APPLICATIONS OF RAMSEY'S THEOREM
TO DECISION TREES COMPLEXITY

by
Shlomo Moran

Marc Snir
Udi Manber

Computer Sciences Technical Report #551

August 1984

APPLICATIONS OF RAMSEY’S THEOREM TO DECISION TREES COMPLEXITY

(Preliminary Version)

Shlomo Moran
Department of Computer Science

Technion, Haifa. Israel

ABSTRACT

Combinatorial techniques for extending lower bounds results for
decision trees to general types of queries are presented. We consider
problems, which we call order invariani, that are defined by simple ine-
qualities between inputs. A decision tree is called k— bounded if each
query depends on at most & variables. We make no further assumptions
on the type of queries. We prove that we can replace the queries of any
k-bounded decision tree that solves an order invariant problem over a
large enough input domain with k-bounded queries whose outcome
depends only on the relative order of the inputs. As a consequence, all
existing lower bounds for comparison based algorithms are valid for
general k-bounded decision trees, where k is a constant.

We also prove an {}(n log n) lower bound for the element unique-
ness problem and several other problems for any k-bounded decision
tree. such that &k = O(n¢) and ¢ <%. This lower bound is tight since
that there exist n%-bounded decision trees of complexity O(n) that solve
the element uniqueness problem. All the lower bounds mentioned
above are shown to hoid for nondeterministic and probabilistic decision

trees as well.

1. INTRODUCTION

Decision trees are very useful in proving lower bounds for com-
binatorial problems. In particular. they have been extensively used to
analyze sorting-type problems whose outcome depends on the relative
order of the inputs ([2]. [5], [6]. [9]. {13]. {141, [20D).

One weakness of many results is the restriction on the type of
queries that can be performed. It is only the "information theoretic”
lower bound that is valid with no restrictions on the type of queries
used. However, the "information theoretic” argument does not yield
useful lower bounds for many probiems , in particular, recognition
problems that have only two outcomes. Examples of lower bounds that

are not "information theoretic” are the the n—1 lower bound for max-

*Supported in part by the National Science Foundation under Grant
MCS83-03134.

To appear in the 25th Annual Symposium

(October 1984).

Marc Snir
Department of Computer Science

Hebrew University, Jerusalem, Israel

Udi Manber*
Department of Computer Science
University of Wisconsin
Madison. WI 53706

imum finding, the lower bounds for selection and merging. and the
Q(n log n) lower bound for element uniqueness.

Significant amount of work has been dome in exiending these
lower bounds to decision trees with less restricted queries. Thus,
Reingold [12] extended the n—1 lower bound for maximum finding to
decision trees using linear comparisons: Yao {19]. and Dobkin and
Lipton [2] did the same for the sclection problem. and the element
uniqueness problem. respectively. Rabin [10] extended the lower bound
for maximum finding to decision trees using comparisons of mero-
morphic functions. Ben Or [1] extended lower bounds for several
problems to bounded degree algebraic decision trees (see also [18]).
Manber and Tompa {8] extended several lower bounds to nondeter-
ministic and probabilistic models of decision trees (see also [7] and
[1m.

All these results assume that the inputs are taken from R, the set
of real numbers. This allows the authors to use sophisticated geometri-
cal tools. On the other hand, the purely combinatorial nature of the ori-
ginal problems is lost.

In this paper we present combinatorial techniques for extending
lower bounds for decision trees to general types of queries. In the
heart of the techniques is the use of Ramsey's theorem We consider
probiems. which we call order invariant. that are defined by simple ine-
qualities between inputs. These are precisely the problems that can be
solved by decision trees using comparisons of the form x,:x; A query
is order invariant if its outcome depends only on the relative order of
the inputs occurring in it. The ariry of a query is the number of inputs
that the query depends on. We assume that inputs are drawn from a
large finite (or infinite) totally ordered set. We make no further
assumptions on the set of inputs, or the type of queries.

We prove the following result: Let 7 be a decision tree that solves
an order invariant problem over a large enough input domain. Then
each query in T can be replaced by an order invariant query of the
same arity, such that the resulting decision tree still solves the original
problem.

