
Interactive Data Compression 

Abbas El Gama1 and Alon Orlitsky 

Information Systems Laboratory 
Electrical Engineering Department 

Stanford University 
Stanford, CA 94305 

Abstract 
Let X and Y be two random variables with probabil. 

ity distribution p(z,y), joint entropy H(X,Y) and condi- 
tional entropies H ( X  I Y) and H (  Y IX) . Person Px knows 
X and person P y  knows Y. They communicate over a 
noiseless two-way channel so that  both know X a n d  Y. 

It is proved that ,  on the average, at least 
H ( X  I Y) + H (  Y 13‘) bits must be exchanged and that  
H(X,Y) + 2 bits are sufficient. If p(z,y) > 0 for all 
(qy) , then at least H(X,Y) bits must be communicated 
on the average. However, if p(z,y) is uniform over its sup- 
port set, the average number of bits needed is close to  
H(X I Y) + H (  Y IX). Randomized protocols can reduce 
the amount of communication considerably but only 
when some probability of error is acceptable. 

1. Introduction 
Shannon’s data  compression theorem [I] states that  

if X i s  a random variable with entropytt H ( X )  , then any 
variable length code that can communicate X over a 
noiseless channel must have expected length 2 H ( X )  . 
Moreover, codes with expected length < H ( X )  + 1 exist. 
Later, Huffman [2] devised an elegant construction for 
optimal codes that  achieve minimum expected code 
length. 

In this paper we investigate the following two-way 
generalization of Shannon’s data  compression problem. 
Let .Y and Y be two random variables distributed over a 

finite set ZXY with joint entropy H ( X , Y )  , marginal 
entropies H ( X )  and H( Y), and conditional entropies 
ff(X1Y) = H ( X , Y ) -  H(Y) and H ( Y  IX) = H ( X , Y )  - H ( X )  . 
Suppose that  person Px knows X and person Py knows Y.  
They communicate over noiseless two-way channel so 
that  both know X and Y.  How many bits on the average 
must they exchange? and what are the optimal codes? 
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tt H(X) = - E p ( z )  log2p(z) where p(z) IS the probability that X =  z 

We prove that ,  on the average, at least 
H ( X  IY) + H (  Y IX) bits must be exchanged and that  
H ( X , Y )  + 2 bits are sufficient. We also show that  if 
p(z,y) > 0 for all (z,y) , then at least H ( X , Y )  bits must be 
communicated on the average. However, if p(z,y) is uni- 
form over its support set, the average number of bits 
needed is close to  H ( X  I Y) + H (  Y IX). The first of the last 
two results is somewhat disappointing as it precludes the 
search for efficient interactive data  compression schemes 
in such cases. Yet the last result provides data  compres- 
sion schemes that  may require considerably less than 
H(X,Y) bits when the support set of p(z,y) is a small sub- 
set of ZXY. The following example illustrates one such 
case: 

Suppose that  each person has an n bit file and that  
the two files are known to differ in no more than K bits. 
Can they exchange the files using less than the obvious 

n + log( E(;) ) bits? 
K 

k=O 

The lower bound can be used to show that  a t  least 

240g( E (:) ) bits must be exchanged in the worst case.  

An upper bound on the number of bits exchanged 

(Theorem 4) ensures that 2.log( ( f  ) )  + log n bits are 

always enough. The  two bounds are asymptotically tight 
for every K (for more details see Example 5). 

In the following section we formally define the two 
way data  compression problem. In section 3, we prove 
general lower and upper bounds. In section 4 we prove 
the upper bound results for distributions that are uniform 
over their support set. In the last section we compare the 
performance of deterministic and randomized protocols. 
We  show that  if no errors are allowed then randomization 
doesn’t help. If some probability of error is allowed then 
the number of bits required by a randomized scheme can 
be logarithmically smaller .than that achieved by any 
deterministic one. 

K 

L O  

K 

k=O 
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2. Definitions 
In this sectio 

model and define tl 
to the number oi 
describing operatio1 

Let a,, . . . ,a, 

or, equivalently, < 
of these elements ( 
sisting of 0 element 
[A,]  is defined to  b 
recursively denotes 
elements of [A,Az 
A,. [ A d z ,  is an 
[ A i ] L l  denotes the 
sequence A ,  where 
element is A ,  and 
[AiA,]=Al. If A 

Thus, I<A;>;“=,l= 

A sequence < 
sequence < bi>i”, ,  
said to be a prope; 
sequences is said to 
is a (proper) prefix 

The communi 
eralized Discrete ’ 
this channel is a 
empty sequence). 1 
can simultaneous1 
lengths. A transmr 
messages. A codew 
descriptors. 

