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Abstract

The problem of memory management in totally distributed computing systems

leads to the following movers' problem on graphs:

Let G be a graph with n vertices with A: < n pebbles numbered l,...,k on distinct

vertices. A move consists of transferring a pebble to an adjacent unoccupied vertex.

The problem is to decide whether one arrangement of the pebbles is reachable from

another, and to End the shortest sequence of moves when it is possible.

In the case that G is biconnected and A; = n — 1, Wilson (1974) gave an efficient

decision procedure. However, naive implementation of his proof gives exponentially

long move sequences for solutions. We generalize the decision procedure to all graphs

and any number of pebbles. Further, we prove matching 0{n^) upper and lower bounds

on the number of moves required, and show how to efficiently plan solutions.

It is hoped that the algebraic methods introduced for the graph puzzle will

be applicable to special cases of the general geometric movers' problem, which is

PSPACE-hard (Reif (1979)).

We consider the related question of permutation group diameter. Driscoll and

Furst (1983) obtained a polynomial upper bound on the diameter of permutation

groups generated by cycles of bounded length. Their results do not apply to arbitrary

length cycles. We obtain the following partial extension of their result to unbounded

cycles:

If G (on n letters) is generated by cycles, one of which lias prime length p < 2n/3,

and G is primitive, then G = An or S„ and has diameter less than 2''v ''*"'n''. This is

a moderately exponential bound.
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1. Introduction

The management of memory in totally distributed computing systems is an

important issue in hardware and software design. On an existing hardware network

of devices, tliere is the problem of how to coordinate the transfer of one or more

indivisible packets of data from device to device without ever exceeding the memory
capacity of a device. Depending on the severity of the memory capacity, a considerable

number of intermediate transfers may be necessary to clear a "path" for the movement

of a data packet along a network. A combination of almost filled devices and a network

configuration with few paths can, in fact, make impossible the transfer of the data

packets intact.

Suppose we consider a simplified version of the above problem, where each device

has unit capacity and each packet occupies one unit of memory. Then at any moment

in time, any given device is either empty or is totally filled. Suppose also that at any

time each data packet resides in sortie device. It is also assumed that only one packet

may be moved at a time, from its curreni. device to any empty immediately adjacent

device. Under these assumptions, it is interesting to know whether it is possible to start

from one given distribution of the packets in the network, and end with another given

rearrangement, and to know how many moves are required when the rearrangement is

possible.

This version of the network problem immediately translates into the following

movers' problem on graphs:

Let G be a graph with n vertices with A: < n pebbles numbered l,...,k on distinct

vertices. A move consists of transferring a pebble to an adjacent unoccupied vertex.

The problem is to decide whether one arrangement of the pebbles is reachable from

another, and to find the shortest sequence of moves to find the rearrangement when it

is possible.

It is seen that this latter problem is a generalization of Sam Loyd's famous

"15-puzzle". In this puzzle, 15 numbered unit squares are free to move in a 4x4 area

with one unit square blank. The problem is to move from one arrangement of the

squares to another. One can easily show that this puzzle is equivalent to the graph

puzzle on the square grid in figure 1, with 15 numbered pebbles on the vertices and

one blank vertex.

In the case that G is biconnccted and k ^ n — I, Wilson (1971) gave an eCRcient

decision procedure. However, a naive implcmenation of his proof yields solutions

requiring exponentially many moves. Ilis approach involved deriving a 3-cycle and

2-transitivity. This basis is known to generate all possible even permutations on the

pebbles, but it is not clear whether the basis is efficient. We avoid this difficulty by

deriving 3-transitivity. This is trickier to prove than 2-transitivity, but it enables us

to generate all even permutations efficiently . In this way, an O(n^) upper bound is

obtained for the number of moves required in the Wilson case.

Then wc generalize the decision procedure to all graphs and any number of pebbles,

and wc show tliat again at most 0(n ') moves are needed and can be cllicicntly planned.





Finally, wo liiid an infinite family of grapti puzzles for which it is proved that 0{n'^)

moves arc needed for solutions. Thus the upper and lower hounds match to within a

constant factor.