A decision tree is called k— bounded if each query depends on at
most k variables. The last result implies that decision trees that use

only simple comparisons between inputs are as powerful as 2-bounded

on Foundation of Computer Science

decision trees, for solving order invariant decision problems. Up to a
constant factor, the same claim holds for k-bounded decision tree.
where k is a constant. Thus, all existing lower bounds for comparison
based algorithms are valid for general k-bounded decision trees.

Decision trees using linear comparisons are known to be more
powerful than decision trees using simple comparisons. in solving
certain order invariant problems (Smir. {16]). The last resuit shows
that the discrepancy is due uniquely to the fact that a linear comparison
may involve many inputs, whereas a simple comparison involves only
two inputs.

We also prove lower bounds for specific problems allowing gen-
eral queries with non-constant arity. We use the combinatorial tech-
niques developed in [8] for probabilistic decision trees and extend them
by using Ramsey’s theorem. We prove an €(n log n) lower bound for
the element uniqueness problem for any k-bounded decision tree, such
that k = O(n¢) and c<%. This is a tight result in the sense that if
L = n% then there exist k-bounded decision trees of complexity O(n)
that solve the element uniqueness problem. In proving this we use
Ramsey's theorem in a more direct way. This makes the results valid
for input domains that are much smaller then the input domains
required for the more general results (although they are still quite
large). The Q(n logn) lower bound applies to other problems such as
set equality. set disjointedness, and e-closeness (SD.

Both results can be extended to nondeterministic decision trees

and probabilistic decision trees using the techniques of [8] and {17].

2. DEFINITIONS

Let S be a totally ordered set and n a positive integer Let Sn
denotes the set of all n-tuples of elements of §. and let {5] denotes the
set of all n-subsets of S. A decision problem A is a partition Dy,...Dq,
of Sn (the problem is to determine to which set D; an input belongs).

Two tuples X and ¥ are order equivaleni, X=¥. if for each i and j
X <xj<==>yj<y;. We call the equivalence class of ¥ the order fype
of ¥. If m is a permutation of n elements, then the
order rype of win§S, denoted Sy. is the set of all rtuples
(ai, ..., ay)€S" in which g < g; iff w(i) < ©w(j). A decision prob-
lem A is order invariant if each set D; of the partition is closed under
the equivalence relation =. A is order invariant iff each set D; can be
defined by boolean combinations of assertions of the form x; <x;.

A deterministic decision iree T is a labeled binary tree. Each
internal node v of T is labeled with a query Qy, which is a predicate
defined on §7.

F(alse). Each leaf is labeled by one of the sets of the partition A. The

The two outgoing edges of v are labeled by T(rue) or

predicates are defined on the whole set §» for simplicity of notation.
We associate with each predicate @ a set of indices lp = {i1,i2,...ir }.
such that, given an input (x1.x2....%:), the value of Q depends only
on (Xjj.Xig...X%,). The parameter r above is the arirv of Q.

The evaluation of T on an input X proceeds downward from the

root. If the node v is reached then the predicate @, is evaluated on %,

and one of the outgoing edges is chosen, according to the outcome of
the evaluation, The path ¥ follows is called the computation path for
%. The tree T solves A on C if. for each ¥€C. ¥ reaches a leaf with
label D; iff € D;; T solves A if it solves it on S7, the domain of the
problem.

We shall consider, in particular. recognition problems, i.e. deci-
sion problems which have two outcomes only. In that case we label the
leaves with accept and rejecr, the set accepted by T consists of the ele-
ments of S7 whose computation path terminates in an accepting leaf,
and such a path is an accepting path.

A probabilistic decision tree with one-sided error [8] is a decision
tree that also has some internal nodes that are coin iossing nodes.
When a computation path reaches such a node, it takes either of the
emanating edges with probability %. The set accepted by such a tree is
the set of inputs with a positive probability of being accepted. We
require that if an input is accepted then it is accepted with probability =
%, A probabilistic decision tree with two-sided error is a probabilistic
decision tree with a slightly different accepting rules. The accepted set
is the set of inputs with probability = 3/4 of reaching an accepting leaf
and we also require that ali the other inputs have probability = 3/4 of
reaching a rejecting leaf.