Let C be a fu 
set of codewords. 
C(z,y) (the numb 
sequence). For i= 
transmission descr 
first message in Ci 
is an abbreviation 

empty sequence (ai 

Bx(z,y) is th  

and F ( z , y )  is the 

The mapping 

C(Z,Y) ). 

[ biy(2,y) I$+; bp 

Channel Code (C . 
properties: 

we introduce the communication 
z complexity measures corresponding 
bits communicated. We begin by 
on sequences. 

be arbitrary elements. <al * * . a,> 
denote the sequence consisting 

:ai>!=, is the empty sequence - con- 
I. If A, ,  . . . ,A, are sequences, then 
A ,  and, for 2<m<n, [A,Az . 9 * A,] 
,he sequence whose elements are the 
’ . A,,] followed by the elements of 
tbbreviation for [A,Az . . . A,] and 
mpty sequence. Note that  [A,]  is the 
i <A,> is the sequence whose only 

if A2 is the empty sequence then 
a sequence, let IAl denote its length. 

n 

i= 1 
1 while IIAi]f=ll= IAiI. 

zi>Ll is said to be a prefiz of a 
T m s n  and for i=l, ..., m, ai=bc I t  is 
prefiz if, in addition, m#n. A set of 
le  prefix free if no sequence in the set 
f another. 
ition model we consider is the Gen- 
ime Binary Channel. A message for 
nite sequence of bits (possibly, the 
, any time unit, both communicators 

transmit messages of arbitrary 
sion descriptor is an ordered pair of 
rd  is a finite sequence of transmission 

:tion from a subset S of X X  ?) to  the 
Then, n(z,y) denotes the length of 
* of transmission descriptors in the 
,.., n(z,y), Ci(z,y) denotes the i t h  
)tor in C(z,y); b3z,y) denotes the 
z,y) and bfiz,y) - the second. Ci (ay) 
Tor <Cj (z,y)>j,,. C! (z,y) is the 

i C;(z~~)(z,y) is just another name for 

sequence [ b f (  z, y) I:&), By( 2, y) is 
t , y )  is the sequence [ bF(z,y), bT(z,y) ]  
iequence [ bIn(  z, y) ]$iy). 

7 is said to be a Generalized Binary 
code) for S if it satisfies the following 

Prefix free messages. 

Ci-’(z,y) = Ci-’(z,y’) implies that  by(z,y) is not a proper 
prefix of by(z,y’) and 

For all (z,~), (z,y’)ES, 1 I i l m i n  (n(z ,y) ,  n ( z , ~ ’ ) ) ,  

for all (z,~), (z’,y)ES, I < i l m i n  (n(z ,y) ,  n(z’,y)), 
ci-I ( ,y) = Ci-’(z’,y) implies that  bF(z,y) is not a proper 

prefix of q(z’,y). 
Coordinated Termination. 
For all z EX, the set {C(z,y) : (z,y)ES) is prefix free and 
for $11 y EY, the set { c(z,y) : (z,y)ES} is prefix free. 
(Note that  (z,y), (z,y’) can have the same codeword.) 

Unique message. 

Ci-l(z,y) = Ci-’(z,y’) implies bF(z,y)=bF(z,y’) and 

C{-’( z, y) = Cf’( z’, y) implies 

The  prefix free messages property ensures that the 
receiver knows how to interpret a received message (and 
that  the length of the message is not used to  transfer 
information). T h e  coordinated termination property 
ensures that  the communicators know when the commun- 
ication ends. T h e  unique message property ensures that  
the communication is ”deterministic” i.e. the same inputs 
will always result in the same bits communicated. (See 
section 5 for randomized protocols). 

For all (z,~), (z,y’)ES, I I i < m i n  (n(z ,y) ,  n(z ,y’)) ,  

for all (z ,~ ) ,  (z ’ ,y )~S,  I l i l m i n  ( n ( ~ , y ) ,  n(z’,y)), 
by(  z, y)= b:( z’,y). 

Remark: One could avoid the coordinated termination 
property and shorten the description of the others by 
defining codewords to be infinitely long with only finitely 
many non empty messages. We, however, prefered the 
more intuitive, finite length messages. 

