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Abstract

In this paper we establish new expressiveness results for indeter-
minate dataflow primitives. We consider choice primitives with three
differing fairness assumptions and show that they are strictly inequiv-
alent in expressive power. We also show that the ability to announce
choices enhances the expressive power of two of the primitives. These
results are proved using a very crude semantics and thus apply in any
reasonable theory of process equivalence.

1 Introduction

Fairness is regarded as an important property of real systems and there is
considerable interest in semantic theories and proof systems for reasoning
about fairness [9]. In the present paper we examine the relative expressive
power of a variety of fair choice primitives. We prove new inexpressibility
results in the context of asynchronous systems. We prove that three differ-
ent choice primitives have different expressive power. We also consider the
effect of adding signaling to each primitive. By “signaling” we mean that a
choice primitive has a mechanism for announcing what choices it has made.

*Currently at MIT
tSupported in part by NSF grant DCR-8602072.
tSupported in part by NSF grant DCR-8602072.



Our investigation is carried out in the context of static dataflow networks,
i.e. networks whose structure remains fixed throughout execution.

Our interest in this work stemmed from earlier discoveries by Panan-
gaden and Stark [23,26,24] that the so called fair merge primitive [14] is
strictly “more powerful” than other primitives exhibiting unbounded inde-
terminacy. This showed that one could not classify indeterminate primitives
on the degree of branching they embodied. All fair systems include primi-
tives with countable indeterminacy [8]. In the programming model studied
by Chandra [3,8], countable indeterminacy and fairness are equivalent. In
the case of asynchronous dataflow networks [13], the analysis is complicated
by the fact that a process may receive data from different autonomous pro-
cesses in an asynchronous fashion. This means that fair merges need to
avoid empty data channels as well as to make fair choices.

Work by Apt and Plotkin [4] shows that the presence of countable inde-
terminacy in a programming language leads to failures of continuity. The
result about fair merge shows that there is a breakdown of a monotonicity
property that occurs in that case.

Having identified monotonicity as a property that differentiates two
kinds of countable indeterminacy, we are led to focus attention on monotone
primitives. Since semantics of networks including fair merge are notoriously
difficult it is possible that one might develop simpler semantic theories for
systems that do exhibit countable indeterminacy but are monotonic. We
discovered that there were provably inequivalent primitives here too. This
paper discusses these primitives and establises the difference in their ex-
pressive power. There appears to be a richer taxonomy of indeterminate
primitives than had been suspected earlier.

Recently there has been considerable interest in developing semantic
theories to handle countable indeterminacy [2,4,5,7,15,27]. Our work shows
that there are several flavors of countable indeterminacy. We feel that such
a semantic theory must take this diversity into account.

In the rest of this introduction we describe the setting and state the
results informally. The following section describes an automata-theoretic
formalism essentially due to Lynch and Tuttle [18] and Stark [32]. We show
how one can pass from these automata to traces of the networks. Recent
work by Jonsson [12] (and independently by Panangaden and Shanbhogue [25])
shows that traces are fully abstract for such networks and hence constitute
a good abstraction of the detailed operational aspects of network behaviour.
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The rest of the paper works with traces exclusively and develops the ma-
chinery to reason about process equivalence and implementability. We use
a very weak notion of process equivalence; one that is not even a con-
gruence. The significance of this is that our nonimplementability proofs
will survive any passage to a more accurate semantic theory. Clearly our
positive implementability results are then of not great significance.

1.1 Kahn Networks and Indeterminate Primitives

We define an asynchronous dataflow network to be a finite set of au-
tonomous computing agents, called nodes, connected by directed arcs, called
channels. The directed arcs coming into a node are called input channels
and those leaving a node are called output channels. The interconnection
structure is fixed throughout execution. Nodes can only “listen” to a single
channel at a time. One can think of each node as executing a sequential
program. Communication between nodes is effected by the transmission of
messages along the channels. The channels are unbounded queues where
the sending of a message and the receipt of the message are distinct activ-
ities. There is no synchronization on message passing such as in CSP [10]
or CCS [20].

We consider abstractions of different schedulers. This leads to three
primitives that we call choice processes. Each can be regarded as a dataflow
primitive with an input port and two output ports. Tokens are consumed
from the input port and are placed on one or other of the output ports.
One can now distinguish between different choice primitives on the fairness
properties that they satisfy with respect to choosing between the output
channels. The inexpressiveness results here may be considered to be in
the same spirit Stark’s investigation to the expressive power of semaphore
primitives [31] extended to the dataflow case.