A topic of related interest is the subject of permutation groups and their diameter

with respect to a set of generators. IJrielly, the diameter of a pcrinulation group G
with respect to a set S of generators for C is defined to be the smallest positive integer

k sucli that all elements of G are expressible as products of the generators of length

at most k.

Consideration of the pebble coordination problem leads naturally to questions

about permutation groups. Consider the graph in figure 2, with vertex v blank and

pebbles ai, ..., q<, C] , ..., c^, 6], ..., 6,,, and y on the other vertices. It is seen that any

sequence of moves from this position will, upon the first return of the blank to v,

net one of the following permutations on the pebbles: A = {c\c-2...Cryat...a'>ai) or

D = {yCr...C2C\b\b'>...bi,) or C = {b\b2...b3yai...a>a{) or A~',S~',C~' or the identity

permutation. Hence the set of rearrangements of the pebbles (with v blank) is the

group of permutations generated by 5 = {/I, D,C,A~\ D~\ C~'}. Deciding whether

a rearrangement is solvable amounts to testing membership of the corresponding

permutation in the group generated by 5; minimum number of moves is clearly related

to the shortest product of generators yielding the permutation.

We view the introduction of algebraic methods as useful for the solution of

movers' problems. Whereas general geometric movers' problems are PSPACE}-hard

(Reif (1979)), it is hoped that the techniques introduced for the solution of the pebble

coordination problem may be applicable to special cases of the general geometric

problem.

We now briefly discuss the state of the art in permutation group membership and

diameter questions. Furst, HopcroR and Luks [FHL] give a polynomial time algorithm

for deciding whether a given permutation g is in G{S), the group generated by S. Thus

the analogue of the graph decision problem is in P. One also immediately has a P-time

criterion for deciding solvability of the Rubik's Cube anu the Hungarian Rings puzzles.

The situation is not as fortunate when one tries to find the length of the shortest

generator sequence for a given permutation: Jerrum [J] has recently shown this to be

PSPACE-complcte! The difficulty may be related to the fact that some groups may
have superpolynomial diameter. For example, the group G generated by the single

permutation (12)(345)(6789 10). ..(...s) where s is the sum of the first n prime numbers,

can be shown to have diameter roughly on the order of 2 '^"'. This contrasts with

the analogous question for the pebble coordination problem, where no solution can

ever require more than 0{n^) moves. Therefore the group diameter question is in some

sense more general, and probably more difTicult, than the corresponding question for

pebble motion.

There arc nonetheless some interesting recent results concerning upper bounds on

group diameter, for special generating sets. Driscoll and I'urst [I)F] have shown that

if all the generators are cycles of bounded length, then (he group has 0(n") diameter

where n is the number of letters that the group acts on. More recently, McKenzic [M]





obtained llic upper bound 0{n ) on diainelcr for groups, each of whose generators

moves at most k letters. This is polynomial if k is bounded.

The foregoing results leave open the question of a group's diameter when the

generators arc arbitrary (not of bounded length) cycles. In chapter 3 we informally

di.scuss certain generalizations of the Hungarian Rings puzzle, and find sufficient

conditions for the required number of moves to be polynomial. Examples which do

not meet these sufTicicnt conditions arc offered as possible candidates for groups with

superpolynomial diameter. The rest of chapter 3 consists of a number of new results

in permutation groups, which extend classical theorems by providing upper bounds on

diameter. We obtain the following theorem as a corollary:

If G (on n letters) is generated by cycles, one of which has prime length p < 2n/3,

and G is primitive, then G = An or S„ and has diameter less than 2^vP'*''*n^.

This is a moderately exponential upper bound, but is nonetheless superpolynomial.

It remains of interest to know whether the bound can be signiGcantly improved, or

whether the diameter really can be this large.

At the end of the paper we present conjectures, open problems, and suggestions

for further research in movers' problems and permutation group diameter.

2. Coordinating Pebble Motion on Graphs

In this chapter we will solve the pebble coordination problem given in the

introduction:

Let G be a graph with n vertices with k < n pebbles numbered l,...,k on distinct

vertices. A move consists of transferring a pebble to an adjacent unoccupied vertex.

