THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH 1LABORATORY!

Algebras of Feasible Functions

Yuri Gurevich

CRI.-TR-21-83

MAY 1983

Computing Rescarch Laboratory
Room 1079, Fast Fngincering Building
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

1A1] correspondence should be sent to Professor Yuri Gurcvich, Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors and do not necessarily reflect the views
of the funding agencies.

Algebras of feasible functions

Yuri Gurevich, University of Michigan

Introduction. For different complexity levels (PTIME, LOGSPACE, etc.) and an

arbitrary set o of functions we give an inductive definition of the class of
functions computable from o within the complexity level. Our inductive definition
for the class of PTIME computable functions ié different from and more robust than
the inductiVe definition of Cobham [Co] for the same class. As far as we know,
it is the first time that inductive definitions for the other complexity classes
have been given.

The idea is to view computable functions as database queries rather than pure
arithmetical objects. For example, the function

fG(x):=the diameter of the connected
component of vertex x of graph G

can be coded into a pure arithmetical function. We prefer, however, to view it as
a kind of global function (or a function schema) that becomes an ordinary function
in each graph. Global functions are defined precisely in §1. The usual definition
of primitive recursive functions, adapted to global functions, surprisingly gives
exactly LOGSPACE computable global functions, see §2. Recursive global functions
appear to be exactly PTIME computable global functions, see §3. To show that our
approach can handle some other complexity classes, we mention some more results in
§4.,

This work is related in spirit to [Im2], and its subject could be called
functional (rather than predicate) logic. One advantage of our approach is that
computations in context can be expressed in our Togic in a way that preserves bounds

on the resources in question.

§1. Global predicates and functions

Consider the statement "Vertices x and y of the graph are connected",

For each graph this statement becomes a binary predicate. We call such a statement
a global predicate (or predicate schema). Analogously, a term (xy)z gives a
ternary function for each set with a binary operation on it. It is an example of

a global function (or function schema). From this point of view first-order or
second-order formulas are global predicates. A relational query is a global
predicate or a global function. We will define global predicates and functions
formally.

A vocabulary o 1is here a finite list of predicate and function symbols with
specifications of the arity of each predicate symbol and the arity and the co-arity
of each function symbol. A structure S of a vocabulary o is a nonempty set
U (the universe) together with interpretations of all symbols in o. An t-ary
predicate symbol P is interpreted as a predicate PSQ-UQ. A function symbol f
of arity & and co-arity r is interpreted as a function fS:U&+Ur. (The co-arity
r is always positive.) If 2=0,r=1 then the function symbol is interpreted as an
individual constant. The same name is used often for a structure and its universe.
The cardinality |S| of a structure S is the cardinality of its universe. Here
is a typical example: o consists of one binary predicate symbol, o-structures
are (directed) graphs. We will view structures as inputs for algorithms.

Proviso 1. The term "structure" will refer to structures S of finite
cardinality with Universe ($)={0,1,...,]S|-1}.

A global g#-ary predicate P of vocabulary o (in short, an &-ary
o-predicate P) assigns to each o-structure S an ordinary &-ary predicate

Psg;Sl. A global function f of vocabulary o (in short, a o-function f) of

. S. .l
arity ¢ and co-arity r assigns to each o-structure S a function f :S™>S .

(The superscript S will usually be omitted.)

Symbols of a vocabulary o name so-called basic o-predicates and o-functions.
The difference between the basic and the other o-predicates and o-functions is
intentional. The first provide parts of inputs, the second provide objects to be
computed.

Pseudo-Claim. Let o be a vocabulary, & be a natural number and I be an
S

alphabet. Let f assign to each o-structure S a function f :s%xz. Then f
is a global function.

Instead of relaxing the definition of global functions we choose (at this stage)
the following way to make the Pseudo-Claim true. First, we disregard structures of
cardinality 1.

Proviso 2. Only structures of cardinality at least 2 are considered.