Another inexpressiveness phenomenon at work here arises from sequen-
tiality. We consider augmenting the choice primitives with an additional
output channel on which a bit is output every time a choice is made. This
allows other processes in the network access the choices made. It turns
out that this interaacts quite delicately with the fairness properties. With
a strong fairness assumption one can show that adding signaling does not
add to the expressive power, whereas with a weaker fairness property one
can prove that the choices that cannot signal are strictly weaker. The proof



methods hinge on using the fact that individual processes are sequential in
an appropriate sense. One may also view this as an analysis of how infor-
mation gets dispersed in a network.

We describe the six distinct choice nodes below:

1.

1.2

Choice(C) has one input channel and two output channels. It reads
a, possibly infinite, stream of values and splits it into two streams,
possibly being unfair in the sense that one output channel may receive
no input values for an infinite input stream.

Weakly fair choice(WFC) is similar to choice except that, for an
infinite input stream, each output stream will have at least one value.
Nothing is guaranteed if the input stream is finite.

Strongly fair choice(SFC) is similar to the above, except that for an
infinite input stream, each output stream is guaranteed to be infinite.

Choice with signal(CS) is identical to choice except that there
is a third output channel called the signal channel. The ith value
output on this channel is 0 if the ith input value was output on the
first output channel and is 1 if the 7th input value was output on the
second output channel. If there is no sth input value then there is no
1th output value on the third output channel.

Weakly fair choice with signal(WCS) is identical to weakly fair
choice except that it has a signal output channel.

Strongly fair choice with signal(SCS) is identical to strongly fair
choice except that it has a signal output channel.

Results

The expressiveness situation that we establish is depicted in Figure 1. An
arrow between two primitives indicates that there exists a network built
from instances of the first primitive and “ordinary” (essentially sequential
and deterministic) nodes that implements the IO-relation of the second
primitive. An arrow with a line through it indicates that we have proven
that no such implementation is possible.
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Figure 1: The Relative Expressiveness of Choices

Based on experience with semaphores [31], one might expect that choice
cannot implement WFC. It is somewhat more surprising that WFC, or
even WCS, cannot be somehow “iterated” to implement SFC. The second
interesting result is that we cannot simulate signals ezcept when we have
strong fairness. This result seems to be related to sequentiality.

2 Processes and Networks

In this section, which is essential to justify that the formalism used in the
proofs actually corresponds to some operational description, we establish
the basic definitions and give an abstract operational formulation of the
class of networks that we consider. The formalism is based on work of E.
W. Stark [32,34]. We will define the notion of a “computation sequence”,
and identify which are the “valid” ones. We will need to analyze the local
activity of each process in a network. So we will need “traces”, abstractions
of computation sequences of the automata, with rich enough information
that the local activity of each process can be extracted. The correspond-
ing automata from which these traces are constructed needs to distinguish



between these different kinds of events — arrival events, output events and
internal events, of which input events are a special case. We will use traces
in our discussion and arguments. We show that this use of traces is jus-
tified by showing, on operational grounds, that traces of networks can be
described in terms of traces of subnetworks. So we can safely abstract traces
from computation sequences of networks, instead of first obtaining traces
of the individual processes in the network, and then composing them.

Concurrency is represented by interleaving of “causally independent”
events. Concurrency can be analyzed by examining which pairs of events
can be permuted, that is, can happen in either order.

In all our implementability and non-implementability proofs, whenever
we talk of building a network of processes using a particular process P, we
assume that we can use a base set of processes, that correspond to normal
sequential programs. In other words, the network may contain processes
from this base set, besides copies of process P. We will formally define
which processes are assumed to be in this base set.

2.1 Automata

We describe individual processes in terms of a particular kind of automaton,
that communicates by sending “data values” through “ports”. The set
of events of an automaton comes equipped with a concurrency relation,
that describes which pairs of events are causally independant and can be
permuted in execution sequences.

Definition 1. A concurrent alphabet is a set X, together with a sym-
metric, irreflexive binary relation || on X, called the concurrency relation.

This concept is used in trace theory [1,19] to obtain an algebraic structure
for traces. Formally, let V' be a set of data values called the value alphabet.
Throughout this paper, we will assume a fixed countable value alphabet.

