
X := NEXT(x);
end; _
comment at this point Ci is the iR level, ordered by iﬂorder. Also,
Bi = {queries(x;y) | ol ¢ d(x,y) < oi+1y
NUM(x) ;-

end;

, and Bi is ordered by increasing

procedure FIND_LCA1(x,y);

begin
v := C_ANCESTOR(x,i);
v := LRA(v);

if v subtends y then return v else return LRA(V);

end;
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procedure FIND_CA(T, C /B,)

begin assuming the tree 1s partltioned into log n cuts and the queries are
partitioned into log n buckets, by PARTITION, such that NEXT_C(v) (resp.
NEXT _B{q)) is the next element in_the appropriate cut (resp. bucket) compute
for each g=(x,y) in B, the ancestor of x in C;, and store it in
C_ANCESTOR(x,1);
for i := 1 until h do
begin

v e

the fiQ§t node in Ci;
q := the first query in Bi;
if q # null then
begin
while v # null and v is not an ancestor of x do v := NEXT_C(v);
while q # null and v is an ancestor of x do | |
begin
(x,y) := q;
C_ANCESTOR(x,1i) := v;
'q := NEXT_B(q); .
end;
h end;
end;

end;

procedure COMPUTE_NUM(T,T")
. begin
X := the first node of T in inorder;
NOM(x,T") := r(LEFT(x),T );"
y = NEXT(x,T);
"while y £ null do
begin
NUM(y, T ) := if x is a 1eaf of T then NUM(x, T ) + r(RIGHT(x), T )
else NUM(x * ) + r(LEFT(y), " )3

X = ¥;
y := NEXT(x,T);
end;

end;
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procedure BALANCED_PAIRING(x);

begin
initialize QUEUE to the empty queue;
while L(x) is not empty do
begin

Bi := the next bucket in L(x);

delete Bi from L(VX_),;
while !B | > 2 do ‘ \
begin
delete two nodes u and v from B
o ~ PAIR(u,v,w);

add w to B

i}

i+1
end;
| . ,
- if Bi # @ then QUEUE <= the only element of B,;
end; ' '
end;

procedure SKEWING(x);

begin
Yo <= QUEUE; 1 := 0; _
while QUEUE is not empty do
begin
xi <= QUEUE;
PAIR(Y,; ,%;,3,95
i:= i+1;
end;

replace yi by x;
end; '

procedure PAIR(u,v,w);

begin
create a new red node w;
‘make u the left child of w;
make v the right child of w;

end;