A predicate Q is order invarignt if its truth set is order invariant,
ie. I=y=—=>Q) {f QF): Q is order invariant on C if
EJEC, i=y==>0Q(X) iff (7). The decision tree T is order
invariant on C if each predicate occurring in T is of order invariant on
C.

T is called k-bounded if the maximal arity of a predicate occurring
in T is k. The height of a tree T, denoted by #(T), is equal to the
length of the longest path in T the k-complexity Ci(A) of A is equal to
the least height of a k-bounded binary decision tree that solves A; the
k-restricted complexity Cri(A) of A is equal to the least height of a k-
bounded binary decision tree that is order invariant and solves A. It
was shown in [8] that it is sufficient to consider the height as a measure

for time complexity for probabilistic decision trees as well.

3. LOWER BOUNDS FOR CONSTANT-BOUNDED DECISION
TREES

We prove in this section that order invariant decision trees are as
powerful as general decision trees in solving order invariant problems.
The proof consists of two parts. The first. easy one. consists of showing
that if an order invariant decision tree solves an order invariant decision
problem on a set of inputs that contains representatives of each order
type, then it solves the problem correctly for any input. In the second,
harder part, we show that if T is a decision tree that solves an order
invariant problem A defined on S7. and S is large enough, then there
exist a subset CC S such that C contains at least n elements. and 7 is
order invariant for inputs from Cn. Ramsey's theorem is used to prove
that claim. It follows that the predicates labeling the nodes of 7 can be

replaced by order invariant predicates so that the resulting decision tree

still solves the initial decision problem on C. As each order type is
represented in €7, the new decision tree solves the problem A
correctly for any input.

LEMMA 3.1. Cri(A) = Cra(d) = O(klog k)Cry(A).

Proof: The left inequality is immediate. To prove the right ine-
quality, note that the order type of a k-tuple can be determined in
O(klog k) comparisons (e.g. by sorting the tuple, next checking for
equalities between successive items). But the value of an order invariant
predicate is uniquely determined by the order type of its argument,
Thus, if T is a k-bounded, order invariant decision tree, then we can
replace each node v of T by a 2-bounded. order invariant tree of height
O(k log k), suitably replicating the left and right subtrees at v, so that
the resulting tree 7' yields the same answers as 7. The decision tree
T' is a 2-bounded. order invariant tree, and A(T ') = O(k log k)A(T).

u]
LEMMA 3.2, Let A = {Di,..,Dg} be an order invariant problem
defined on S7, and let FCS» be a set that contains a representative for
each order type. Let T be an order invariant decision tree that solves A
on F. Then I solves D.

Proof: Let €57, and assume ¥€D;. Let y€C be order
equivalent to ¥. Then y€D;, and ¥ reaches in T a leaf labeled with D;.
But y reaches the same leaf of T as ¥. Hence & reaches in T a leaf
with label D;

o

We make use of the following well known theorem [11].

RAMSEY’S THEOREM: For any n,m and g there exist a number
N(n,m,q) such that the following is true: Let S be a set of size at least
N(n,m,q); if we divide [S]7 into g parts then at least one part contains
all of [C]" for some set CCS of size m.
THEOREM 3.3. For each m.n and ¢ there exist a number
M = M{(m,n,1) such that the following holds: Let T be a binary deci-
sion tree of height ¢ defined on inputs from S7. where |S{=M.
There exist a set CCS such that | C{=m. and T is order invariant on
Ccn.

Proof: Let Q1....Qp be the distinct predicates labeling the nodes
of T. Let {x1,...x} and {yi....y} be two k-element subsets of §,
indexed in increasing order. We say that {xi,...xx} is congruent to

{v1....y } if. for each mapping o:1..n~1..k , and each 1= j=p

Qi (xa(1)s--Xo(m) ff Qo). YY)

It is easy to see that this is indeed an equivalence relation on [S]*. The
number G of equivalence classes of this relation is bounded by
2ok < 22tk According to Ramsey's theorem, for any s there is a
number N = N(k,5,G) such that if | S|=N then S contains a subset
C such that | C| = 5 and all elements of {C]* belong to the same
congruence class.

