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ABSTRAOT

The contribution of this paper is two-fold. First, we describe two ways to construct multivalued atomic
n -writer n -reader registers. The first solution uses atomic 1-writer 1-reader registers and unbounded tags.
The other solution uses atomic 1-writer n -reader registers and bounded tags. The second part of the paper
develops a general methodology to prove atomicity, by identifying a set of criteria which guaranty an effective
construction for the required atomic mapping. We apply the method to prove atomicity of the two implemen­
tations for atomic multiwriter multireader registers.

1. Introduction

When two processors communicate, they may do so
using a shared memory, i.e., one processor writes
the message in it and the other processor reads the
message from it. Less obvious is the case when the
processors communicate by message passing. In
[Lamport1986] it is pointed out that the message is
put in a buffer at the receiver's end, and a Bag is
set. The receiver periodically tests the flag, and
fetches the contents of the buffer when the flag
indicates that the buffer contains a message. Logi­
cally, the flag register is a shared register between
the sender who can write it, and the receiver who
can read it. Thus, concurrent reading and writing
of a shared register is more basic than mutual
exclusion, semaphores and the like, which require
interprocess communication. Solutions to the prob-
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lem of concurrent reading and writing which rely
on mutual exclusion or any other method which
serializes the concurrent actions by executing them
in sequence (and therefore having one action wait
for another) only shift the problem to another
level. Another issue in favor of truly concurrent
reading and writing is variation in speed of
different technologies. E.g., when a Cray XMP
communicates with an mM PCjr, the Cray is
several orders of magnitude faster, and solutions
requiring exclusive access to the shared register
would slow the faster machine down to the speed
of the slower one. We analyse the problem of how
to implement a shared register which can be writ­
ten and read by all participating processors in a
truly concurrent fashion. I.e., without any restric­
tions to prevent simultaneous access and making
no assumptions about the relative durations of the
read's and write's, or about the actual timing of
the lower level constituent actions. The implemen­
tations preserve the property that the read's and
write's 8eem to take place in an indivisible instant
of time each, and in a particular order. Each action
can be thought to take place in an atomic grain of
time, and this time atom is situated somewhere in
the action's finite time span as used by the execut­
ing processor in reality. This latter condition
ensures that an external observer of the processors



cannot find contradictions; the actions may have
taken place in this order according to the observed
results, Le. external consistency. Moreover, the
sequence of values written and read by the succes­
sive atomic actions in the particular order have the
register property: an atomic read following an
atomic write, without other atomic write's in
between, returns the value that atomic write wrote,
i.e. internal consistency. A sequence of such seem­
ingly atomic read's and write's, which are both
externally consistent and internally consistent is
called an atomic run. A shared register, such that
all system executions of read's and write's by the
participating processors are atomic runs, is called
an atomic register.! We construct multivalued
atomic registers which can be read and written
asynchronously by many processors. The solutions
do not require one process to wait for another. This
rules out any solution using mutual exclusion, syn­
chronization, execution rounds, and so on. The
roots of the problem under consideration are
hardware design issues of concurrent accesses to
registers by asynchronous components, and asyn­
chronous interprocess communication.

Results. The result of the paper is two-fold.
First, we describe two ways to construct mul­
tivalued atomic n -writer n -reader registers. The
first solution uses multivalued atomic i-writer 1­
reader registers and unbounded tags. The other
solution uses multivalued atomic I-writer n -reader
registers and bounded tags. The second part of the
paper develops a general methodology to prove
atomicity, by identifying a set of criteria which
guaranty an effective construction for the required
'atomic mapping,' cf. below. We apply the method
to prove atomicity of the two implementations for
atomic multiwriter multireader registers.

Tag Size. We call the number of bits
needed to represent the values, which have to be
written into a register, the range of that register.
The first construction below solves the problem
how to implement an atomic n -reader n -writer
register R using a matrix of n 2 atomic I-reader 1­
writer registers R. ,j . (Such registers exist in the
sense that Lamport [LamportI986] has exhibited an
implementation from existing hardware com­
ponents.) In this solution, the range V' of the
constituent registers Ri ,i is bounded by
V' :5 V +logT, where T equals the maximum
number of actions issued to R , and V is the range
of the register R being constructed. The second
solution below solves the same problem, starting
from atomic I-writer n -reader registers, where the
range of values written into the constituent reqis­
ters is bounded by V' ~ V +4n 2 log n. At the
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cost of some complication this bound may be
improved to V' :5 V +4n log n.

The number T of tag bits used by a solution
is V' - V . A solution uses bounded tag8 (Le.,
V' - V <00) if the range of constituent registers is
bounded as a function of the range of the con­
structed register and the number of processors, oth­
erwise it is said to use unbounded tag8. In the
unbounded tag solution above, the largest tag
which ever needs to be used is bounded by the
total number of read and write actions of the con­
stituent processors in the lifetime of the system.
Since it is not likely that the number of such
actions will exceed, say 2100, the cross-over point
where the unbounded tags solution becomes supe­
rior to the bounded tags solution is for a number of
participating processors between 10 and 20. (Note,
that atomic I-writer n -reader registers using
bounded tags, have not yet been constructed.)

Related 'Work. Motivation and explanation
of the defined concepts and their relevance to
current computing issues can be found in
[LamportI986, MisraI986]. In the former paper,
Lamport gives an implementation of a multivalued
atomic I-writer, I-reader register. In [Peter­
son1983] an atomic I-writer n -reader m -valued
register is constructed using n +2 8ale n -reader
m -valued registers (i.e., registers that return the
correct value if no Write overlaps the Read, and
some value from the correct domain otherwise), 2n
atomic, boolean, I-reader registers, and two
atomic, boolean, n -reader registers. (It is not
known how to construct the last type.) Misra
[MisraI986] has investigated axioms for the design
of multiwriter registers. Bloom [BloomI986] has
constructed an atomic 2-writer, n -reader register
from atomic I-writer n -reader registers. Related
research includes [LamportI977]. Our idea of using
ticket algorithms was inspired by the example of
[FischerI985], but is otherwise unrelated. We use
the 'global time' model of
[LamportI986, Lamport1986 .k....].