Second, we code the letters of I by tuples of zeroes and ones of the same
length r. The given f becomes a o-function of arity 2 and co-arity r.

We use the term “"vector" for tuples of elements (of a structure). With each
vector §¥(x1,...,xm) of elements of a structure S we associate a number,
S—yglggji):=2xi|5|m_i. To compute the S-value of X just view the vector X as
an |S|-adic number. The Pseudo-Claim allows us to see a function 9:26+2T with
lg(u)lgjulm for some m, as a global function. Namely, let's disregard the words
in 26 of length <1. Then a word W€26 can be seen as a structure of cardinality
|w] with a unary basic function taking values in . Pad g(w) to a word g1(w)
of length |w|m using a new symbol (the blank). Define gw(x],...,xm) to be the
kth letter of the g](w) where k is the w-value of (x],...,xm).

We will say that a computational device computes an 2-ary o-function f if,

given a o¢-structure S and a vector ikSQ, the device computes fs(i). The size

of the input (S,X) is supposed to be at least |[S].

§2. LOGSPACE computable functions

We adapt the usual definition of primitive recursive functions to the case
of global functions and show that for each vocabulary o, LOGSPACE computable
s-functions are exactly primitive recursive o-functions. First, we describe
initial primitive recursive functions of the empty vocabulary.

Individual constants O and End, and constant functions Zero(x)=0,

END(x)=End. The individual constant End is interpreted as |S|-1 in each
structure S. Thus, the function END 1is constant on each structure S but its
value depends on |S].

Successor functions mSc(x],...,xm) for m>1. If S is a structure, xes"

and S~va1ue(§)<|5|m—1 then Msc(x) 1is the vector yes™ with
S-value(y)=S-value(x)+1. In this case we will usually write x+1 instead of

Msc(X). If, on the other hand, x=End” then Msc(X)=0".

Projection functions 2P(x],...,xm)=(xi],...,xil) where ,1si]<12<...<125m
and s is the sequence 11""’iz‘

Second, for every nonempty vocabulary o the basic functions feo and the
characteristic functions of the basic predicates Pec are initial primitive
recursive o-functions. Third, we describe two operations on global functions.

Composition f(?):=g(h1(§),...,hm(i)). The notation is not perfect here.
The values h1(§),...,hm(§) should be concatenated into one vector because the

domain of every fs consists of vectors rather than tuples of vectors.

Primitive recursion:

£(X,T+1) :=h (X, T, (X, t)).
Here T+l is the successor of t and t+1#0.

A global function of some vocabulary o will be called primitive recursive

(shortly PR) if it belongs to the closure of the initial primitive recursive

functions of vocabulary o under composition and primitive recursion.

Theorem 1. Let o be an arbitrary vocabulary. A global o-function is

LOGSPACE computable iff it is primitive recursive.
| The if direction is easy. The only if direction is proved in the rest of the

section. We begin with a few easy lemmas.

Lemma 1. Let f(x,y) be a global function of some vocabulary oy and let
o5 be the extension of o1 by a new individual constant c. If the cz—function
g(x):=f(x,c) is PR then f isa PR c]-function.

A global o-predicate will be called PR if its characteristic function
is so.

Lemma 2. (i) Any boolean combination of PR o-predicate.

(i1) Suppose that a o-function f is defined by cases
_ g,(x) if Py(x)
f(x)i= doeo_ _
gm(x) 1f' Pm(x). |
If the o-functions 9ys- 29y and the o-predicates P]"“’Pm are PR then
f is so.
Lemma 3. Suppose that a global o-function f is a concatenation of global
o-functions f],...,fm:
f(x) :=(f](x]),. .o ’fm(xm))
where each ?} js a projection of x. If f]""’fn are PR then f is so,
and vice versa.
Lemma 4. Suppose that o-functions f1,f2 are defined by a simultaneous
primitive recursion:
f'i (;9.0_) :=91- (-)Z) ’
fi(x,t+l):=hi(x,t,f1(x,t),fz(x,t)).
If the global o-functions gi’hi are PR then f],fz are so.
Now, let f be a LOGSPACE computable o-function. We will show that f is

PR. Due to Lemmas 1 and 3 we can suppose that the arity of f 1is zero and the

co-arity of f is one.