Let p(z,y) be a probability distribution over XX?). 
Denote the marginal probability of z EX by p(z )  and the 

marginal probability of y EY by p ( y ) .  The support set S,, 
of p is defined by Sp & ((531) : p(z,y)>O}. A code C is 
said to  be a code for p if i t  is a code for Sp. 
If C is a code for p ,  define the average length of C under 
p to  be: 

La (C,P) A c P ( z , v ) * I ~ ( z , ~ ) l  

L ,  ( G P )  & max{l.sXY(z,y)l> . 

4 
and the maximal length of C under p to be: 
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Let j be a function defined on S. A code C is said to 
resolve f for S if for all (ay), (z,y’)ES, 
C(z,y)=C(z,y’) implies f (z ,y)=j (z ,y’ )  and for all 

The codes discussed in this paper resolve the identity 
function f ( z , y )  = (qy). We call such codes eschange 
codes. The average complexity of a distribution p is 
defined as 

(2, Y), (2 ’ > Y)€S, C( 2, Y)“ C( 2 ’ 7 Y) implies f (2, y)=f ( z ’ ,  Y). 

min La ( C,P) (’) ’ ( C :  Cis an exchange code for p} 

The maximal complexity of a distribution p is defined as 

min L A G  P) 
Lm (‘) ’ {C:  Cis an exchange code far p} 

La ( p )  is the minimal number of bits that have to be 
exchanged on the average in order to exchange X and Y 
using any code that obeys the above properties. L,  ( p )  
has a similar interpretation. 

3. Lower And Upper Bounds 

We begin by proving some basic properties of codes. 
These properties follow directly from the definition of G- 
codes. 

Lemma 1. Let C be a code for S. For every 
(z,y), ( z ’ , y ’ )~S ,  if (z,y’)ES and one of Bm(z,y), 
p ( z ’ , y ’ )  is a prefix of the other then, 

F ( z , y )  = Bm(z,y’) = Bxy(z’,y’). 

Proof: Without loss of generality, assume that f l ( z , y )  
is a prefix of Bxy(z’,y’). 
By definition, C!(z,y) = Cy(z,y’) = C;(z’,y’). 
Also, if for some 1 5 i 5 n(z,y), 
C i-’(z,y)=C i-’(z,y’)=C i-’(zr1y’) then, 

(i) [ tfy(z,y) ]$;Y) is a prefix of bixy((z7,yr) ]$;7~’). 

(ii) By the coordinated termination property, i< n(z, y’) 
and, therefore, i i n ( z ’ , y ’ ) .  

From (ii) and the unique message property, 
b 3 z , y )  = @z,y’). Hence, both bF(z,y’) and bT(z’,y’) are 
prefixes of [ bjm(z’,y’) ];L< 1 ~ ’  and, thus, one is a prefix 
of the other By the prefix free messages property, 

bi((z,y’) = F(z’,y?). 

c pq 2, y)” c $W)( 2, y ’)= c p l y ’ (  2 I ,  yj). 

C(z,y) = C(z,y’) = C(z’,y’) 

Similarly, bT(z,y) = bT(z,y’) = bfiz’,y’). 
Thus, C i(z,y)=C i(z,y’)=C i(z’,y’) and, by induction, 

From the coordinated termination property, 

Corollary I. Let C be an exchange code for S. If 
(s,y), ( z ’ , ~ ’ )  are distinct members of S and ( z , ~ ’ )  € S  
then neither one of p ( z , y ) ,  f l (z ’ ,y’ )  is a prefix of the 
other (nor can they be equal). 
Proof: If one is a prefix of the other then, from Lemma 
I ,  C(z,y) = C(z,y’) = C(z’,y’). Since C i s  an exchange 
code, this implies that  (s ly)  = (z,y’) = (z’,y’) which 
contradicts the assumption 

Corollary 2. If C is an exchange code for S then for 
every z €5, {By(z,y) : (z.y)€S) is prefix free with cardi- 
nality I { y  : (z,y)ES)( and for every 

y CY, {@(z,y) : (z,y)ES) is prefix free with cardinality 

Proof: Assume that for some (z,y), (z,y’)ES, y Z y ’  , 
By(z,y) is a prefix of By(z , y7 ) .  Then, by induction as in 
Lemma 1, C(z,y) is a prefix of C(z,y’) contradicting 
Corrolary 1 

Using these properties, we can apply one-way- 
communication results to prove the following lower and 
upper bounds on La ( p ) .  

I{. : (~,Y)ES31. 