2. Formalism and Problem Statement

An action or operation execution is a Read or a
Write.

Let S be a finite set of actions

S = {a 1, a2, · • • , am }

or an infinite set of a.ctton8

S = {al,a2, · · · }

and let R be the set of nonnegative real numbers.



s :8 -+R maps each action a eS to a start time
s (a ).
f :8 -+R maps each action a e8 to a fini8h time
f (a), / (a )> 8 (a ).

f and 8 are such that u (t1 ),-'z (y ) for
'U ,x e{s ,/ }, t1 ,yeS and t1,-'y or u,-'x. (Each
time instant harbors only one start or finish.)

l{s(a):s(a)<c,aE8,cER}1 <00. (At any
time, only a finite number 0/ actions has started.)

1r :5 -+8 is a reading mapping which maps an
action a to an action 11"{ a). Many actions can be
mapped to a single action.

A run is a fourtuple p=(S ,8 ,/ ,1r).
A register mapping REG :{(S ,s ,I )}-+{11-} associ­
ates a reading mapping 1r with each triple
(8 ,s ,I ). (Each regi8ter implementation induces a
regi8ter mapping.)

The8et of all runs associated with a register REG
is:

registers. (All registers multivalued.)

To implement an atomic n -reader n -writer
register R from other atomic registers means the
following. There is a set of processors 1, ... , n
and a set of registers R 1, ••• , Rm • Every one of
the processors i issues Read and Write actions to a
conceptual common register R . Every such high­
level action will be implemented by many low level
reads and writes to the constituent registers
R 11 • • • ,Rm of R . Each processor executes a Pro­
tocol which specifies this implementation. The
input to the Protocol consists of start points of
Read actions issued by the readers, start points of
Write actions issued by the writer and the values
written in Write actions. The output of the Proto­
col consists of endpoints of Read actions issued by
the readers, endpoints of Write actions issued by
the writers and the values returned in Read
actions. The Protocol together with registers
R 11 • • • ,Rm implements an atomic register R if
the register mapping induced by R is atomic.

3. First Solution

Consider the following architecture, consisting of n
d 2 • •processors 1, ... , n, an n atomIC regIsters,

R. ,j, each having one read-terminal and one
write-terminal. Each i is connected to the write­
terminal of each Ri ,i and to the read-terminal of
each Ri ,i (1:5 i , j :5 n). The n 2 registers form a
matrix R with register R. ,i the element in the i th
row and the j th column. A processor i can write
all registers in row i and read all registers in
column i. Each register Ri ,j can hold any tag in
N X{I, ... , n }, N the set of natural numbers.

Informally, the Read and Write protocols are
as follows (suppose i does the Read or Write):

1. For all j in {I, ... , n}, read the contents
of register Ri " , in one read each. Determine
the lexicographically highest tag (t max,m )
held by any register R j ," and set own tag
equal (t max+l,i) for a Write and to (tmax,m)
for a Read.

2. For all j in {I, ... , n}, write a new con­
tents consisting of a new tiJg and value to
register R. ,;, in one write each. For a Write
the new value is the value tJ which has to be

{p:p=(8 ,8 ,/ ,REG (8 ,8 ,/ »)}

A shrinking mapping q:R -+R is a 1:1 mapping
which associates new start and finish times with
each action a e8 such that

s (a ):5q(s (a »:5q(1 (a »):51 (a)

(Intuition: external consi8tency is maintained under
this condition.)

A shrinking mapping is serial if for all a,6 E8 ,
a ,-'b , it holds t~at

q(8 (b )),(7(/ (b »)~[q( s (a ),0'{/ (a )]
A serial shrinking mapping (J' is consistent with a
run p if 1r'S reading and writing order is consistent
with the obvious reading and writing order induced
by 0'.

A run p is atomic if there exists a serial shrinking
mapping which is consistent with it. (Intuition:
atomicf,·ty implies internal consistency.)

A register is atomic if each of its runs is atomic.

For an atomic register it seems that all
actions take place at nonoverlapping intervals as
defined by th'e shrinking .mapping consistent with a
rUDe For convenience, we may think these intervals
shrunk to single points, so that we can conceive of
the actions as being executed man indivisible grain
of time.

Problem. Given simple atomic registers,
implement more general ones. In particular, (a)
given atomic n -reader I-writer registers implement
atomic n -reader n -writer registers, or better, (b)
given atomic I-reader I-writer registers (Lamport
registers) implement atomic 1& -reader n -writer
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written, for a Read the· new value is the value
v". held by a register R j", which held the
lexicographical maximal tag (t maJU m ).

The atomic subactions of a Read or Write by
processor i consist of first reading all atomic regis­
ters in its associated column, and then writing all
atomic registers in its row. The order within the
reading phase and within the writing phase is arbi­
trary, symbolized by the "for all i in SET" con­
struct.

4. Second Solution (Struldbrugg Protocol2 )

The architecture consists of n atomic I-writer n­
reader registers, R b . . . , R. . There are n pro­
cessors 1, ... , n, each i is connected to 'the
write-terminal of R. and to a read-terminal of each
R j (1~j ~n). The n registers form an array A
with register R. the i th element. A processor i
can write register R i and read all registers in A .