Definition 2. A port automaton is a tuple
M= (E,Q,A)

where



e FEis an alphabet of events equipped with a concurrency relation. Let
Arr,Out and Inp be disjoint subsets of F, called the sets of arrival
, output and input events, respectively. Arr = P x {+} x V,
Out = P“*x{+}xV,and Inp = P*"x{—}xV for some disjoint finite
sets P™® and P°“. The elements of P'" are called input ports, and
the elements of P°* are called output ports. The events (po, +,v)
and (po,+,v’) are not related by the concurrency relation of E, for
any po and any v # v’. Neither are any pair of events e and e’ related
by the concurrency relation, if both e, ¢’ are in E\ Arr. The elements
of E\(Arr U Out) are called internal events.

o (@ is a set of states, and ¢* € @ is a distinguished initial state.

o A is a transition function that maps each pair of states ¢,7 in Q
to a subset A(g,r) of E U {€}. € is called the identity event. If
a=(p,+,v) € A, or a = (p,—,v) € A, then we write port(a) for the
port component p, and value(a) for the value component v.

satisfying the following conditions :
(Disambiguation) r # r’ implies A(g,7) N A(g,r") = 0.
(Identity) e € A(g,r) iff g =r.

(Receptivity) For all states ¢ and arrival events a, there exists a state r
such that a € A(q,r).

(Commutativity) For all states ¢ and events a, b, if a||b, a € A(g,r) and
b € A(g,s), then there exists a state p such that a € A(s,p) and
b€ A(r, p).

This definition is similar to the definitions of a port automaton and an input-
output automaton due to Stark in [17,26,33]. We explicitly introduce input
events here. Note that, by the definition of the concurrency relation, if two
events are concurrent, then either they are both arrival events on different
input ports, or one of them is an arrival event, and the other is an internal
event or an output event.

From a particular state, an event cannot take us to two different states.
This is what disambiguation says.



We would also like to have arrival events always “enabled”. The arrival
of data on input channels should not be dependent on the state, and so, for
any state and for any event corresponding to a value arriving on an input
channel, there is a new state corresponding to the value having arrived.
This is captured by receptivity.

Moreover, if two events are concurrent, according to the concurrency
relation, and if both of them are “enabled” in a particular state, then doing
any one of these two events does not “disable” the other, and moreover,
doing both these events in either order, brings us to the same final state.
This is captured by commutativity.

The transitions of an automaton are the triples (¢, a,r) with a € A(q,r).
We may denote the transition (g,a,r) by ¢ % r. The transition ¢ < ¢ is
called an identity transition, and is denoted by ud,.

One should note that there is a difference between the notions of event
and transition. A transition describes two states and an event such that
when it is executed in the first state, one reaches the second state. An
event may execute in different states. For example, a “z := z 4+ 1” event
may be executed in a state in which z is 3, as well as in a state in which z
is 4. But they will correspond to different transitions.

Definition 3. A computation sequence v is a finite or infinite sequence

of transitions of the form
QOE)QI% ce

The domain dom(vy) of v is the state gop. A computation sequence is said
to be initial if dom () is the distinguished start state ¢*. Two computation
sequences v and 6 are coinitial if dom(y) = dom(§).

We explicitly introduced a set of events called arrival events, and a set of
events called input events, in the definition of a port automaton. The intent
was that arrival events should represent arrival of data at input channels,
and that input events should represent the consumption of data from the
input channels. Arrival of data must always precede consumption of data.

Moreover, in some computation sequence

quqlg “ e

if a; is an arrival event and a;4, is an event that is neither the corresponding
input event, nor an arrival event on the same input channel, then the arrival
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event a; does not “cause” the event a;y;, and so could occur after a;;;.
Formally, there must exist a state ¢’ such that ¢;_; —5 ¢’ and ¢'Zg;11. We
shall refer to this as a pushforward of an arrival event.

The above requirements are seen to be natural, if one describes states
of an automaton to include explicitly the contents of the input channels.
We then see that a input event can happen only if the content of the input
channel, as described by the corresponding sequence in the state, is non-
empty, and the value being read in the input event is the same value as the
one at the head of the sequence. Rather than describe states in such an
unwieldy manner, we will impose these natural conditions on our automata.

So we are naturally led to the following definition to capture the notions
of arrival and input.

Definition 4. A causal port automaton is a port automaton, such that
for any finite initial computation sequence s, and for any input port p,
I, _(s) is a prefix of II, +(s), and moreover, the set of computation se-
quences is closed under pushforwards.

The first part of the above definition ensures that arrival of data precedes
their being read.
We will now give two examples of automata.