Theorem 1: H ( X  I r )  + H (  Y IX) < L ,  ( p )  <H(X1Y)+2.  
Proof:‘ Upper Bound: Using a Huffman code [2], Px 
encodes X with average length 5 H(X)+l. Then, P ,  
knowing X ,  encodes Y with average length 

Lower Bound: By Corollary 2, if C is an exchange code 
for p then for every z E X ,  {By(z,y) : (z,y)ESp} is a prefix 
free code [3] for { y  : (z,y)€S,}. 

Therefore, for every z EX, 

{ Y :  (Z,Y)ES,) 

Similarly, for every y EY, 

5 H (  Y Ix)+l. 

c P(Y I z ) . I ~ y ( ~ J ) l  2 H(YIX=z). 
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The following theor 
scheme described ii 

p(z,y)>O for all (z,? 

T h e o r e m  2. If for : 

H ( X ,  

Proof: Upper Boui 
Lower Bound: Let 

S,, = XX y, every ( 
ments of Corollary 

code for XX y and, 

LAP)& c 
(Z,V)EXX 

According to 

ples describe distril 
lower bound (Exam 
upper bound (Exam 
ple 3). 

H(XIr?+H(Ylx) 

E x a m p l e  1. ( La 
Let 5 = y = {I,  ... 

I 

Then, X= Y so no E 

Then, by Theorem ' 

E x a m p l e  3. 
( L,(p) strictly betw 

Let X = 31 = {I, ... 

1 shows that the two way Huffman 
rheorem 1 is nearly optimal when 

fXX y. 

b,Y)EZX y, P(5Y)>O then, 

I L a  (PI <H(X U+'- 
: As in Theorem 1. 
be an exchange code for p. Since 

I), (z ' ,y ' )EXx y satisfy the require 
Hence, { r ( z , y ) )  is a prefix free 

Then, 

H ( X  I r) + H (  Y Ix) = 2 - F (  h(c)  + d o g  (n-1 

H ( X ,  Y) = log n + Fqc) + F.c.log (n-1) i 

Combining the previous examples we obtain 

F(1og n + q c )  + c.Iog(n-1)) I ~ , ( p )  

5 F.( log n + N E )  + c.log(n-1) ) +2 

By letting 6-0, 

H ( x l Y ) + H ( Y l q = o  

H(X,Y) " log n 

L,(p) = F l o g  n 

Where A*B means that IA-BI I 2. 

rheorem I, L,(p) lies between 
d H(X,Y)+2. The following exam- 
tions of complexities achieving the 

I),  a t  most two bits less than the 
e 2) and strictly in between (Exam- 

I = O = H ( X I Y ) + H ( Y I X )  ) 
} and 

1 l=y 

needs to be exchanged. 

I + c.log (n-1) = H ( X ,  
}, c>Oand 

) 

l = Y  

n( n-1) 

1-€ 
n z>n y>n =Y ,- 

4. Distributions For Which L,(p)  Is Close To 
N X I r ? +  H ( Y I X )  

In this section, we show that for almost all distribu- 

tions p which are uniform over a subset of X x  ?J, L,(p) is 
very close to H(X Ir) + H (  Y IX). As a first result, we 
have the following. 

Lemma 2. [4] If for all z E X ,  I{y: p(z,y)>O }I 5 n and 

for all y EY, I{z : p(z,y)>O}l 5 m; then, 

L,  (PI I r log (mn) i  + r log (min (m,n) 11 . 
Proof: Without loss of generality, assume m<n. Create 
a graph G=<V,E> with V={y: p(y)>O} and 
E={(y1,y2) : y1#y2 and for some 2, p(z,yl)>O and 
p(z,y2)>0 }. Clearly, the degree of each vertex is a t  most 
rn.( n-1)< m.n-1. Therefore there exists a vertex coloring 
of G using 5 m . n  colors. Px and Py agree in advance on 
such a coloring. Py transmits the color of Y (using 
<[ log mnl  bits). With this information, Px knows Y. 
He, then, sends Py the index of X in the set 
{z : p ( z ,  v>O} (using <[log m l  bits) 

To improve the result of this Lemma, we need some 
results concerning hypergraph partitioning. 