The problem is to decide whether one arrangement of the pebbles is reachable from

another, and to find the shortest sequence of moves to find the rearrangement when it

is possible.

We make the assumption that the set of occupied vertices of G is the same in both

the initial and final positions. Then two positions define a permutation on the pebbles

in a natural way, and so we can readily introduce the methods of group theory. There

is no loss of generality, as we can show how to efficiently convert a puzzle into this

form.

We also assume that all graphs are simple, that is, no two vertices are directly

joined by more than one edge, and no vertex is joined to itself by an edge. It is clear

that if a graph G is nonsimplc, we can remove the "extraneous"' edges to get a simple

graph G\ and the graph puzzle on G' is exactly equivalent to that on G, both with

respect to solvability and the number of moves needed to solve it. Hence there is no

loss of generality in making this assumption.

It turns out to bo natural to divide the analy.sis into two cases: 1. Biconncctcd

graphs with all but one vertex occupied (the Wilson case) 2. .\ll other cases (unconnected

graphs, separable graphs, and the l)icoimcclcd case with at least two blanks).





The Wilson case is Uic more iiitcrcsliiig froni ihc group llicorolical point of view.

It can be shown that gra|)hs willioiit closed paths need at most (){n') moves to solve;

it is the loop structure of biconnected graphs which results in some puzzles requiring

O(n') moves.

2.1. IVicoriricctcd graphs, one blank

VVc introduce Wilson's theorem, and prove it in a way which wc believe is simpler

than the original proof. This new proof enables us to obtain a 0{7r^) upper bound on

the number of moves needed for solution.

Let C() be the graph consisting of two vertices joined by an edge. Define a polygon

to be a graph consisting of a simple closed path containing at least two vertices (where

a simple closed path is a path from a vertex to itself which visits no intermediate

vertex more than once). A polygon looks like a "loop" containing two or more vertices.

Let To be the graph shown in figure 3.

Theorem 1 (Wilson)

Let G be a biconnected graph on n vertices, other than a polygon or To, with one

blank vertex. If G is not bipartite, then the puzzle is solvable. If G is bipartite, then

the puzzle is solvable iff the permutation induced by the initial and final positions is

even.

Since bipartitism can be tested in polynomial time, Wilson's criterion is polynomial

time.

For G a polygon, only cyclical rearrangements of the pebbles are possible, so it

is easy to check reachability in this case. For the special graph To, we can simply

precalculate (by exhaustive search) a table of all pairs of positions, indicating which

pairs are mutually reachable. Table lookup is constant time, hence we have a P-time

decision algorithm for all biconnected graphs with one blank.

It will turn out as a special case of the next section, that the biconnected case

with two or more blanks is always solvable.

Sketch of Proof

(A complete proof will be given in the final version.)

It is a well-known fact in graph theory that a biconnected graph, other than Gq,

can be viewed as being "grown", by starting with a polygon graph and successively

adding zero or more "handles" (a handle is a simple path with or more internal

vertices). A biconnected graph which can be "grown" by adding i handles to a polygon,

appears pictorially to consist of z -f 1 simple loops joined together in some way. This

number of loops is called the Detti number of the graph. We will often denote a

biconnected graph with Oetti number z by the term "7',-graph". Wilson's theorem will

be proved by induction on the Dctti number of the graph. We skip the Tpgraphs (the

polygons) and begin the induction willi the 'A-gr^M'hs (except To).

The main step is to show that the group of possible iiuiured permutations always

contains the alternating group /1„- 1 on the n — 1 pebbles. The final .step is to determine

whether the group is A^-] or .9„-i. The group will be S„_| ilf it contains an odd





[)criuulaLioii, and it is easy to sec llial lliorc is an odd pcrruuLatiori iff the graph has

a closed path of odd longtli. As a graph has a closed path of odd length iff it is not

bipartite, wc sec tliat the group is A„-\ if the graph is bipartite, and S„-\ if the graph

is not bipartite. Tliereforc, to check solvabihty on a bipartite graph, it is necessary and

sndirient that the induced permutation l)e even; on a nonbipartite graph, the puzzle

is always solvable.