If S is large enough, we can repeat this process for & = 1,...n,
thus building a sequence of sets S=Co2C1D - - - DCp=C. such that

| C| = m, and all elements of [Cx}¥ are congruent, k = 1....n.

Let ¥ and § be two order equivalent tuples in C7. Let x 'y,..,x "
be the distinct components of ¥, indexed in increasing order, and let
¥ 1.,y 'k be similarly defined for ¥. Let o:l..n~1..k be such that
xi = x'ggy. i=1,...n. Since ¥=7, it follows that
yi = ¥'ouy i=1,..on. Since {x'y...x'x} s
{1y kb QiR iff @i, for any predicate @) occurring in T.

Thus, T is order invariant on C7.

congruent to

a
THEOREM 3.4. For each m.n.k and r there exist a number
M = M(m.n k,1) such that the following holds. Let A be an order
invariant decision problem defined on S” and let T be k-bounded deci-
sion tree of height 1 that solves A. Let | S |=M. Then the predicates
labeling the nodes of 7 can be modified so that the resulting decision
tree T’ is order invariant and solves A.

Proof: According to Theorem 3.3, if § is large enough, then
there exist a set C such that | C|=n and T is order invariant when
restricted to inputs from C». Each tuple X€ 57 is order equivalent to a
tuple $€Cn (since | C|=n). Replace each predicate Q occurring in T
by the predicate Q' defined as follows: Q'(¥) = Q(¥), where yeCn
is order equivalent to X. By the previous remark such tuple § exists.
As Q is order invariant on C*. the definition does not depend on the
choice of y.and Q' is order invariant. Also. if @ depends only on &
variables, then so does Q.

Let 7' be the decision tree obtained from T by that substitution
Then T’ is k-bounded and order invariant on C. Also. if X€ Cr, then
¥ reaches a leaf v in T' iff it reaches it in 7. Thus 7' solves D on
Cn, and by Lemma 3.2, solves (all) A.

[u]
COROLILARY 3.5. Let A be an order invariant problem. Then
(i) Cr(A) = Ci(A);
(i) Cri(d) = Ca(B) = O(klog k)Cri(A).

Proof: The first claim follows immediately from the last theorem.
The second claim follows from the first claim. and from Lemma 3.1.

a]
COROLLARY 3.6. The results in Corollary 3.5 hold for probabilistic
and nondeterministic decision trees as defined in [8].

We discuss probabilistic decision trees in more detail in the next

section.

4, LOWER BOUNDS FOR GENERAL k-BOUNDED DECISION
TREES

In this section we prove lower bounds for specific problems
allowing general queries with non-constant arity. We mainly consider
the problem of element uniqueness (EU). which is to decide, given n
elements of §. whether they are pairwise distinct. The same technique
applies to several other problems. We start with the deterministic
model and then extend the results to the probabilistic model.

4.1. Deterministic decision trees

Let p be a computation path in a deterministic decision tree T,
and let 7 be a permutation. S is the set of all input tuples whose com-
putation path is p. S is the set of all inputs of order type . Spx is
the set of all inputs in S, N Sy and P(w) is the minimal set of paths

suchthat U Spx = Sp.
peEP(m)
A computation path p is complete for m if for every pair (i, j)

such that w(i) +1 = m(j) there is a node v in p such that i,j€lp,
(i.e. @, depends both on x; and x;). Intuitively, this means that every
pair of consecutive elements in w is compared in p.

p is incomplere for w at i if no node on p satisfies the above for /.

LEMMA 4.1. Let p be a computation path such that for some / and j
(1 = i < j =n) there is no query in p which involves both x; and x;.
Assume further that the sequences

s1 = (ai, ., Gi-1. b, Gi+1, .. @j=1. C. Ajw1. Gn)
and

s2=(at, .., Gi—1. d, Gi+1. s Q1. € dpr], On)
are in 5p. Then the sequence

53 = (@1, .oy Gi=1, d, Qw1 .o Gj—1. o Qjw], . .On)
is also in Sp.

Proof: Let 5 be an input tuple. Then s€ S, iff Q(s) = Q(s1) for
every Q in p. In particular, Q(s1) = Q(s2) for every Q in p. We
shall prove that Q(s3) = Q(s1) for every Q in p.