U 

L e m m a  3: Let V be a set of even size v>O and 
{ E i } ,  i=l ,  ..., e a collection of subsets of V such that 
IEiI<rn. Then, there exists a partition X, of V such 
that IAl=lq=u/2 and, for i=l, ..., e, 

IxnEil, lj7'nEjl < + \/mln(edmv). 
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Proof: Without loss of generality, assume IEil=m for all 

by a. Call a subset of V a  half 

subset if its cardinality is '12. We prove that if 

L--aJ 2 2 then there exists a half subset X o f  Vsuch 
m m 

that  for all 0 5  is e ,  --a< lXnE,l< y + a  t. 
2 

It is easy to show that the number of half subsets of V 
that  don't have the above property is at most 

e-2'mL-pJ ( Lm$-aJ) while the number of half sub- 

sets is ( ' ) . 
In the rest of the proof, we show that  

m 
2 

m 

VI2 

so there must be a t  least one half subset with the 
required properties. 

By expanding I-h (--x) around S O ,  we get 1 
2 

1 W . k - ( k - l ) >  -. 222 
1-h(--x) = 2 k=2,4,.. (ln2) In 2 

Thus, 
l a  
2 m  

m.(l-h(---)) > log ( e . 6 ) .  

Raising both sides to to the power of 2, 

Using the right hand side of the inequality [3]: 

we obtain 

And the other side of (1) yields: 

Lemma 4: Let g be a real valued continuous function 
and a > 0 such that  for some 

6 , c , ~ > O ,  g(x)  2 max {2+6 , c.ln'+'x} for all z 2 a. 

Then the sequence {aj}zo given by, a, A a , 
ai+, max {x: ai = - + - } is well defined and x x  

2 4x1 
satisfies 

(i) a < a; < ai+l < 2ai 
ai 2' 

a b  (ii) there exists a constant b > 0 such that - > -. 
Proof: See [5] 

We now combine the last 2 lemmas to prove the main 
result of this section. 

Theorem 3: Let V be a set of size ZI and for 
i=l, ..., e E& Vand IE,l<rn. 
Then, given c > O ,  there exists C ( E )  such that for all 
p>(lnd&)'+', p > l  it is possible to find a partition 
V,, . . . , V r ~ ( ~ ) . ~ / ~ i  of V such that Iyl-lE,I<p for 
i=1, ..., e j=1, ..., rC(t) .m/pl.  
Proof: Assume first that  U is a power of 2. Let 

E I A  =- and define < n i > z o  recursively: 
2+2t 

q, = [2.2l/"J = L8.4'/? 

x x  nk+l & max{x: nk=-+-}. 

By Lemma 4, there exists C ' ( E )  such that  for all 

k, -> 
Let C " ( E )  5 max{ 2 . C  ' ( E ) ,  exp (16.4'1') }. We show 
that  C ' ' ( E )  satisfies the requirements of the theorem 
(when v is a power of 2). 

We distinguish between two cases: 

I. p<8.4'/'. 

2 x* 

nk 2k 
no CW* 

In this case, (ln&)'+'<p<8.41/'. If m<p, take 
v,= v, v,= ...= v CP.. If m>p then yc ~1 - 
ln(ev) /2  5 ( / n v ~ ) 1 + c  5 i . 4 1 1 ~  implies 

P 
U 5 e v  5 e~p(16 .4~1 ' )  5 c 7 '(€1 5 rc 7 ' ( E ) . E l  so 

icf pach of V,, . . . ,V, consist of a single element of 

Vand the rest of the Vi's be empty. 

II. p > 8.4l/'. 
x x  

Let '720 = p , 
For all x 2 9, x' 2 & > (2l/' )' = 2 so, by 
Lemma 4, mk is well defined. First, we show by 
induction on k that: 

m k + l ~ m a x { r  ! mt=-+-} 
2 xfr 

m 
2 2 

Thls IS actually stronger than the clam of the lemma ( ---d&<lxnEiI < E + h . a  ) The 

extra fi factor takes care of the case -2, m=e=l Note that w e  omitted the proof for 

L,-aJ < 2 
In 
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m 

P P 
m<mk then there exists a parti- Thus, 2k0 < - -2 .C'(€)  5 [E.C"(cn. Since 

m < mko, the induction implies the existance of a 
partition Vl, . . . ,V,t, of V satisfying the require- 

ments of the theorem. To get the right number of 
subsets, this partition need only be augmented by 

r".c ' yc] - 2k0 empty sets. 
P 

do. 

m m. This completes the proof for U ' S  that are a power of 2. 

Next, we show 

into two sets 

mk ' k  that for all k, - 2 -. 
m o n o  

IX,nEil < mk, and, still, 

hypothesis, there exists 
of XI such that  
5 j 5 2k, 1 5 i 5 e. 