4.1. Outline of the Protocol

On the first approach, the protocol is similar to the
unbounded tags case. Namely, the writer draws a
new "ticket" every time it writes, and the reader
returns the value of the most recent "ticket".
Every writer draws from a separate pool of tickets.
Thus, each processor (c.q. register) has its own
tickets. The main idea is to maintain a bounded
number of tickets, and keeping track of the order­
ing in which they were issued. However, to facili­
tate the presentation, we assume that every time
that a certain ticket is redrawn, a special
unbounded draw number is attached to that ticket,
which is incremented by 1 with every draw. Later,
we show how to get rid of those draw numbers,
showing that at any given time, all existing tickets
with the same name have necessarily the same
draw number.

It still remains to keep track of tickets with
different names. For that purpose, the tag called
view in R. is an array which contains in the i th
position the name of the current ticket of R., and
in position i contains the ticket which was register
R j 's current ticket at the time it was last polled
by i. Before i issues a new ticket in a Write, it
looks at the views kept at each register, and then
selects as the new ticket for the i th entry of its
own new view a ticket which does not appear as
the i th entry in any of the polled views. There is
one-to-one correspondence between the value writ­
ten by the write of i, the ticket (including draw
number), and the view in R. whose i th entry is
that ticket. The j th entry (j:;':i) of the new view
consists of the i th entry of the current view polled
in register R i ·
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Readers read all views from all registers and
determine the processor which wrote 'latest,' by
comparing the views. Namely, if the ith entry of
the i th view occurs as the i th entry of the j th
view, then the i th view is deo tJo/ente written later
than the i th view.

The method as described does not suffice,
because it cannot keep track of views which are in
"transit", i.e. views that have been read, but the
action who read them has not terminated yet. For
instance, when there is a very long read, which
overlaps many actions of some processor, say 100
write actions, it is impossible to predict which one
of those 100 views will be actually read by the
reader. However, the writer should avoid picking a
ticket that appears in a view which is read, since
the new ticket will be confused with its old version.
This complication seems to force us to use
unbounded histories as tags in the registers.

The following mechanism, referred to as
Send-Receive mechanism, solves this problem.
Effectively, in the situation where a long action
overlaps many short actions of another processor, it
makes it appear that the long action polled the
result of the' first short action among overlapped
ones, or the one preceding it.

4.2. Preliminaries

Every variable mentioned in the algorithms is
said to be owned by a processor. A variable, owned
by processor i, is represented by a certain field in
its register R.. By construction of the array A,
only the processor i can write this variable. When­
ever the processor writes a variable it owns, it does
so to the associated field in its register. Every p~
cessor can read the value of this variable from that
register.

The algorithm revolves around the sending of
messages between senders and receivers and the
views held by the readers and writers.

4.3. The Send-Receive Procedure

The procedure involves two parties, the
Bender S and the receiver R. The procedure
involves the following parameters: Message, Input,
Output, Received, Bits. The Message and Input
are fields owned by the sender, and the Bits and
Received are fields owned by the receiver. Message
and Received are arrays. Message[R] indicates
entry R in the array. In fact, only entries
Message[R] and Received[S] are modified by the
procedure between S and R.

Informally, the sender sends a new message
to the receiver if the previously sent message has



been received or if the receiver is "idle". To indi­
cate whether the receiver is idle or not, the receiver
writes this information onto Bit8. The Bits consist
of a Flag and an Altematingbit. The contents of
Flag is 0 if receiver is idle and 1 otherwise. The
contents of Alternatingbit (0 or 1) is complemented
with each action of the receiver.

Upon invocation of the Send procedure, the
sender reads Bits, Received[S] from the receiver. If
Flag=O or Received[S] Message[R] or Alternating­
bit has changed, then the sender writes the value
of Input into Message[R].

Upon invocation of the Receive procedure,
the receiver reads Message[R] and Input from the
sender. If Received[S] already equals Message(R],
then the value of the Input is assigned to Output
Otherwise, the value of Message[R] is assigned to
Output and also written into Received[S].

4.4. The Read and Write Protocols

Upon the invocation of a Write, the writer
writes 1 in its Flag field, to indicate action in pro­
gress. It complements the value of its Alternating­
bit field. Then the writer calls the Send procedure,
for every other register R j as receiver, with param­
eter Input=View, and Bits=Flag, Alternatingbit.
The writer continues by calling the Receive pro­
cedure, for every other register R j as sender, with
parameters Input=View and Output=seen[j]. The
writer then discredits all its own tickets occurring
in any field of any register, Le., Message, View and
Received. The new ticket drawn by the writer is
an arbitrary own ticket which is not discredited.
For convenience, we imagine the value which is the
input to the Write attached to this new ticket.
Then a new view is composed, the j th entry con­
sisting of the j th entry of the view, Le. seen(j],
which is the output of the Received procedure for
Rj as sender, j ri. The newly drawn own ticket
is the i th entry of the new view. Then the new
view is written to the own field View. Finally, the
writer writes 0 to its Flag field, to indicate the end
of Write.

Upon invocation of the Read, the reader
writes 1 in its Flag field, to indicate action in pro­
gress, and complements the Alternatingbit field.
Then it calls the Receive procedure, with parame­
ters Input=View and Output=seen[j], for every
other register R j as sender. Seen[i] is the view in
its own View field. From the received views,
seen[l] , ... , seen[n], the reader selects the most
recent one, i.e., the unique view seen[m] of which
entry m does not occur as entry m of any seen[j]
(j:Fm ), m maximal. It then returns the value
associated with the m th entry of seen[m], and
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writes 0 to its Flag field, to indicate the end of
Read.

Oonvention. Variables without capitals are
local variables of the executing processor. Variables
with capitals are fields in registers, which are read
and written by the executing processor in its own
register, and are 'Read-from-X' by the executing
processor from another register X. All 'Read-from­
X' operation executions in a Read or Write are per­
formed in one lower level read of register X. Each
operation execution of a Read or Write starts with
one lower level write to the own register to set
Bits, continues with one lower level read of each
other register to obtain data (the processor either
does a lower level read to its own register or just
remembers what it wrote last), and ends with one
lower level write to the own register to set Flag to
o and write the appropriate fields. Note that all the
registers involved, i.e., the elements of A, are
atomic.