Let Q be a queryin p. There are two cases to consider:

(1) iisnotin fp. Then Q(s1) = Q(s3) since Q involves only vari-

ables which get in 53 the same value they getin 5.

(2) iisin Ip. Then j is not in /g, hence Q(s1) = Q(s2) by the
same argument as in (1), and the claim holds since

Q(s1) = Q(s2)

THEOREM 4.2. Assume that |S| = N(n,n+1.nY). If the
decision tree T accepts EU and T has at most n! accepting paths, then
for every permutation there is a path p in T which is complete for =
Proof: Let m be a given permutation. There is a natural 1-1
mapping p from Sx onto [S]7. which maps each sequence of n (dis-
tinct) elements in S, on the set containing these elements in [§]7.
Using this mapping, we associate with each decision tree 7 and with
each permutation w a x coloring of [S]7. where x is the cardinality of
P(w), in the following way: Let py, ... py be the paths in P(m). (Note
that if the set accepted by the decision tree is £U. then all these paths
are accepting paths). Color each set {ay. ... a,} by the integer i such
that w=1({ai. .., an}) is in Sp;. Since. by the definition of P(m),
pepm T
this coloring is a x coloring of [S]7 Thus. by Ramsey Theorem,
there is a subset Sg of § such that |Sp} = n+1 and all the sets of [Sg]”

are colored by the same color, which means that all the sequences in

Sow are in the set Sp; for some path pr. Let py = p, then we claim
that p is complete for w. For simplicity, assume that w = (1, 2, .., n),
and for contradiction, assume that p is incomplete for m at some
i< n. Let {d\,d2, ..,dy+1} be n+1 distinct elements in Sp.
di < dj+y for 1= i < n. Then since both
sp=A{dy, L di-y, & disy, div3, dny
and
s2=(dv, oo di=1, i, div2, div3, dny
are in Sor. both are also in S,. Thus. we can apply Lemma 4.1 with
j=i+1, (b,)= (di. di+1) and (d, e) = (di+1, di+2) to conclude
that
53 = (d1, ., di-1. di+1. dist, div3, dn)
is also in §,. But this contradicts the assumption that 7 accepts EU.
since p is an accepting path and s3 should be rejected
[n]

LEMMA 4.3. For each e there is an ne s.t. if n > ne then
log(n!) > (1—e€)nlogn

The following definitions and Lemmas are similar to the ones in
{81 and are outlined here. Given a computation path p, G(p) = (V,E)
is an undirected graph such that ¥ = {1,....n} and £ = {(i. j)| there
is a query in p that involves both x; and x;}.
LEMMA 4.4, If a path p is complete for 1 permutations, Then G(p)
contains 1 Hamiltonian paths.

LEMMA 4.5. The number of Hamiltonian paths on graph on n ver-
tices (n > 1) and e edges is at most n(e/(n—1))n—1
THEOREM 4.6. There exists a function N = N(e.n) such that any
n*%—e-bounded decision tree T that recognizes £U/ on a set § such that
| ${= N, has height {}(n log n).

Proof: Let T be a decision tree that solves £U/. By Theorem 3.4
we can assume without loss of generality that T is order invariant. If T
is k-bounded and of height 4 then for each p G(p) contains at most
h(é‘) edges. Let x denote the number of computation paths in T and let
¢ be a bound on the number of permutations for which a single path p
in T is complete. By Theorem 4.2, x-1 = n!. Taking into account that
X = 2", and using Lemma 4.5 to bound 1, we obtain

26n(Eh/(n= 1))~ 1 = n!

Taking logarithms, we get that for all € and for large enough n’s:
h + logn + (n—=1)[2log k + log(h/(n—1))] > log(n!) > (1—€)nlogn
Assume now that log k = (% — €)log n. By rearranging terms we get

h 4+ (n=1)logth/(n—1)) > e(n—2)log n,

which can be shown to imply (for large enough n) that i1 > %enlogn.
The Theorem follows.
n]
THEOREM 4.7. There exist n*-bounded deterministic decision trees
of height O(n) that solve the element uniqueness problem.
Proof: Divide the n elements into 2[n%] blocks of size =%[n*],

and check for every pair of blocks whether their union in pairwise dis-

tinct. There are O(n) pairs of blocks and it is easy to see that each pair
of elements is contained in one such union.
[s]

COROLLARY 4.8. The complexity of k-bounded deterministic deci-
sion trees, where k =< n%—e¢_ for the following problems is {d(n logn):
set equality, set disjointness, €-closeness.