V i ,  ,...,Vi, of X2 
such 

Since m,, = p 2 8-i1Ic 2 no and z+zl-" is an 

increasing fu ction of 2, then by induction, 
2 

mk 2 nk. A$ t 
1 -  nk -- 

I llk-1 - + -  

I t  follows that  

mk 
= >.cy€) 

P 
and, from part (i) of Lemma 4, mh<2.m. 

If v is not a power of 2, partition Vinto two sets one 
of which having size 2Llog and extend the other set to  
have the same size. Use the result separately on each of 
the sets and combine the sets to get a partition with at 

most 2[C ''(6):l sets. Thus, C(c)  & 2.1.C' ' ( 6 )  

satisfies the requirements for all cases 
This theorem has the following hypergraph coloring 

interpretation: Let (V ,  be a hypergraph such 
that  each edge contains at most rn vertices. Given a 

number p > (h6)'.', there exists a [C.-1 coloring of 

the vertices such that  no more than p vertices in each 

edge have the same color. Note that [El is the 

minimum number required by any edge containing m ver- 
tices. Hence the number of colors required is never more 
than a constant times larger than that required by the 
largest edge. 

m 
P 

P 

If for every z, the number of possible y's is roughly 
the same, the theorem combined with Lemma 4 can be 
used to  derive an exchange code with good maximal 
length: 

Theorem 4. Given E > O  there exists C ( E )  such that  
for all probability distributions p satisfying 

I{y : p(z,y)>O }I 5 n for all zEZ and 

I{. : p(z,y)>O >I 5 m for all y EY, 

U P )  F 1% (m4+( l++ log  1% (ma2 (IXl,lYI)) + C(4. 
l+€ 

Proof: Let p = ( l n d f i )  and denote C(6) of 
Theorem 3 by C ' ( c ) .  Px and P ,  agree on a partition 

of 5 such that for all y X,) . . . 

IXi n{z  : p ( z , y )  > 0 }I < p and on a similar partition 

J X r  E.C yen 
P 

Y1, * . 7Yyl . , , [ (n*  

P 
m 
P 

First, using 5 pog--C '(€1 bits, Px transmits the index 

of the 5 subset that  X is in. Then, Py transmits the 

index of his subset using 5 pogE*C'(c)1 bits. Now, they 
P 
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can restrict themselves to a subset of X x y  with at most 
p non zero-probability elements for each ze:2 and for 

each y EY. By Lemma 2, 3.pog p1 bits are enough t o  
inform each of the other's value. 
The total number of bits transmitted is at most 

The following two examples demonstrate the use of 
results obtained so far. 

Example 4: 
Two persons have sequences that  are cyclic shifts of each 
other. They wish to  exchange these sequences. Formally, 

let x = Y = {0,1}", S&{(z,y):z is a cyclic shift of y}, 
and po be the uniform probability distribution over S. 

Since Sp = SpJ implies L, ( p )  = L,  (p')  we obtain, from 
Theorem 1 that for all probability distributions p with 
S,, = S, the worst case complexity L, (p) = L, (j+J 2 

Shifts. ( Suggested by T. Cover ) 

2 La (po) 2 H ( X  I Y) + H (  Y Ix) 2 24log n - a) 
2 4 2  

which is larger than 2.log n - 1 for all n 2 8. Since the 

number of possible y's for every 2 is 5 n = log 1x1, 
Theorem 4, ensures that for all distributions p with 
Sp = S, L,  ( p )  5 (3 + €).log n + C(6). The two bounds 
are asymptotically tight. However, the upper bound is 1.5 
times larger than the lower bound. The following scheme 
reduces the upper bound to  within 3 bits above the lower 
bound: Let Z be the largest sequence among all cyclic 
shifts of X. Then Z i s  also the largest sequence among all 
cyclic shifts of Y. Both Px and Py find Z. Then, Px 
transmits to P y  the number of times Z should be right 
shifted to obtain X(log  n bits) and Pydoes the same. 

Example 5: K errors. 