Example 1. Buffer : This process has one input channel and one output
channel, and simply reads values and outputs them, guaranteeing to read
and output all values that arrive on the input channel.

Let V be a set of data values, and V* be the set of all finite sequences
of values from V| including the empty sequence <>. Let the set of states
Q@ be V* x (VU{€'}). A state represents the contents of the input channel,
and a value, if any, that has been read but not yet output. ¢ indicates that
there is no value that has been read but not output. Let the set of arrival
events Arr be {1} x {+} x V, the set of output events Out be {0} x {+} x V,
and the set of input events Inp be {¢} x {—} x V. Let the set of all events
E be ArrUOutUInpU{e}, where € is the identity event.

We will now define the transition relation. A(q,r) = {(¢,+,v)} iff either
g =<3s,a>andr =< s-v,a >, or, ¢ =< s, >and r =< s-v,¢ >.
A(g,r) ={(z,—,v)}iff g =< v-s,¢ >andr =< s,v >. A(q,7) = {(0, +,v)}
iff g =<s,v>andr=<s,¢> A(g,q)={e}.



Every event in Arr is concurrent with every event in OutUInp, and € is
concurrent with any other event.

Example 2. Poll : This process has one input channel and one output
channel. It repeatedly polls its input channel for data. If a data value is
present, then it is read and output. If not, a special value * is output.

Let @, Arr and Inp be the same as for the previous example. Let the
set of output events Out be the set in the previous example, together with
an extra event (o, +, *).

Besides the transitions in the previous example, there is an extra transi-
tion A(q,q) = {¢,(0,+,%)} iff ¢ =<<>,€¢ >. A(q,q) = {€} otherwise. The
only thing new added to the concurrency relation of the previous example
is that € is concurrent with (o, +, *).

Notice that arrival events are not concurrent with (o, +, *), so that ar-
rival of input disables an output of a *. So the input has the power of
interrupts.

Our automata will be simple, in the sense that arrival of input cannot dis-
able an already enabled output. If we had represented states as containing
the contents of the input channels as well, then what this means is that if
a value arrives in an input channel, then this does not affect the process’s
“internal state”. So if the process could output a value before, it can still
do so, except that it might now have the option of reading a value.

We formalize this natural requirement below.

Definition 5. A port automaton is said to be monotone, if it satifies the
following property :

(Monotonicity) For any arrival event a, and any event b that is not an
arrival event at the same port, al[b.

Similar to the notion of a pushforward of an arrival event, defined earlier,
we can now define a pushback of an arrival event. In some computation

sequence
QOSQIE P

if a;41 is an arrival event and a; is an event that is not an arrival event on
the same input channel, then the arrival event a;;; could happen earlier,
before the event a;. Formally, there must exist a state ¢’ such that ¢;_; 5" q

and ¢S gy 1.
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Note that closure of computation sequences under pushbacks follows
from the monotonicity of the automaton.

All the port automata that we shall consider will be causal port au-
tomata with the monotonicity property, so we shall henceforth refer to
these simply as automata.

We often decompose computation sequences into subsequences in order
to focus on the local activity of a node, or the activity at a single port. We
define the following notation for this purpose.

Definition 6. For any computation sequence o, we define I, ; (o) to be the
value sequence vy, vq, . . . such that (p, +, v1), (p, +, v2), . . . is the subsequence
of o consisting of the arrival events at port p.

Definition 7. For any computation sequence o, we define II,, _(o) to be the
value sequence vy, vy, . . . such that (p, —, v1), (p, —, v2), ... is the subsequence
of o consisting of the —-events at port p.

Let P be the set of input ports and output ports of an automaton, and
let V*° be the set of all finite and infinite sequences of elements of V.
A port history is defined to be a function from P to V*. Then for any
computation sequence o, we can define a history H, by letting H,(p) be
the value sequence II, 1 (o). We denote the restriction of H, to the input
ports by H", and call it the input port history corresponding to o. We
denote the restriction of H, to the output ports by H2*, and call it the
output port history corresponding to o.

The main tool for working with computation sequences of automata
is the notion of a “residual” 4 7 § of one finite computation sequence ~
“after” another coinitial sequence § [17,26,33,34]. Intuitively, v and § may
“overlap”, and the residual is the part of 4 that is left to do after doing §.