Proof: The proofs are very similar to the proof of Theorem 4.6
and will be omitted here. The reader is referred to {8} for more
details.

4.2. Probabilistic decision trees

We now consider probabilistic decision trees and show that the
results obtained in Theorem 4.6 hold for this model as well. The next
theorem is an extension of Theorem 8 in {8], where the same lower
bound was proven for probabilistic decision trees with only simple com-

parisons

THEOREM 4.9. There exists a function N = N(e.n) such that any
n%—e-bounded two-sided probabilistic decision tree T that recognizes
EU on a set S such that | §| = N, has height Q(n log n).

Proof: Let T be two-sided error probabilistic decision tree that
solves EU. A path p in T is called half-complete for a permutation w if
the number of pairs (i,j), w(j) = w(i)+ 1. such that there is a node v
in p whose query Q, depends both on x; and x; is at least (n-1)2.

We first show (following the line of proof in {8]) that every per-
mutation 7 has a half-complete path in 7. To prove this let
w = (1....n) for simplicity. and associate with each input x of Sy the
set of all paths x can follow. This defines a coloring of the elements in
Sx with at most 27! colors. By Ramsey’s theorem, if
|S1 = N(n,n+12n") then there is a set of n+1 elements
So = {ay....ap+1} (the g;’s are in increasing order) such that all the
elements in S, have the same color. i.e. they all correspond t0 exactly
the same set of paths. Denote this set of paths by P. Using Lemma
4.1, one can show that for each pair (i.i+1) the probability that a
query node that depends on both x; and x;+i occurs in a path in P
must be at least 1/2; otherwise either (ai....qi.gi+2,...Gn+1) IS
accepted with probability < 3/4 or (a@y,...8i~1.0i+1.Gi+1....0r) is
rejected with probability < 3/4.

Given a half-complete path p and its associated graph G(p), we
define a half-Hamiltonian path in G(p) ({8]) as a Hamiltonian path in
the complete graph K, such that at least haif of its edges are in G(p).
It is easy to see that if p is half-complete for ¢ permutations then G(p)
contains ! half-Hamiltonian paths. The number of half-Hamiltonian
paths in a graph with n vertices and ¢ edges is shown in [8] to be at

most

nZ"(z—:)" gnn':ll!.

The lower bound can now be derived using arguments similar to

Theorem 4.6.
8]

Note that the part of the proof using Ramsey’s Theorem can also
be achieved by the technique of section 3; however, this more direct
application yields smaller constants.

5. CONCLUSION AND FURTHER RESEARCH

We have presented techniques for extending lower bound results
for decision trees using simple comparisons to decision trees using gen-
eral queries. The techniques are purely combinatorial. As a result the
lower bounds apply to any large enough computational domain.

The first use of Ramsey’s theorem we made here was inspired by
a previous work of Yao [21]. The same technique has already been
used to extend lower bounds proven for comparison based algorithms to
more general ones: Snir used it in [15] for parallel computations. and
Frederikson and Lynch used it in [3] for distributed computations
Thus, Ramsey's theorem seems to be a powerful tool for concrete com-
putational complexity.

The constraints of the k-bounded decision tree model can be
weakened in several ways. We have explored in this paper one direc-
tion. namely allowing the bound % to grow with the number of inputs.
When & = n. the number of inputs, then the "information theoretic”
bound is correct. In general, one would like to establish tradeoffs
between the queries’ widths and the height of the decision tree. In this
context, note that Theorem 4.7 can be extended to show that for every
r€{0.5,1] there is an nr-bounded decision tree of height O(n2—2r) that
recognizes EU.

The number of distinct input values (i.e. the size of 5) has to be
very large, especially in the general case. due to the repeated use of
Ramsey's theorem. In fact, it seems that (}(n log n) steps are needed to
solve EU, even when the number of distinct values is O(n). Is it possi-
ble to avoid the use of Ramsey’s theorem. and give a combinatorial
proof of the (}(n log n) lower bound. when the domain has size O(n)?