-6 -

Since f 1is LOGSPACE computable there is a two-way multihead finite automaton
M that computes f. We can suppose the following about inputs S. Each basic
predicate Ps is presented on a separate input tape of length ISIQ where ¢
is the arity of P. The cells of the tape are numbered by (the S-values of) vectors
of dimension 2. A cell X codes the truth-value of P(x). The components

S S
f],'oo,fr

of a basic function fS of co-arity r are presented on separate
input tapes as their respective graph predicates. The components of the output
vector are printed in the unary notation on separate output tapes.

Let Hp,....H be the heads of M. Let Symi(i}) be the content of cell
ig of the tape for Hi' The functions Symi are easily definable by cases.

For example, if Hi works on the input tape for some basic predicate P then
there are 6 cases determined by the truth-value of P(Q}) and by whether cell
x s leftmost, rightmost or neither. Hence the functions Symi are PR. Hence
the concatenation Sym(x) of Sym](i),...,Symm(i) is PR.

The steps of the computation of f can be numbered by vectors t of some
dimension k. Let State(t) be the state of M at moment t. Let Headi(E) be
the position (cell) of Hi at moment t, and let Head(t) be the concatenation
of Head1(E),...;Headm(f). It is easy to define by cases PR functions «,8
such that
State(T+1)=a[State(t), Sym(Head(t))],

Head(t+1)=p[State(t), Head(t)].

The zero-ary functions State(Ok), Head(Ok)

are obviously PR. By Lemma 4,
State and Head are PR.
Let Print(t) express that M prints on the output tape at moment t, This

g-predicate is easily definable by cases and therefore is PR. Finally, we define
a PR o-function
Out(Ok):

Out(t+1):= {

=0 _
’ Qut(t)+ if Print(t),

Out(t) otherwise,

and note that f(T)=0ut(End).a

§3. PTIME computable functions
We justify the thesis that for each vocabulary o, PTIME computable o-functions
are exactly recursive o-functions. Fix o. PTIME computable o-functions are
closed under many kinds of recursion. For example, let
2 {f(i‘,ﬁ)wg(ﬂ,
f(i}f41):=h(§}f}f(§H,f),...,f(yh,f)) where }}:=ai(f(§}fﬁ).

If the o-functions g,h and o,

; are PTIME computable then f is so: for each

t compute f(x,t) for all x. Recall that x takes only polynomially many values.

Moreover, suppose that a o-function f is defined by some recursion from
PTIME computable o-functions. The arguments of f take only polynomially many
values. It is natural to suppose that the recursive definition gives a computation
where each round provides a new value of f 1in a polynomial number of steps. Hence
all values of f can be computed in a polynomial number of steps. In this sense
PTIME computable functions are closed under any recursion. (The phenomenon is related
to the fact that o-predicates are closed under the least fixed point operator.)

In order to define recursive o-functions formally we are looking for a
particular recursion schema. An essential difference between recursions (1) and (2)
is that the parameters are not altered in (1). A disadvantage of recursion (2) 1is
that for each T+1 we have to update values f(x,t) for each x. If (2) reflects
some computation with t coding the steps and if we use (2) to compute f then we
end up with a much worse time bound than that for the original computation. The

following schema gives minimal updating.

f(ﬁ):=g, F(x,0):=G(x),
(3) 4f(t+1) £(T), F(f'(T),t)),
{ x,t) if x#f' (),
F(x,t+1)
), ,t)) otherwise.

Here f'(T) 1is the projection of f(t) on the first Dimension(x) components.

-8 -

We will say that a global o-function 1is recursive if it belongs to the
closure of the initial primitive recursive o-functions under composition,

primitive recursion (1) and recursion (3).

Theorem 2. A global o-function f is PTIME computable iff it is recursive.