Our discussion could have been carried out using port automata, as de-
fined in [26], with internal events, by taking the “residual” as fundamental,
and defining the concurrency relation in terms of the “residual”. It turns
out that in both cases, we obtain the same “residuals” and the same con-
currency relation. Since a concurrency relation is more easily understood,
we have developed our discussion by taking the concurrency relation as
fundamental.
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Definition 8. A residual is a partial operation ] on coinitial pairs of com-
putation sequences. For single transitions ¢ : ¢-5r and u : q—b—>3, if a = b,
then t Tu = id, and u 1t = td,. If a # b, then ¢ T u is defined iff a||b, in
which case the commutativity property implies the existence of transitions
s—5p and r—b>p, which we take to be ¢t T u and u T ¢ respectively.

We say that coinitial computation sequences v and § are consistentif v T 6
is defined; otherwise we say they conflict. We extend to finite computation
sequences as in [26].

The residual operation is now used to define a preorder 5 between

coinitial computation sequences as follows: For v, § finite, define ~ S 6 iff
~ and é are consistent and v T § is a sequence of identity transitions. We

extend this definition to infinite computation sequences by defining v =
iff for every finite prefix 4’ of «y, there exists a finite prefix ¢’ of §, such that
o
v =&
It can then be shown, as in [26], that if M is an automaton and T is the
corresponding residual operation, then the relation Cisa preorder on the
set of all computation sequences of M, and 5 extends the prefix ordering.

Moreover, the set of all l;.l-equiva,lence classes of computation sequences,
with the induced partial order, is a Scott domain, whose finite elements are
exactly the equivalence classes of finite computation sequences. Moreover,
as in [26], the map that takes each computation sequence v to its port

history H., is continuous, with respect to the = preorder on computations,
and the prefix ordering < on port histories. This last fact suggests that

S is the “right” preorder to work with rather than the prefix ordering on
computation sequences.
As in [26], we choose the “valid” computation sequences to be exactly

the S-maximal ones. We will also refer to these as completed computation
sequences. The point here is that these are the sequences in which all the
continuously enabled events have actually happened. As in [26], these are
exactly the “fair computations”. It is quite pleasant to be able to state this
as a maximality property of computation sequences. A discussion of the
kind of “fairness” that we consider here is in the next subsection, where
we discuss what are the “valid” computation sequences of a network of
automata.
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Definition 9. A computation sequence is called completed if it is =
maximal among all the computations having the same input port histories.

We will obtain “traces” from these completed computation sequences,
by abstracting them.

2.2 Networks of Automata

In the previous section, we described a single automaton. We now describe
how to compose automata to obtain networks.

Definition 10. Suppose M = {M; : i € I} is a finite collection of au-
tomata, where M; = (E;, Qi, A;) and each E; is partitioned as before into
Arr;, Out;, Inp; and other events. We call the automata compatible if

o for all ¢, j € I such that 7 # 7 we have (E;\(Arr;UOut;))N(E;\(Arr;U
Out;)) = 0, that is, the internal events of any pair of automata are
disjoint, and,

e a given port can be shared by at most two automata, in which case
it must be an output port of one of them and an input port of the
other.

This restricts us to linking processes by one-way channels across a pair of
ports. The shared port names represent ports that are connected. So we
will now refer to shared port names as channels, and when we refer to a
port, we will be referring to one end of a channel, identified by the process
at that end. We also restrict ourselves to building finite networks. This is
the form of interconnection in Kahn networks.

The following definition looks slightly complicated but all that it says is
that when we compose a collection of compatible automata, we obtain an
automaton. The “internal ports” of this automaton include the channels
connecting any pair of the M;’s, that is, the port names shared by any pair
of the M;’s. The input ports are all the input ports of the M;’s, excluding
those that are shared. The output ports are all the output ports of the
M;’s, excluding those that are shared.

Definition 11. The composition of a set M of compatible automata is
the automaton [[M; = (E,Q, A), where
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e E = UE;, with a||b iff a||;b for all : € I such that both a and b are in
E;. This implies that events of distinct automata, that do not share
any ports, are concurrent, because they are not both in the event set
of any single automaton.

e Out = (UOut;)\(UArr;), and Arr = (UArr;)\(UOut;),
and Inp = {e € (Ulnp;) | 3¢’ € Arrsuch thatporfe) = port(e’)}

¢ Q =Tlier Qs
o ¢ =(¢:i€1)

eccA((g:te€l)(r;:vel))iffforall: € I, either e & E; and r; = ¢;,
or else e € F; and e € A;(q;, ;).