X=~={O,l}",  S={(s,y) : dH(z,y)<K}. By theorem 4 
and the discussion in Example 4, the worst case complex- 

ity satisfies L,  ( p )  2 2.10g ( ( i )  ) for all distributions 

p with support S. While, using Theorem 4, 

L, ( p )  5 2.10g ( ( i )  ) + log n. Again, the two bounds 

In this example, described in the introduction, 

K 

k-0 

K 

. k=O 

are asymptotically tight for every K. Moreover, for K's 
growing with n, the ratio between the upper and lower 
bounds approaches 1. However, for fixed values of K, 
there is a (very small) ratio between the two. For 
K=l, 2, 3 the ratios are 1.5, 1.25, 1.166 respectively. The 
following schemes achieve worst case complexities of 
2.(l+log n) for K=l and 2.K.log n for K=2,3 Thus 
reducing the ratio between the upper and lower bounds 
to  1 for these cases. (For simplicity, we assume that n is a 
power of 2). 

K=l. If n=l then exchanging X,Y achieves 
2.(l+log n). Assume that for sequences of length n/2 the 
algorithm has maximal length 2.(1+10g 4 2 ) .  Given a 
sequence of length n, PX transmits t o  P y  the parity of the 
first n/2 bits of X and Py transmits to Px the parity of 
the first n/2 bits of Y. If the parities differ, Px and Py 
know that there exists 1< i<n /2  such that Xi#Yi and 
they use the n/2 algorithm on the subsequences 
<Xi>rL21 and < x.>;II",. If the parities are the same, 
there is a t  most one i, n / 2 < i 5 n  such that  X+Yi so 
they use the algorithm on the subsequences  xi>^=,,/,+, 
and < Yi>:=n/2+1. In either case, the total number of 
bits is a t  most 2+2.(1+109 4 2 )  = 2.(l+log n). 
K=2. For m=l,  ..., log n, let A , & { i :  O<i<n and the 
m th  least significant bit in the binary representation of i 
is 1 }. For m=l,  ..., log n, Px transmits Q Xi to Py and 

P y  transmits , @ Yi to  Px (@ denotes exclusive or). Let B 

be the log n bit long binary number whose m th least 
significant bit is one ilf the parities corresponding to  A ,  
are different. If all parities are the same ( B  = 0) then 
either X=Y or Xo#Yo so Px and Py exchange the 0 th  
bit t o  know which is the case. If the parities are not all 
equal, let M be any integer such that the parities for AY 
differ (the M th least significant bit of B is one). There is 
at most one i  AM such tha t  X+Y; so Px and Py use 
the scheme for K=l described above on the subsequences 
<X;> ;~A, ,  and <Yi>i$AM. If they find that  the two 
subsequences are equal then X&Y, and all other bits 
are the same. If they find that  X&Yc say, then also, 
.Uca&Yca~ and all the other bits are equal. The total 
number of bits exchanged is 4.1og 3. 
K=3. 
results in maximal length < 6.log n. 

i EA. 

I € A m  

An easy combination of the above algorithms 

A probability distribution p is called equiprobable if 

p f O  implies that p = -. 1 If p is equiprobable and Sp 
1 SPl 

is regular (i.e. about the same number of possible y's for 
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every z and about 
every y), Theoren 
L,(p)wH(X I Y) + 
the corresponding 
length sense. The 

Theorem 5: For 
if p is equiprobable 

U P )  I 
+ 

Define Bi, i=l,  ...,[bgllCl 1 symmetrically. 
The protocol procee s as follows: Note that for almost all equiprobable distributions, 

the same number of possible 2's  for no n 
4 can be rephrased to show that - < ,f! P ( z ) W Y l X = z )  + 1) 

i=l +EA, 
J(  Y 14. If, however, Sp is not regular, 
code will be good only in the maximal 

next theorem takes care of this case. + r'oEfl fJ(y).(H(XIY=y) + 1) 
j-1 ~€8, 

every c>O there exists C(6) such that 
then + Pog log I4l + [log 1% Iyn 

HIX I + H (  y Ix) 

:3+c).log log (max (1x1, IyI)) + C(c) . + (1+c).pog log (max (PI, iyi)n + c w  

i) 

ii) 

iii) 

PdU transmits 

(Fog log run 
P y  transmits 

(-log log 1 q 
Px and Py can 
trix of 2x ?J 
every z and at 
They use the 
other's 
log 2' +log 2j -t- 
bits. 