To sliow that the group of induced permutations contains the alternating group,

wc show how to obtain a 3-cycle and how to obtain 3- transitivity. From this, the

alternating group is efficiently generated.

A 3-cycle is obtained roughly as follows. A T2-graph looks like that pictured

in Qgurc 2. Assume Grst that r = 0, i.e. the center arc has no internal vertices.

A = [yai...ai) and B = {b\...b,^y) are permutations induced by moving pebbles around,

respectively, the left or right loops. Then A0A~'i?~' = {yb„a\), a 3-cycle. If r > 0,

then j\JJA~^B~^ is a product of two swaps; we will show in the full proof how to

obtain a 3-cycIe from this, if the graph induces d-transitivity. It turns out that the

graph To is the only T^-graph which does not induce a 3-cycle. We then show that

all Tj-graphs, z > 2 give a 3-cycle, because they are formed by adding handles to a

Tl»-graph which can induce the 3-cycle. The hole in the induction due to Tq will be

taken care of with no difTiculty.

3-transitivity will also be shown by induction. It will be shown that all T^-graphs

except the graph G] shown in figure 4 are 3-transitive, by a simple lemma. Then we

show how adding a handle to a 3-transitive graph yields a 3-transitive graph. The hole

in the induction due to G\ will be handled without trouble.

Putting 3-cyclc and 3-transitivity together, we will conclude that all T^-graphs,

i >^ 2, generate at least the alternating group, except Tq.

In Wilson's proof, a 3-cycle and 2- transitivity are derived. This basis is known to

generate A„, but it is not clear whether it does so elTiciently. For this reason, we have

established 3-transitivity. Conjugation easily gives all 3-cycles, and so A„ efficiently.

Our proof of 3-transitivity is slightly tricky, especially in dealing with graph Gi, but

it guarantees that An is generated efficiently.

Theorem 2

Let G be a biconnected graph. Let n = |V'(G)|. If labeling g can be reached from

labeling / at all, then this can be done within 0{n'^) moves, and such a sequence of

moves can be efficiently generated.

Sketch of proof (details in final version)

We can show that a 3-cycle can always be obtained in 0{n-) moves (either

AZ?yl~'Z?~' gives a 3-cycle in 0{n); or we get a product of two swaps, in which case we

can do l-transitivity in 0(n") moves to get a 3-cycle), and that 3-transitivity requires

at most O(n-) moves. Then by conjugaiion wc obtain any 3-cyclc within O(n-) moves.

Since any clement of A„ is a product of 0{n) 3-cyclcs, the total for /\„ is 0{n' ). If the

group is S,i, then any permutation is a product of an odd permutation and an clement

of /\„. An odd permutation is generated by a closed path of odd length in 0{n) moves.

Hence Sj, also requires at most O(n') moves.





2.2. Separable gr.'iplia, and rionsoparal)!^ gra[)li.s with > 1 s[)acc

The basic clemcnl which dislinguishcs separable graphs from biconnccted graphs

is the existence of isthmuses (of length > = 0), which if severed will se[)aratc the graph.

One can think of a separable graph as being a tree, or a tree structure connecting one

or more biconnccted graphs (see figure 5 for an example).

Much of what follows is motivated by the example shown in figure G. This graph

consists of a simple nonclosed path of length m which connects subgraphs A and D.

Suppose we wish to move pebble T from v to w. Since A has no blank vertices, it is

clear that T can reach w if and only if U has m — 1 or more blank vertices. Therefore,

the number of blanks has a direct effect on the ability of pebbles to cross isthmuses.

Conversely, the lengths of the isthmuses will determine whether or not certain pebbles

can cross from one component into another.

It turns out that we can naturally divide a graph G in this way into subgraphs

G,- connected by isthmuses, with the property that pebbles can move anywhere within

each Ci but cannot leave C,. Each pebble in its initial position is assigned in a natural

way to the G, (if any) to which it is confined, otherwise it is confined to an isthmus.