4.5. The Protocol
Procedures

Procedure New (Bits)
begin Procedure

flag := 1;
altematingbit := complement (altematingbit);
Bits := flag, alternatingbit

end Procedure

Procedure SEND(Input, Bits, R, S)
/* 8 sends new mess~e to R if the previous message
sent was received or if R is idle */
begin Procedure

flag, altematingbit := Read-from-R (Bits);
received := Read-from-R (Received[S]);
if received= Message[R] or flag = 0 or altema­
tingbit changed
then Write (Message[R] := Input)

end Procedure

Procedure RECEIVE(Input, Output, 8, R)
/* R receives message from 8 */
begin Procedure

message := Read-from-8 (Message[R]);
input := Read-from-8 (Input);
if Received(8] = message
then Output := input
else
begin

Output:= message;
Write ( Rece.ived[S] := message )

end
end Procedure

The Read and Write Protocols
Protocol for Write by i
begin

Write (Bits := New (Bits»;



end

Seen Graph. The Seen graph G,. =( W,. ,E,. ),
associated with a Read r, has as vertices the i th
entry of seen[j], that is, the 'own' ticket tj in regis­
ter R j 's view as obtained by r, for j =1, ... , n .
There is a directed edge t,· -+tJ between ti and tj

if ti is the i th entry of seen(j].

Protocol for Read by i
begin

Write (Bits := New (Bits»;
for all j unequal i
begin

~~CEIVE(Input=View, Output=seen(j]'
j,l)

end
Read ( seen[i] := View);
determine maximal lexicographic sink in the Seen
graph 8 determined by seen(j], j=l..... ,n, (see
below);
output the value associated with this ticket;
Write (Flag := 0)

5. Method and Proofs

The atomic constituent registers of an implementa­
tion support the constituent lower level actions of a
higher level action of the register constructed by
way of solution. The lower level. actions start when
a processor starts executing them, and end when
the processor finishes executing them. Because of
atomicity, there exists a point in this interval at
which the action seems to take place. We use those
mathematical fictions - i.e., the instants of time at
which the action may be thought to take place
instantaneously - in our formal reasoning. In par­
ticular, s (a ) is an instant of time during which the
first lower level atomic action of a can be thought
to take place, and I (a ) is an instant of time dur­
ing which the last such subaction can be thought
to happen.

Auxiliary Constructs. Below we need
additionally the following polling mapping.

p:(8 - W)-+ WA, W CS, is a partial polling
mapping which maps an action a to n actions

5.1. Sufficient Conditions for Atomicity

It will be shown that (PI) - (P4) imply atomicity.

(PI) a) For all Reads r, W =1r{r) is an entry
of p(r). (I.e., one Write is polled from each pro­
cessor, and the Write 1r{r), which is selected by
Read r, is one of them.)

b) The action digraph is acyclic, i.e. has no
directed cycle. (I.e., there is no chain of selected
actions which forms a cycle.)

(P2) If w=1r{r) then f (w) < f (r). (I.e., a
Read does not return the value of a Write which
finishes later than itself.)

(P3) If I (w)<8(r), w a Write of i, then
either W =Pi (r) or there is a Write w',
I (w)<s(w' )<1 (r) and Wi =pi(r). (I.e., if
there is a Write w of i which properly precedes a
Read r, then either w is polled by r or a later
action w' (of i), which starts before r finishes, is
polled by r .)

(P4) For all Reads r, no Write w satisfies
I (1r{r ))<s (w )<1 (w )<s (r). (I.e., there is no
Write properly in between a Read and the Write it
selects.)

Lemma 1. II a run p=(8 ,8 ,/ ,1r), with pol­
ling mapping P and W ~8 the set 01 Writes,
satisfie8 (Pl}-(P4) then p is atomic.

Proof. We construct explicitly a serial map­
ping tT* consistent with run p. Call a Write
w eW live if its value is returned by a Read r,
that is, W =1r{r) for some r e8 - W, otherwise
dead.

(1) Let tT be a shrinking mapping such that,
for each Write wew, tT(s(w)=tT(1 (w))=1 (w),
and for each Read r e8 - W ,
tT(s (r )=tT(1 (r »=max{8 (r), I (1r{r »)}. The
images of s (r) and 1 (r) are contained in
[8 (r ),1 (r)] by (P2). That is, tT contracts an inter­
val to a point inside the interval.

(2) For any live Write w eW, we define an
influence interval of that Write (w.r.t. tTl as the
maximum interval of time [tT( w ), tT( r )], such that

(a 1, • · · , a.) = p(a )

such that ai is an action of processor i. Here
W ~ 8 is the set of Writes and 8 - W is the set of
Reads. The projection Pi (a ) = ai .

Let G =( W ,E) be an ac tion digraph, W as
above, and a directed edge (a --+b lEE (a =1= b ) if

1) there exists a r e8 - W, such that a=Pi (r ),
for some i, and b =1r{r), or

2) both b and a are Writes by the same proces­
sor, with b the next Write after a .

end
discredited[i] := Own tickets in Message, View,
Received;
ti.cket .:= ~bitr~ry own ticket not occurring in
dlscredltedbl for j=l,...,n;
Write ( View := ticket + for all j unequal i.. entry
j of seen(j]);
Write (Flag := 0)

for all j unequal i
begin

SEND (Input=View, Bits, j, i);
~~CEIVE(Input- View, Output=seen[j]'
j,l);
discredited(jl := Reaci-from-j (Own tickets
in Message, View, Received)

end
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W =11'{r). Below '. · · , means a finite nonzero
time interval, and its absence a zero time interval.
Thus, 'O'( 11"{ r »O'(r )' means that the interval
between '0'(1I"{r »' and 'O'(r)' has measure o.
Assume below that Wi =11"{ri ), and that
[O'( Wi ),O'( ri )] are influence intervals, i =1,2.