The set Internal = ((UArr;) N (UOut;)) U (UInp;\Inp) is called the set of
internal port events.

ArrUOutUInpUInternal are called port events. Intuitively, the component
automata in a network communicate by transmitting data values on internal
channels. The corresponding events are in Internal.

Note that two automata connected by a channel may execute a single
event in the composed automaton, but this might correspond to an output
event of one of them and an arrival event of the other. For example, suppose
A and B are the two automata connected by a channel p, that is p is an
output port for A, but an input port for B. Then (p,+,v) is an output
event for A, but an arrival event for B. The execution of this event by the
composed automaton corresponds to the outputting of value v by A, and
the arrival of v at an input channel of B. By defining composition in this
way, we do not have to worry about liveness conditions, stating that if a
value is output by A, it will eventually arrive at an input channel of B.
This does not violate asynchrony, because the corresponding input event,
if it happens, may happen any time after the arrival event.

We note that the difference between a network of automata and a single
automaton is that we can recover the structure of the single automata from
the network by appropriate projections. A network can be thought of as an
automaton, coming with a predefined decomposition. One may, of course,
specify a large automaton without giving such a decomposition. It is not
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clear to us how an arbitrary automaton may be decomposed into simpler
automata.

With each component automaton M;, we associate restriction functions
pi from states of the network to states of M;, and o; from events of the
network to events of M;. p; is defined by p;((¢; : 7 € I)) = ¢, and «; is
defined by ;i(a) = a,if a € E;, and a;(a) = € otherwise. Then we can define
the restriction of a computation sequence v = qo23¢; 33 ... of the network
to a component automaton M; by

a;(a) a;(az)
T (7) = pi(q) = pi(@r) =

We can define port history, input port history and output port history
corresponding to computation sequences of networks, just as we did for
computation sequences of single automata.

We note that it is possible, as in [26], to define a residual operation for
the network, induced “componentwise” by the residual operations of the

component automata. Then we can define a preorder 5 corresponding to

this residual operation, and we can talk about the L -maximal computation
sequences.

As in [26], these are exactly the “fair executions”. Intuitively, a com-
putation sequence is fair, if every component automaton can execute an
event, that is not an arrival event, if it tries for a sufficiently long, un-
interrupted interval. Formally, if M is the composition of a compatible
collection {M; : ¢ € I} of automata, then a finite computation v of M is
fair if no event, that is not an arrival event of the network, is enabled in
state cod(y). An infinite computation sequence v is fair if for each ¢ € I,
either there exist infinitely many transitions in v whose actions are events
of M;, that are not arrival events for M;, or else there exist infinitely many
states in v for which no event of M;, that is not an input arrival event of
M;, is enabled.

Lemma 1. Suppose M is the composition of a compatible collection of
automata {M; | ¢ € I}. Then v is a completed computation sequence of M
iff mar,(7) is a completed computation sequence of M;, for all : € I.

Proof : The proof is straightforward, from the definitions of completed
and the concurrency relation for the composition of a compatible collection
of automata. For more discussion on a similar proof, see [18,23].
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3 Traces and Implementability

A computation sequence describes the sequence of states and the sequence
of events, including internal events, that cause the state transitions. We
now abstract away from states and most of the internal events, and only
consider sequences of events on the input, output and internal ports of a
network.

We will refer to single automata as nodes, and to networks of compatible
automata as networks of nodes. Henceforth we will also refer to input ports,
output ports and internal ports as input channels, output channels and
internal channels respectively, unless we specifically wish to talk about the
ends of the channels and the nodes at those ends.

Definition 12. A trace of a node is the restriction of a completed compu-
tation sequence of the automaton to arrival events, input events and output
events.

Definition 13. A trace of a network of nodes is the restriction of a com-
pleted computation sequence of the network to port events. That is, a
trace of a network will contain arrival, input and output events for every
component node in the network.

The following lemma says that reading of data must be preceded by the
arrival of that data.

Lemma 2. Every trace of any node B has the property that the ith input
event on an input channel is preceded by the ith arrival event on that
channel, and, furthermore, the ith arrival event has the same value as the
tth input event.

Proof : Immediate from the definition of a causal port automaton. W

Definition 14. An event is local to a node B if it is either a + or — event
on an input channel of B or a + event on an output channel of B.