This decomposition induces subpuzzles on the G,"s and their pebbles, and it will be

shown that the original puzzle is solvable iff all the subpuzzles are solvable and the

tokens trapped on isthmuses do not change order. Figure 7 shows the G,- subgraphs

for the graph of figure 5 (exactly how the G,- are determined will be explained in the

final version).

The final step in the analysis is to study solvability of subpuzzles on the G,-. When
there is one blank, the G,'s turn out to be biconnccted and so the Wilson criterion

applies. We will show that when there are two or more blanks, the G,- subpuzzles are

always solvable (subject to the condition that the G,- contains the same pebble set

before and afterwards). Informally, one reason is that the G,'s were defined in such a

way that pebbles can cross all Isthmuses in G,-, and so get from any vertex to any other

vertex (see figure 8 for an illustration); we will show how to achieve 2-transitivity in this

way, by moving one pebble after another to its destination. The other reason is that

two blanks arc sufficient to achieve a swap of a pair of pebbles near a vertex of valence

three (see figure 9). Combining 2-trarKitivity and the swap yields all permutations of

the pebbles.

The General Criterion

Here is an outline of the general criterion. Details of how to determine the

subpuzzles and the pebbles confined to isthmuses will be given in the final version.

Let G be a graph with k tokens and rn ^^ n — k blanks. Let /, g be the starting

and ending positions. Move blanks in / to form a labeling /' whose blanks are in the

same locations as in g. Then / and g arc niuLually reachable iff /' and g are mutually

reachable.

So without loss of generality assume tliat / and g have blanks in the same places.

If G is nonsimple, remove extra edges. This will neither hurt nor help solvability.





If C is not coniioclcd, check Lh;il llio token partition induced naturally by the

connected subgraphs is consistent, and that each connected subgraph puzzle is solvable.

If C is connected:

If G is nonscparable: if m = 1 use the criterion in Theorem 1; if m > 1,

then the puzzle is solvable, unless G is a polygon, in which case only cyclic

rearrangements are possible.

Otherwise, determine the subpuzzlcs and clicck that the pebble sets in

each subpuzzlc match before and after. Also determine the pebbles confined to

isthmuses, and check that they are the same before and after, and in the same
order. If all this is OK, then if m ^ 1 check that each subpuzzle is solvable (for

m = 1, all components are nonscparable, so use Wilson's criterion). If m > 1,

then each subpuzzlc will be solvable, so we're OK in this case.

This completes the criterion.

It will be easy to show based on the analysis of case 1, that solutions with at most

0{Ti^) moves exist and can be efficiently planned. In the final section of this chapter,

we construct an infinite family of graph puzzles which are proved to require 0{'n?)

moves for solution.

2.3. 0{n^) lower bound

We now complement the above result with a lower bound which matches, to within

a constant factor.

Theorem

There exists a constant c > and an infinite sequence of graph puzzles Puz{ on

increasingly large graphs G,- with n,- vertices, such that for each i, Puzi requires at

least cn^ moves for solution.

Proof

Let Puzi consist of graph G,- shown in figure 10, with 2f + 1 vertices and 2i

pebbles, and starting and ending positions as shown. We will show that Puz^ requires

0[v') moves, as follows. A move sequence that does not waste moves (by retracing move

sequences just made) is seen to consist of cycles A, B and their inverses, interspersed in

some order (e.g. ABAAAABA~^ D). It would be wasteful to do D twice in succession,

since this would cancel itself. Ilcncc a move sequence can be represented by the form

A''i^A'-5...A'*5/l''''*"' where ij is a nonzero integer (positive or negative), except i\

and ijt^i may be 0.

Now consider the "entropy function" of position

E = 12)=Q (shortest circular distance from pebbles ; to ; + i)

where circular distance is citlicr clockwise or cowntorrlockwisc. Initially, E = :";

at the end, E = i. Change in E is i" — i.

It is seen that A docs not ch.^ngc E, and B changes IC by or by 2. Hence to effect

the change in E requires 0[i') occurrences of B in the move sequence. But because





occurrences of A'' and IJ ;ilLcrii.ilc, Uiis implies that A occurs at least 0{r) times.