The results of this paper can be interpreted as closure theorems.
in the following sense. Given a problem that is defined using the order
structure of its domain S, then an optimal solution exists that uses only
the order structure. imposing additional structure (i.e. defining addi-
tional predicates) does not help. Note that the clement uniqueness
problem is defined in terms of the equality relation. However, a deci-
sion tree that uses only tests for equality requires {3(n?) steps to solve
EU. Adding an (arbitrary) total order structure on §, helps to solve the
problem

The same question, namely finding a minimal extension of the
structure where a computational problem is defined. such that an
optimal solution exists, can be raised for other structures. For example,
can one show that if a problem is defined in R# using polynomial ine-
qualities of degree &, then an optimal solution exists that uses only
comparisons with degree & polynomials? We conjecture this result to
be true when the length of a path in the decision tree is defined to be
the sum of the degrees of the polynomials occurring on it.

REFERENCES

(1}

(21

3]

4

[51

[6]

(71

(8]

9

[10]

[11]

{12]

[13]

{14]

{15]

{16}

[

[18]

[19]

{20

M. Ben-Or, "Lower bounds for algebraic computation trees”,
Proc. 15th ACM Symp. on Theory of Computing (1983) 80-86.
D. P. Dobkin and R. J. Lipton "On the Complexity of computa-
tions under Varying Sets of Primitives.” J. Comput. System Sci
18 (1979) 86-91

G. Frederikson and N. A. Lynch, "The impact of synchronous
communication on the problem of electing a leader in a ring”.
Proc. 16th Symp. on Theory of Computing (1984) 540-544.

M. L. Fredman. "How Good is the Information Theory Bound in
Sorting?". Theoretical Computer Science 1 (1976) 355-361

M. L. Fredman and B, Weide, "On the Complexity of computing
the Measure of { J[a;,5]1," Comm. ACM 21 (1978) 540-544
H.T. Kung, F. Luccio, and F.P. Preparata. "On finding the
maxima of a set of vectors”. J. ACM 22 (1975) 469-476

U. Manber, "A Probabilistic Lower Bound for Checking Dis-
jointness of Sets”, To appear in Information Processing Letters
U. Manber and M. Tompa. "The Complexity of Problems on
Probabilistic, Nondeterministic, and Alternating Decision
Trees,” Proc. 14th ACM Symp. on Theory of Computing (1982)
234-244

U. Manber and M. Tompa, “The Effect of Number of Hamil-
tonian Paths on the Complexity of a Vertex-Coloring Problem,”
SIAM Journal on Computing 13 (1984) 109-115.

M. Rabin. "Proving simultaneous positivity of linear forms”, J
Comput. System Sci. 6 (1972) 639-650.

F. P. Ramsey. "On a problem of formal logic”. Proc. London
Math. Soc., 2nd ser, 30 (1930) 264-286

E.M. Reingold, "Computing the maxima and the median”, Proc
IEEE 12th Symp. on Switching and Automata Theory (1971)
216-218

E.M. Reingold, "On the Optimality of Some Set Algorithms”,
Journal of the ACM. Volume 19 (1972). 649-659.

M. 1. Shamos. "Geometric Complexity.” Proc. 7th ACM Symp
on Theory of Computing (1975) 224-233 .

M. Snir, "On parallel searching”, to appear in Siam J. of Com-
puting.

M. Snir, "Comparisons between linear functions can help”,
Theoretical Computer Science. 19 (1982) 321-330.

M. Snir, "Lower Bounds on Probabilistic Linear Decision
Trees”, to appear in Theoretical Computer Science

J. M. Steele and A. C. Yao, "Lower bounds for algebraic deci-
sion trees”, J. of Algorithms 3 (1982) 1-8

A. C. Yao, "On the complexity of comparison problems using
linear functions”, Proc. 16th. Symp. on Foundations of Comput-
er Science (1975) 85-89.

A. C. Yao. "A lower bound to finding convex hulls”, J. ACM 28
(1981) 780-789

[21] A. C.

628

Yao, "Should tables be sorted?” J. ACM 28 (1981) 615-