Definition 15. Let t be a sequence of events in a network N. The pro-
jection of ¢t on a particular node B in N is the sequence of events obtained
by deleting all events in ¢ other than those local to B.
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The following lemma is very important, as it tells us that the set of traces is
compositional in nature. That is, we obtain the same set of traces, whether
we obtain them directly from the completed computation sequences of the
network, or whether we first obtain traces of subnetworks and then compose
them in an appropriate manner.

Lemma 3. A trace of a network IV is a sequence t of events such that for
each node B in N the projection of ¢t onto B is a trace of B.

Proof : (=) Suppose t is a trace of network N, and it is the restriction of
a completed computation sequence 4 to port events. Then the projection
of t onto B is exactly the projection of 7g(v), the restriction of 4 to the
automaton B, onto B. By lemma 1, mg(v) is a completed computation
sequence of B, and therefore its restriction to B is a trace of B, by definition.

(<) Suppose that for each node B in N, the projection of ¢t onto B
is a trace of B. Corresponding to each such trace, there is a completed
computation sequence for that node. We dovetail among them, preserving
the order of events in ¢, to obtain a computation sequence v of N, such that
the restriction of 4 to any node B is completed, and hence 7 is completed
by lemma 1. B

We now make precise what we mean by “implementing” a primitive. We
first define the input-output relation or IO-relation of a node or a network.

Definition 16. The input-output relation of a node or a network of
nodes is the set of all pairs (H!", H%“) with ¢ being a completed computa-
tion sequence of the automaton, H:" is the input port history corresponding
to o, and H2* is the output port history corresponding to o.

We note here that internal events of an automaton are not represented in
an input-output relation.

Definition 17. Let R be a binary relation between n-tuples of streams and
m-tuples of streams. A set S of nodes is said to implement R if, using
any finite number of copies of nodes in S, we can build a network with n
input channels and m output channels with R as its IO-relation.

It is important to note that we include the empty sequence of values as a
possible stream when we talk about the IO-relation. Thus, for example, if
N has a trace in which no output is produced on any of the output channels
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then we will not consider N to have implemented M unless it is possible
for M to exhibit this behavior as well.

It is possible to have nodes with different sets of traces, but the same J0O-
relation. Brock and Ackerman [6] have such an example, but their example
uses a powerful primitive, fair merge. There are other examples using only
finite indeterminacy [30]. Equality of the IO-relation is a very crude notion
of equality but any semantic theory must refine this equality. Thus our
inexpressiveness results apply in any “reasonable” semantic theory. The
notion of network equivalence that we are using is very weak indeed. It is
not even a congruence with respect to network formation [6].

3.1 Activity Sequences and Traces

We would now like the concept of a sequence of events of a node, all of
which are “under the control of” the node. In particular, we would view
arrival events not to be “locally controlled” [18]. The definitions below
makes this precise.

Definition 18. An event of a node is said to be locally controlled, if it
is either an input event or an output event of the node.

Definition 19. An activity sequence of a node is the restriction of a
trace of the node to its locally controlled events.

A couple of useful lemmas follow. Intuitively, the first lemma says that
if we take an activity sequence, and add an arrival event before every input
event, and maybe add extra arrival events, then the resulting sequence of
events is a trace. The second lemma says that if we take a trace, and
rearrange some of the arrival events, but maintaining the fact that every
input event has its corresponding arrival event preceding it, then the new
sequence is a trace. Intuitively the arrival events could occur any time
before their corresponding read events.

Lemma 4. Iftis an infinite activity sequence of a node, and ¢ is a sequence
of events, such that ¢ is the restriction of ¢ to locally controlled events, and
further, II, _(¢") is a prefix of II, 4 (") for every prefix ¢ of #' and every
port p, then ¢’ is a trace of the node.
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Proof : We need to construct a completed computation sequence of the
node such that the corresponding trace is t’. Let s,

qoil')qlg RN

be the completed computation sequence, such that ¢ is obtained from the
trace corresponding to s. We note that the assumption, IT, _(t") is a prefix
of I, 4 (t") for every prefix ¢ of ¢ and every port p, ensures that all arrival
events precede the corresponding input events. We consider the computa-
tion sequence s obtained by “pushing forward” all the arrival events, not
in ¢/, to the end of s, and thus deleting them. Then this new sequence s,
qéiq{g e

is a computation sequence. If this sequence is not completed, then there
exists an integer : > 0 and an event e that is not an arrival event, is enabled
in ¢/_; and commutes with every event in s’ from the ith event a} onwards.
Since the eventsin s’ are all the events in s with some arrival events deleted,
there is a 7 > 17, such that the sequence of events in s from the jth event
onward consists of the events in s from the ith event onward, together
with some arrival events. By monotonicity, e commutes with every input
event. And since e commutes with every event in s’ from the ith event
onward, e commutes with every event in s from the jth event onward. By
the monotonicity property, since e is enabled in the state ¢/_,, it is also
enabled in ¢;_;. This, together with the previous statement, contradicts
the assumption that s is completed. It is now easy to see that by pushing
arrival events forward or backward, we can get a computation sequence,
the trace corresponding to which is t’. il