The proof is similar to that of Theorem 1. We sketch here only a part that
is essentially new. Fix a Turing machine M that computes f. The time (compu-
tational steps) can be represented by k-tuple t of individual variables. Let
HO’H1""’Hm be the heads of M where H0 works on the working tape and
Hys...oH work on input tapes. For 1i=0,1,...,m let Headi(f) be the position
of H, at time t, let State(t) be the state of M at time t, and let Head(t)
be the concaténation of

Heado(f), Head](f),..., Headm(f), State(t).

Let Symo(§}¥3 be the Symbo] in cell x of the working tape at time t.
For i=1,...,m let Symi(i}) be the symbol in cell i} of the input tape for
Hi’ As in the proof of Theorem 1 the functions Sym],...,Symm are PR.

Now use the recursion schema (3) with f(t)=Head(t), f'(f)=Head0(t) and
F(i}f)=$ym0(§}f). The corresponding functions h and H are primitive recursive.

They use Symi(Headi) for 1i=1,...,m and are easily definable by cases.

§4. A combined restriction on time and space

We say that a function is PTIME—LOGk-SPACE if it can be computed on a
Turing machine under a simultaneous restriction of polynomial time and 1ogk
space. We say that a function is PTIME-PLOGSPACE if it is PTIME—LOGk«SPACE
for some k., This section gives inductive definitions of all these classes of
functions.

We generalize the notion of global functions by introducing a new sort of

individual variables, called log-restricted variables. Log-restricted variables

range over natural numbers less than or equal to 1092|S| in each structure S.
Defining a global function f(x],...,x2)=(y],...,yr) we have to specify now
which variables X;»y; are log-restricted. Fix a vocabulary o.

PTIME-PLOGSPACE computable o-functions are closed under a wide variety of
recursions with log-restricted parameters. Consider, for example, the recursion
schema (2) and suppose that the components of x are log-restricted. If

o-functions g,h,ai are PTIME-PLOGSPACE computable then f is so.

Theorem 3. A global o-function f is PTIME-PLOGSPACE iff it can be
obtained from initial primitive recursive o-functions by composition, primitive

recursion and recursion (3) where all parameters are log-restricted.

K_SpACE iff it can be obtained from

Theorem 4. A o-function f is PTIME-LOG
initial primitive recursive o-functions by composition, primitive recursion and

recursion (3) where Dimension(x)<k and all components of x are log-restricted.

We could avoid introducing a new sort of individual variables because the
following global function is primitive recursive: the length of the binary

notation for x+1.

- 10 -

Concluding remarks. This paper is a continuation of [Gu] where we argue
for altering classical logic in order to make it more appropriate to Computer
Science. We believe that algebras of feasible functions may be useful for creating
new query languages, for creating special purpose programming languages and for
proving (or disproving) properties by induction. We do not believe that deep
problems such as P=?NP can be solved simply by translating them into algebra or

logic. However, such translations can shed some new light on these problems,

Acknowledgements. Papers [Iml], [Va] and discussions with Neil Immerman

were useful in my work on the preceeding paper [Gu]. This paper has gained from
useful comments of my Michigan colleagues Andreas Blass, Peter Hinman, Jane Kister

and Bi1l Rounds.

References

[Co] A. Cobham, The intrinsic computational difficulty of functions, Proc. 1964
Internat. Congress for Logic, Method. and Phil. of Sciences, North-

Holland.
[Gu] Y. Gurevich, Logic tailored for computational complexity, to appear.
[Im] N. Immerman, Relational queries computable in polynomial time, 14th ACM
Sympos. on Theory of Computing, San Francisco, May 1982, 147-152.
[Im2] N. Immerman, Languages which capture complexity classes, 15th ACM Sympos.
on Theory of Computing, Boston, April 1983, 347-354.
[va] M. Vardi, Complexity of relational query languages, 14th ACM Sympos. on

Theory of Computing, San-Francisco, May 1982, 137-146.