Since tlic number of moves to perform the cycle .'A is 0{i), wc need at least 0(2 ') moves

for solution.

This completes the proof of the lower bound.

3. The Diameter of Permutation Groups

As mentioned in the introduction, this cliapter is concerned with the diameter

of permutation groups generated by sets of cyclic pcrmxitations. We begin with some
examples of generator sets which yield groups of polynomial diameter, then speculate

on some conditions on the generator set which might give groups of superpolynomial

diameter. The main part of the chapter consists of theorems which give information

about the diameter of a group under various conditions. They imply the result given

in the introduction, which is a moderately exponential upper bound on the diameter

of groups generated by cycles which satisfy a few conditions.

3.1. What is not of exponential diameter, and what might be

The Hungarian Rings puzzle consists of two intersecting circular rings in which

distinguished marbles circulate. The problem is to obtain a desired rearrangement of

the marbles by a sequence of operations, where an operation consists of circulating the

marbles in one of the rings. This problem immediately translates into the permutation

problem of determining membership in the group generated by two intersecting cyclic

permutations. By [HFL), we can decide membership in polynomial time; however, it

is of interest to know how many "moves" are required, i.e. the length of the shortest

word which gives the desired permutation.

In figure 11 is shown schematically two cyclic permutations which intersect at two

points. This corresponds to the commercial version of the Hungarian Rings. Note that

this is not like a pebble puzzle on a Tj-graph, because only A and B are possible, and

not the third loop; the Hungarian rings is a physical movers' problem which imposes

this restriction mechanically. This gives reason to expect that the number of moves

may need to be larger in some permutation puzzles than in the pebble puzzles.

What is the diameter of the group generated by these two cycles? It is first useful

to observe that, if some arc C contains at least r internal nodes, and an arc D on the

other cycle contains at least one internal node, then we can get r + 1-transitivity in

0(rn)-loiig moves. This is done, roughly speaking, by moving one desired marble after

another to rri, then rotating it onto arc C. The cycle not containing arc C is rotated

to bring the next desired marble to a\, leaving the contents of C undisturbed. Arc

D serves as temporary "storage" of a marble which, already on arc C, needs to be

removed from C and then placed onto C at the right place.

Suppose that in the figure, / > = 6 and m >= I. Then wc have cfTicient

6-transitivity. Now /l/iA"'/?"' = P = (« iAjl-, (rm t -/"t i /)(«i(«t f iQ*.- ^ /f ,n)- losing

G-transitivity, we can find a permutation Pi which sciuis "i, uxH-/rrn+./. ^^Jt + Z
'o





ai,a)tf/.a<: + /frr,+,/ respectively and fixes at, "* f i .
a*

t / ( ,..•
'1'''^'" c"MJiigaLing P by P|

gives F-2 = (aiat + /a* + /+,„+,,)(a<ajl+|att-/+m)- 'l' is Ji product of two 3-cycles, one the

inverse of the one in I', the other the same as the other in P. So PPj = (ata/t+Zt mQfcf ])>

a 3-cycle. Then, using 3-transitivity, we get the alternating group. Hence / >= 6 and

m >= 1 implies a polynomial diameter for the Hungarian Rings puzzle with the rings

intersecting at two places.

What happens if the number of intersection of the two cycles is some number k

greater than 2? By similar reasoning to the above, we get ABA~^ D~^ to be a product

of k 3-cycles. Then a conjugation argument similar to the above yields that, if we have

3/:-transitivity, then \vc can- get a single 3-cyclc. How do we get cfTicicnt 3A:- transitivity?

Well, an arc of 3/c — 1 nodes and another arc with one node would sufRce. Or, in the

case that k is bounded, then it is known [DF] that the existence of A:- transitivity is

enough to ensure A:-transitivity in 0(n )-long words, which is polynomial for fixed A:.

However if k is large, then this bound is exponential. If no arc has enough nodes in it,

there might be no efficient way to get the desired degree of transitivity.

The foregoing considerations suggest that a good candidate for a Hungarian Rings

puzzle with superpolynomial diameter is one with lots of crossings and no long arcs (see

figure 12). To be more quantitative, suppose that there are k equally spaced crossings.