Remark. We assume some e-interval of meas­
ure 0 around each start and finish of a Read or
Write. .This makes physical sense [LamportI986].
If mappIng 0' creates a cluster of Reads and Writes
we sort the cluster to put all Reads immediately
after the Writes to which they belong, as far as
possible. E.g., 'O'(W2)0'( r I)O'( r 2)' is resolved as
'O'(W2)0{r 2)0{ r I)·'

Claim 1. The influence intervals w.r.t. u can
overlap only in the following way:

· . . q(w1)0{w2) 0-( r 2) . . . q( r 1) . . . (i)

... 0-(WI) ..• 0{W2) q( r 2)0{ r 1) . . . (ii)

· . . q(W 1) . . . q( W 2) 0-( r 2) . . . 0-( r 1) . . . (iii)

Pro01. Suppose the contrary. By (P2) and
the Remark above, the only other possibilities for
overlap of the influence intervals are (modulo inter­
change of elements in a cluster):

· . . q(W 1) . . . 0-(W 2) . . . 0{ r 1) . . . 0{ r 2) . . .

· . . q(w 1) . . . 0-(W2) . . . 0{ r 2) . . . u(r 1) . . .

· . . 0-(W1)0{W2) . . . 0-( r 2) . . . 0-(r 1) . . .

· . . 0-(W1) . . . 0-(W2) . . . u(r 2)0-( r 1) . . .

· . . 0-(W1)0{W2) . . . 0-(r 2)0'( r 1) . . .

We show that the first situation is impossible.
The impossibility of the others follows by the
essentially the same argument.

By the const~uction of u in (1),
1 (wI),1 (W2)<8 (rl),8 (r2). Otherwise, 'u(rl)' and
'0'(r2)' could be shifted further left. Let wI=Pi(rl)
and w2=Pj (r2)· By (P3), Pi (r2)= WI which
implies WI-+W2 in E, or Pi(r2)=wi with
1 (Wl)<8 (Wi )<1 (r2), which implies
W1-+ · · · -+Wi and Wi -+w2. Again by (P3),
P j (r 1)= W2, which implies W2-+W11 or
pj(rl)= Wj with 1 (W2)<8(Wj)<1 (rl), which
implies W2-+· · · -+Wj and Wj-+wl. All combina­
tions contradict (PI): the acyclicity of the action
digraph. End proof of Claim 1.

Claim e. We can construct "i!i=0I ·u, so that
the images of the elements of Sunder u form a set
of nonoverlapping influence intervals.

Proof. By Claim 1, u maps the elements of
S such that the only possibilities for overlapping
influence intervals under u which are left are (i) ­
(iii):
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· . · 0'(WI)o'(W2) u(r 2) · · · 0'(r I) · · · (i)

Then 'u(W I)O'( W 2) 0'( r2)' is mapped to a single 0­
length e-interval, and we can change the mapping
so that the image in that e-interval is
'u(W2) u(r2)u(WI)'. Similar for the situation

· · . u(WI) · · · u(W2) 0'(r2)u(r I) · · · (ii)

The last remaining. possibility for overlapping
influence intervals is:

... O'(WI) · · · U(W2) u(r2) · · · u(rl) . .. (iii)

In this case, /(wI)<f(w2)<8(rl), and
8(r2)<8 (rl). Let WI be a Write of i and W2 be a
Write of j. By (P3), either w2=p·(rl), and
W2-+W I is a directed edge in the action digraph G ,
or there is a Wj =P j (r I) with
1 (W2)<8(Wj)<1 (rl) and both W2-+··· -+w·
and Wj -W 1 are directed edges in G . 1

Assume / (WI)<8 (r2). Then, by (P3), either
wI=Pi(r2) which implies a directed edge WI-+W2
~n C!' or wi=Pi(r2) for ,(wi»1 (WI), which
ImplIes both W1-+ · · . -+Wi and Wi -+w2 in G .

All combinations violate the acyclicity of G
claimed by (PI). Hence,' (r 2) < f (w 1)·
Since Wl=1I"{rl), and I (W2)<8 (rl), by (P4) we
have 8 (W2)<1 (WI). (W2 cannot be properly in
between 1I"{rl) and rl.)

Thus the situation is as follows:

w_1
---------*

w_2
------------*

r_2
----------------*

We can now shift the pair 'u(w_2)u(r_2), to
immediately before 'u(w_l)'. In this way, we obtain
a mapping as follows:

· · · u(W2)U(r 2)U(W1) · · · u( r 1) · · ·

This reduces the amount of nesting of the influence
intervals. We iterate this procedure until all
proper nesting has disappeared, and compose the
resulting mapping 01 with the previous mapping u
to '(;=01 ·u. End proof of Claim 2.

Trivially, we can map all Reads r' , with
1I"{r' )=1I"{r), such that 8 (r' )<8 (r) in between
the images u(11"{ r » and u( r ).



(3) A dead Write W is one such that for no
Read r eS - W holds w =11"{r). By (P4), for no
dead Write w is there a Read r such that
I (1I"{r))<8(w)<1 (w)<8(r), 8(r) maximal.

So, after having constructed (7 as in (1), composed
it with a mapping tI to (j as in (2), we can finally,
by yet another mapping tI ' , shift the image of
such dead Writes w to just before U(1I"{r» or just
after u(r). The resulting mapping (7 *=rr ' ·lI ·u
is a serial shrinking mapping of S and is consistent
with p, Le., run p is atomic.•

5.2. Proof First Solution

We now prove that register R is atomic. That is,
for each run p of Reads and Writes there exists a
mapping (7* as above.