the index of the set Ai containing X 
bjts. 1 
the index of the set Bj containing Y 

now restrict themselves to  a subma- 
h:.ving at  most 2' possible Y values for 

nost 2jpossible Xvalues for every y. 
protocol of Theorem 4 to find each 

v :he  using at most 

(l+c).log log(max (IS\, IyI) ) +C ' ( 6 )  

bits. ) 

is therefore 

+ pog log I n + log 2' + log 2j 1 

H ( X  Ir) + H (  Y Ix) >> log log (max (IZl,lyI)) making 
the lower bound of Theorem 1 and the upper bound of 
Theorem 5 very tight. 
Remark: A corollary of the Slepian Wolf Theorem 161 
states that 
if <(Xi, Yi)>FGl is a sequence of independent identically 
distributed random variables, Px knows <Xi>;!, and 
Py knows < Yi>F-l, then, given c > O ,  for all sufficiently 
large n, Px and P, can exchange <Xi>:-, and 
<Yi>in_l with probability of error < e using 
n.{ H ( X ,  IY,) + H (  Yl \XI) + cc } bits ( e  being a fixed 
constant). 
The standard proof [7] proceeds in two steps. In the first, 
a set of "typical" < ( ~ ~ , y ~ ) > ; ' ~ ' s  is defined such that 

I )  

2) 

3) 

The probability of the set is 1 - 1  2 
All elements in this set have about the same proba- 
bility. 
For each <xi>:!, in the "x projection" there are 
about the same number of <yi>in,l's such that 
< ( ~ ~ , y ~ ) > i n , ~  is typical. and vice versa. 

In the second step it is proved that for all sufficiently 
large n, if <(Xi, Yi)>bl  is in the typical set then P x a n d  
P ,  can exchange <Xi>;=, and < Yi>;",, with probabil- 

ity of error < 2 using n.{ H ( X ,  1 Y,) + H (  Y, IX,) + C E  } 
bits. Theorem 5 can be used to strengthen this part of 
the proof in three ways: 

1) The assumption that there are the same number in 
each row and the same number in each column can 
be dropped. 

2) The number of bits exchanged is 
n.{ H(Xl I Y,) + H (  Y, IX,) } + c '.log n . 

3) The probability of error is 0. 

2 
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6. Randomized Codes. References 

So far, we have only discussed deterministic proto- 
cols. Randomized protocols can be defined similarly. The 
only difference being that the transmitter's value and p r e  
vious trapsmissions determine a real number E[0,1] rather 
than an integer E(0, l ) .  (This number denotes the proba- 
bility that  the next transmitted bit is a "1"). We consider 
the advantages of using randomized codes in 3 cases: 
1) Px and P ,  are required to always know X and Y. 
2 )  Px and P ,  are required to  know X and Y with average 
probability of error < E .  

3) PLY and P,  are required to know X and Y with proba- 
bility of error < t  for all instances of X ,  Y. 
We restrict the consideration to  the average lengths of 
the codes. Let L f"(p)  denote the shortest average length 
of a deterministic code satisfying the requirements of case 
i when p(z,y)  is the underlying distribution of X, Y and 
let L yn(p) denote the same for randomized codes. The 
difference between L p""(p) and L ; " " ( p )  (which indicates 
the advantage of using randomized codes over determinis- 
tic ones) increases as we progress through the cases: 
1) Since it is always possible t o  toss all coins prior to the 
commencement of communication, we transform each 
randomized code to a deterministic one with shorter or 
equal average length by looking at  all combinations of 
coin tosses and using the one that minimizes the average 
code length for the deterministic code. Thus, in this case, 

2 )  In a manner similar to that described in [8], a random- 
ized protocol of length L having probability of error <€ 

implies the existance of a deterministic protocol of length 
< 2.L with probability of error < 2.6. Thus 

3) The following example shows that L !""(,E) can be as 

L y( p )  = L i""( p ) .  

L p ( p , E )  5 2.L y ( p , E / 2 ) .  

high as 2L  ?"(Ptc)/c(c). 

Fix 0 < ~ < 1  and let X = ?J = (1, ..., n} ,  

=Y 
P ( Z , Y )  = 6 Using a deterministic protocol, 

P (error I X=z, Y=y) is always either 0 or 1 so, for it t o  
be less than e ,  we need P (error 1 X=z, Y=y) = 0 for all 
2, y. By Example 2, L p(p)>H(X,Y)%log n. 
On the other hand, the following randomized protocol, 
achieves LwC(t).log log n. Px and P y  first use the ran- 
domized protocol of [Q] to  find out if X=Y (using 
C(c).log log n bits). If this is the case, they stop commun- 
icating. Otherwise, they use 2.10g n bits to communicate 
X and Y completely. The average length here is 
L = C(E).log log n + 6.2109 n-+C(ci).log log n as 640. 

[? 4n-1) + y .  
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