Then the arcs have length on the order of n/k. We want this to be less than 3A;. So:

n/k < 3k, i.e. A: > Jn/Z. This suggests that we should use at least on the order of y/n

crossings to create a likely exponential puzzle. It would be of great interest to establish

an exponential or moderately exponential lower bound for some of these ''candidate"

puzzles.

We now leave these examples and speculations, and state some results about the

diameter of permutation groups (proofs in final version).

3.2. Some results about the diameter of permutation groups

The following are classical theorems in the theory of permutation groups.

Theorem A

If the group G on n letters is A:-transitive and k > n/3 + 1, then G = A„ or Sn-

Theorem B

If G is primitive on n letters, and a subgroup // moves only m 'C n letters and is

primitive on tliem, then G \s n — m + 1-transitive.

We prove the following versions of these theorems, which give information about

the diameter:

Theorem 1

If group C on n letters is A:-transitive in words of Icngtli <= L, the generator

set 5 is clo.scd under inverses, and A: > n/3 + 1, then G = A„ or Sn and Diam(G(S))

< irrL

Theorem 2





If G is primitive on n letters, and // is tlic priniitivc subgroup generated by a cyclic

permutation of prime length p < n, and the generator set S is closed under inverses,

tlien (7 is n — p + l-transitive using words of length < 2''vP+'n'(n-' + (fzaTn(//'(5))).

Theorem 3

If G is primitive on n letters, and // is a 2-transitive subgroup which moves only

2 <= 771 < n letters, and the generating set S is closed imdcr inverses, then G is

n — m + 1-transitive using words of length < 2"v''''*''n''(n- + diam[n[S))).

We were not able to prove an effective version of theorem B for arbitrary primitive

H , but did obtain the special cases contained in theorems 2 and 3.

The following is an easy corollary.

Theorem

If a primitive group C on n letters is generated by a set S of cyclic permutations,

one of prime length p < 2n/3, then G is A„ or 5„, and Diam(G(5)) < 2'^v/P+''n^

All proofs will be given in the final version.

This last theorem provides a partial extension of [DF]'s upper bound for bounded

cycles to unbounded cycles. It would be desirable to generalize the result to apply to

all cytles, and to find a matching lower bound on diameter.

4. Conclusion and Open Problems

We have obtained some results in pebble coordination problems and the diameter

of permutation groups. Specifically, we derived:

1. An efficient decision algorithm for the general pebble coordination problem on

graphs.

2. 0[v?) matching upper and lower bounds on the number of moves to solve pebble

coordination problems.

3. 2^'^''^^n^ upper bound on diameter of A„ or 5„ when generated by cycles, one

of which has prime length p < 2n/3.

We see 1. as being a complete and satisfactory result as it stands. It would be

of interest to apply the algebraic methods used in the pebble movers' problem to

special cases of the general geometric movers' problem which may admit an algebraic

approach.

2. could stand a number of refinements.

a. Find exact constants in the O-terms.

b. It would be useful to at least have an efficient algorithm which approximates

the number of moves required. For it seems that only a small fraction of the graph

puzzles actually reciuire 0(n'') moves, .^s an example, it is not hard to show that the

"15-puzzle" generalized to square grids of arbitrary size (with one blank) requires only

0(71''/-') moves (where n is the number of vertices).

lU





3. is only a Grst step towards understanding the diameter of groups generated by
arbitrary cycles. A number of related questions are open:

a. Is the upper bound in 3. tight? Is there a corresponding lower bound of 0(2^v^)

for some instances of 3. ? This would settle the following well-known open problem:

b. Can a transitive group have larger than polynomial diameter for some generator

set? Can this be the case for An or 5„?

c. Can the upper bound in 3. be generalized to less restrictive conditions on the

generating cycles? Is it even true that the following conjecture holds?:

d. Is the diameter of a group, relative to any generating set, always bounded above

by 0(n^")? E.g. the group generated by 5 =((12)(345). ..(... [sum of first n primes])}

has diameter 0(2^), which satisfies the conjecture.
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