Define the reading mapping 11". induced by
register R such that a Read r is mapped to the
Write w whose value it returns. Let p be a run
(S ,8 ,I ,11") of register R. Define the run
p' =(S,8 ,I I ,11") with I I =u·1 , where u is a
shrinking mapping defined as
u(1 (w))=min({1 (r): w=1I"{r)}U{1 (w)}) for the
finish of a Write w E W, and the identity in all
other cases. We define P such that Pi (r) is the
la8t Write of i of which the tag and value are seen
by Read r , directly or indirectly. We use an inter­
mediate mapping '1. Let '1i map every Read r, say
by i, into action ai which wrote in Ri ,j the value
which r read from Ri ,j. Let Wi be the last Write
by i which wrote. Ri ,I before it was read by r.
Note, that Wi not necessarily equals ai. The pol­
ling mapping P is defined by Pi (r ) = 11"{'111 (r » or
Pi (r) = Wi' whichever is the latest Write by i
among Wi ,1I"{'Yl(r », . · . , 1I"{'Ya (r ». (Here, let 11"

map every Write to itself.)

Lemma 2. The run p' =(8,8 ,I' ,11"), with
W the Bet 01 Write8 and P the polling mapping,
8ati8fie8 (Pl)-{P4).

Proof. (PI). a) By construction 11"{r) is an
entry of p( r ), for all Reads r E8 - W .

b) The action digraph G is a subgraph of the
digraph with N X {I, ... , n} as the set of ver­
tices (N is the set of natural numbers) and a
directed edge i -+ i from vertex i to vertex i if i
is lexicographically less than j . Consequently, G is
acyclic for p and p' .

(P2). If W =11"{ r) then by construction of u
we have u(1 (w))<(7(1 (r». (Actually :5, but
allow a small f-shift, see Remark in proof Lemma
1.)

(P3) In the definition of p it holds that
B(Pi (r'»<1 (r). In particular (P3) is satisfied.
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(P4). Holds for p by construction of Rand
definition of 11". I.e., for all Reads res, no Write
weW satisfies I (1I"{r»)<s.(w)<1 (w)<8(r). Let
w be a Write by i. Since u(1 (a »~I (a) for all
a eS , and because of the definition of Il, the only
cases in which (P4) can fail to hold for p' , is that
(a) l(w»8(r), u(/(w»<8(r), and
u(1 (1I"{r »)<8 (w), or (b) I (1I"{r »>8 (w),
u(/(1I"{r»)<8(W) and u(/(w»)<a(r). We
analyse case (a). Case (b) is analogous. By
definition of u, there is a Read r' such that
w=1I"{r' ), and I (r' )=0-(1 (w»<8(r). Since
8 (w »u(1 (1I"{r »), by construction of R, Write W

draws a higher ticket than Write 11"{ r). By
definition of P, W =Pi (r) or there is a later Write
w ' of i such that w' =Pi (r), with a higher
ticket than w. But by R 's Read Protocol, the tag
of 11"{r) is lexicographically at least as high as the
tag of Pi (r ), which is a contradiction.•

Theorem 3. R i8 an atomic n -reader n­
writer regi8ter implemented u8ing n 2 atomic 1­
reader l-writer register8 and unbounded tags.

Proof. Let p=(S ,8 ,I ,11") be a run associ­
ated with R. Then u* ·u, with (f the shrinking
mapping used to obtain pi in Lemma 2, and (f *
the shrinking mapping constructed in the proof of
Lemma 1, is a serial shrinking mapping which is
consistent with p, by Lemma's 1 and 2.•

5.3. Proof Second Solution

Lemma 4. (Correctness Send-Receive)
Neither 8ender S in executing an action as nor
receiver R in executing an ac tion aR can observe
ticket Z 0/ S with draw number p in Me8sage!R} and
with draw number q in Receive/S}, p unequal q.

Proof. Suppose S puts x in Message[R] for
the first time (draw number 1) in as. By the Pro­
tocol, x cannot occur in Received[S] until after
I (as). x stays in Message[R] until it is received
by R in an action aR, and occurs in Received[S] at
I (aR). By the Protocol, x stays in Received[S],
and in Message[R], until the end of an action as'
which polls Received[S] containing x. Subsequent
to I (as' ), every next action of S will poll the
same view in Received[S], until it is replaced in an
action aR' by another view in Message[R] of S. By
the Protocol, x is on the list of discredited tickets
of S, until S polls this new view in Received[R].
I.e., at least during the interval [I (as),1 (aR' )].
Hence, by the Write Protocol, x cannot occur in
the new view in Message[R]. Subsequent to
/ (aR' ), the initial situation that x occurs neither
in Message[R] nor Receive[S] is restored. Conse­
quently, the Lemma follows by induction. •



Claim 1. From 1 (Wi' ) up till 1 (w.), ticket
x ,q is known to i, since it is either in i 's View or

We now argue the uniqueness of tickets for
the Read and Write Procedures.

Lemma 5. (Unique tickets.) Tickets 01 i
with different draw numbers do not turn up in the
same Read or Write.

Proof. Suppose the contrary, and let the
tickets have name x and draw numbers p and q,
p >q.

~sume the tickets turn up in a Write w.
Then either a) or b) holds.

a) If w is a Write by ; then x is simply not
redrawn. The view written by W will not contain
own ticket x (as i th entry) at all.

b) If W is a Write by j (j 7'=;) then at most
one x was in seen[i], the other one must be in
seen[k], k 7'=i. However, the i th entry of seen[k] is
not used at all in the Write protocol as executed by
j - for convenience we can consider it as not hav­
ing been polled.

Either way, only in case b) is it possible that
a ticket x of ; turns up in the View of a Write by
i 7'=':. The only other way to obtain z of i is to
poll it as the own ticket of a view in register Ri .

Therefore Cases I-III below exhaust all possibilities.
We do the analysis for a Read receiving the two
x 'so (The analysis for a Write is the same, but is
unnecessary. Viz, already by a) and b) polling tick­
ets of i with the same name and different draw
numbers does not matter for Writes.)

We first note that if r j adopts a ticket from
i drawn by Wi then 1 (rj) > 1 (Wi). This is
immediate from the Protocol.

Note, that i 's tickets can be received from i
by a write of k, put in view of Ie , send to I and
received by I , but are not written by I , for any Ie
and I. Hence, if a read rj adopts tickets with the
same name but different draw numbers from i , the
situation must be either Case I, Case IT, or Case III
below.

Case I.

. r _i .
-------------------*

. x, q

in Message[k] of i .

Proal 01 Claim 1. Mter being drawn, x ,q is
written in a field of i 's register for the first time at
1 (Wi' ) in field View of i . By assumption x, q is
adopted by k, and by definition of the Received
procedure it was either in Message[k] or View of i ,
at the time when i was polled by k .

Case 1. If it was in Message[k] it will stay
there, until i has seen that the view concerned is
written in field Received[i] of Ie , that is, until after
1 (w.).

Case t. Assume x ,q was in View of i , when
i was polled by w" and x ,q was adopted by Wk.

Then, by definition of Received procedure,
Received[i] (in Ie) equals Message[k] (in i) as read
by Wk.

Subcase t.l. Suppose there is no write Wi' ,

with 1 (Wi' , ) < 1 (w/e) after Wi I ,then the view
containing x ,q stays in View of i until 1 (w.).

Subcase t.e. Suppose, there is a next write
U:i " with I (Wi' , )<1 (w.) after Wi' then,
SInce wk obtained x,q from View (of i) before
1 (Wi' ') by assumption, also s (Wk ) <
1 (Wi' , ). By the Send procedure, the view con­
taining x ,q goes into the Message[k] field of i,
because of the assumption above that Wi" polled
Received[i]-Message[k]. Since 8 (Wk)< f (Wi' , )
this new message of i to k stays in the Message[k]
field of i until it is adopted in the Received[i] field
of Ie , which is after I (w/e ). End proof of Claim 1.

Claim t. From I (Wk) up till I (rj), ticket
x ,q is in the View field of Ie, or the Message[j]
field of Ie •

Prool 01 Claim e. Instead of proving the
Claim for x ,q , we can prove it for the (own) ticket
y drawn by W., because 'II and x ,q are together
in the same view written by W/e. The reasoning
above applies to the presence of that view. The
relation between W. and r j with respect to y, is
exactly the same as between Wi' and W. with
respect to x ,q. According to Claim 1, it follows
that the view with ticket y stays in View (of Ie ) or
Message[j] (of Ie) from I (w.) until I (rj). End
proof of Claim 2.

It follows from Claim 1 and Claim 2, that
from I (Wi' ), I (Wi' ) < S (Wi), until I (rj),
I (rj) > I (Wi), i either holds ticket x ,q in its
own register or polls it from Ie 's register. Namely,
if i polled Ie before I (w.), then x ,q occurred in
the register of i after 8 ( Wi) and will stay there
until I (Wi). If i polled Ie after I (w. ) then it will
obtain x ,q from the register of Ie. According to
the Write Protocol therefore, x is discredited and
not drawn in Wi.

x,p

w_i
*-----------*

w_k
------------------*

x,q

w'_i w"_i
*-----* *----*

k
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Ca8e II.

. r_i .
--------------------*

Since ri polls x ,q from i, by analogous reasoning
as above for Wk, in Case I, Claim 1, x ,q must be
in a field of register of i from I (Wi I ) up to
f (ri)· Hence ticket x is discredited in Wi, and
cannot be drawn.

Ca8e III.

Corollary. The Read protocol can deter­
mine the maximal lexicographical sink of a Seen
graph. That is, for each Read r there exists a 11'{r ),
and 11'{r ) is unique.

Define 1I'{r) as the Write whose value is
returned by Read r. Define Pi (r) as the Write by
i of which the tag and value are actually read by
r from register R i •

Lemma '1. (Atomicity) A run
p=(S ,8 ,/ ,11"), with W the 8et 0/ Write8, p the pol­
ling mapping and 11" the reading mapping induced by
regi8ter A, sati8fie8 (P1)-(P4).

Proof. (PI). a) By construction of A , for all
a eS , 11'{ a ) is an element of p( a ).

b) The action digraph G =( W ,E) is con­
structed as follows.

1) If G, =( W, ,E,) is the Seen graph associated
with a Read r eS , then determine
G, I =( W, I ,E, I ) as follows. If x e W, then
w. E W,' , with w. the Write that drew
ticket x (with draw number p as polled by
r). For all W E W, I , W 7'11'{r), there is a
directed edge w -+11'{ r ) in E, I •

2) Note, that if E,' contains an edge w -+w '

then / (w)< / (w' ). Consider the set of
intervals 1=( W,8 ,I ) and draw the directed
edges w --+w I of graph E,' =(W,' ,E,' )
as / (w )--+ / (w' ) in I, for all Reads r ES .
The set of all such edges is E I s;; I X I. The
resulting graph (I ,EI ) does not contain
directed cycles. (All edges go from left to
right along the real line.)

3) Finally, let the action digraph G =(W ,E),
with W the set of Writes, have w -+w' a
directed edge in E if there is a directed edge
I (w )-+I (w I ) in EI , or if both w and w'
are Writes by i and w' is the next Write
after w.

By construction the action digraph G has no
directed cycles.

(P2). By construction of A it holds that
/ (1I'{r ))<1 (r) for a Read r. (We allow rear­
rangement of the images of I in an E-interval of
measure o. See Remark in proof Lemma 1.)
Namely, the Write protocol writes all fields of the
register in one final atomic action. Hence, the
result of a Write w '(i.e. contents of View, Message,
Received and Value fields) can only be polled after
f (w).

(P3) By the construction of A and the Proto­
col, the View field written by a write w of i per­
sists all through time interval [f (w ),1 (w' )],
where w I is the Write of i which immediately fol-

x,p

• x ,P

. w_l
-----------*

x,P

~_k

----------*

w_i
*------*. x, p

-------------------------------*

• X,Cl

• x,Cl

w'_i
*-----*

w'_i
*-----*

• x, Cl

X l--+X2-+ . • • -+X, =X 1

By construction of the Seen graph we have a
directed edge x --+'11 , when Read r polls views of ,.
and i, written by Wi and wi' respectively, such
that the i th entry of seen[i] is the ticket with
name x and draw number p, the i th entry of
seen[j] is ticket x with draw number q, and the
i th entry of seen[j] is ticket'll. By Lemma 5, we
have p =q . Hence, by construction of A,
f (Wi )< f (Wi ). Therefore, the contradictory
assumption implies I (w) < / (w ), for W the Write
that drew ticket x b which is impossible. Thus, the
directed edges in the Seen graph constructed by a
read cannot form a directed cycle.•

By the reasoning in Case I, Wi could not have
drawn ticket x again, so this case is impossible as
well.

By Cases I - III the lemma is proven.•

Lemma 6. (Acyclicity) The Seen digraph
con8tructed Irom the Views polled by a Read has no
directed cycle8.

Proof. By way of contradiction, suppose
there is a directed cycle in the Seen graph G, :

. w_k
k -------------*

k
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lows w. A Read r cannot poll a register i outside
time interval [s (r ),1 (r )]. Therefore, (P3) easily
follows.

(P4). By way of contradiction, suppose for
some Read r there is a Write w such that
! (1I"(r))<s(w)<! (w)<s(r). Let w be a Write
by i, and let 11"(r )=Pi (r )=w' · By (P3), i:Fi.
By construction of A and the Protocol, the View
field of Ri persists through interval [I (w' ),s (r )].
Hence, by the Send-Receive mechanism, seen[i] as
polled by w is the same as seen[i] as polled by r.
Consequently, the i th entry of seen[i] equals the
i th entry of seen[j], as polled by r. Let the name
of this ticket be x. The draw number of x is the
same for seen[i] and seen[j] by Lemma 5. Let the
name of the i th entry in seen[j] be 1/ • Then X-+1/

is a directed edge in the Seen graph constructed by
r, and x is not a sink, which contradicts
11"(r )=Pi (r), by the Read Protocol. •

Theorem 8. A is an atomic n -reader n­
writer register implemented using n atomic n­
reader l-writer registers and bounded tag8.

Proof. Each run p associated with A is an
atomic run by Lemma's 1 and 7. By Lemma's 4,5
and 6 the draw numbers can be dispensed with:
tickets need only have names. The number of
discredited tickets in a Write by i equals the
number of i 's own tickets in the polled n View
fields, n (n -1) Received fields, and n (n -1) Mes­
sage fields. That is, at most 2n 2_n . Consequently,
each processor needs have only 2n 2_n +1 own tick­
ets. The total tag information one needs to store in
each register consists of 1 View field, n -1 Received
views, n -1 Message views, 1 Flag and 1 Alterna­
tingbit. This comes to a total of less than
4n 2 flog (2n-+l)1 tag bits per register.•
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Footnotes
1 Suppose we have been able to construct an atomic fli~-flOP
which can be tested (read) by one component (the reader and
set (written) by another component (the writer). How 0 we
make an atomic register oC n bits which can be read by one
component and written by another? The writer can never write
all flip-flops simultaneously, and neither can the reader read all
flip-flops simultaneously. It is already a problem how to ensure
that the reader gets either the new or the old value. Worse, if
the register contains only values consisting of n -bit words with
Ie bits equal 1, how do we ensure that a read which overlaps a
write does not return a word with =Fie bits equal 1. All regis­
ters mentioned in this paper are multivalued unless stated oth­
erwise.
2 I was asked by a person oC quality, whether I had seen any of
their Struldbruggs or Immortals.... He told me that 'they] hap­
pened to be born with a red circular spot in the Corehead ... an
inCallible mark that [they] would never die. The spot ...
changed its color; Cor at twelve years old it became green, so
continued till five and twenty, then turned to a deep blue; at
five and forty it grew coal black ... but never admitted any
Curther alterations.... They have no remembrance oC anything
but what they learned and observed in their youth and middle
age, and even that is very imperCect. And for truth or particu­
lars of any fact, it is safer to depend in common traditions than
on their best recollections.... As soon as they have completed
the term oC eighty years, they are looked on as dead by the law;
their heirs immediately succeed to their estates, ... and the poor
ones are maintained at the public charge. ACter that period they
are incapable of any employment or trust or profit, ... neither
are they allowed to be witnesses in any cause, ... not even for
the decision oC meres and bounds. ... their memory will not
serve them to carry them through from a beginning of a sen­
tence to its end.... The language of this country always being
in flux, the Struldbruggs oC one age do not understand those of
another, neither are they able after twohundred years to hold
any conversation (Carther than a few general words) with their
neighbors the mortals, and thus lie under the disadvantage of
living like foreigners in their own country. This was the account
~iven me of the Struldbruggs, as near as I can remember.
lJonathan Swift, U A Voya~e to Laputa, Balnibiri, Glubbdub­
drib, Luggnagg and Japan."J