Lemma 5. Iftis a trace of a node, and ¢’ is a sequence of events, containing
exactly all the events in ¢, and such that the restrictions of ¢ and # to locally
controlled events are the same, and further, II,, _(¢”) is a prefix of I, , (¢")
for every prefix t” of ¢’ and every port p, then # is a trace of the node.

Proof : Let s be the completed computation sequence to which the trace
t corresponds. The conditions of the lemma imply that for every input
event in ¢/, the corresponding arrival event in ¢’ precedes it. So we can push
arrival events forward and back to get a completed computation sequence,
such that the corresponding trace is ¢'. |l
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3.2 Sequential Automata

In all our discussions on implementability, we assume that we have a certain
base set of automata or nodes that we can use in any implementation.
These are simply the abstractions of normal sequential programs, and we
call these sequential automata. It is known that these compute sequential
functions, as defined by Berry and Curien [16]. We will prove and use some
properties of sequential automata in a crucial way in our proofs.

Definition 20. An automaton is said to be sequential, if for every state
of the automaton, there is at most one event enabled, that is not an arrival
event.

We will henceforth refer to this property of automata as sequentiality. We
note here that arrival of input is always enabled.

Example 3. Parallel OR : This process has two input channels and one
output channel. It computes the following function POR : POR(true,<>)
= POR(<>,true) = POR(true,true) = true, POR(false false) = false, and
POR(<>,<>) = POR(<>,false) = POR(false,<>) = <>, where <> rep-
resents the empty sequence, and true and false are two data values. This
process outputs true if it gets a true on either of its input channels. It out-
puts false if it gets a false on both of its input channels. If we suppose that
there is a sequential automaton for this function, then by the definition of
sequentiality, the first locally controlled event can either be a read from the
first input channel or a read from the second input channel, but not both.
For either case, an arrival of a true on the other input channel is enough to
show that this automaton does not compute the parallel OR function.

Lemma 6. A sequential node has the following properties :

(1) If t and ¢’ are two distinct activity sequences of the node, then either
one is a prefix of the other or at the point where they first differ they
each have an input event on the same input channel.

(ii) for any sequence of arrival events on input channels, there is a unique
activity sequence.
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Proof: (i) Let u and u’ be two sequences obtained from ¢ and #' by putting
an arrival event of the same value before every input event in ¢ and #'. Then,
by lemma 4, u and ' are traces. Let s and s’ be the completed computation
sequences corresponding to these traces, and let us assume that every arrival
event immediately precedes the corresponding input event, because we can
always ensure this by pushbacks and pushforwards of input events. By the
sequentiality of the node, there is no state in which there are two non arrival
events enabled. Therefore s and s’ must first differ at a state ¢; where the
next events in s and s’ are both arrival events. If these are both arrival
events on the same input channel, then the corresponding input events are
different, and so the two activity sequences first differ at input events on
the same input channel. Otherwise,
ait1 ait2 @41, Gig2 ,
i = gi+1 — gi+2 and ¢ = gy = Giyy
where a;;; and a},_; are arrival events on different input channels, and
ai+2 and a},, are the corresponding input events. Since arrival events on
different input channels commute, by monotonicity, there is a state g, such
that ’
gipr H'q and gfy, "' g
and both a;;, and a! , are enabled in ¢ by monotonicity. This violates
sequentiality, because now there are two non arrival events enabled in a
state.

(ii) If there are two distinct activity sequences, then, by (i), they first
differ at a point where each has an input event on the same input channel.
But this is not possible, because both activity sequences correspond to the
same sequence of arrival events.

We will need to reason about sequences of events, and we sometimes
require a continuity property for this. Under certain conditions, this prop-
erty is preserved by network composition. Here we define the property, and
prove that all sequential nodes have this property.

Definition 21. A set of sequences, ¥, is said to be prefix continuous if
for an arbitrary infinite sequence t, if every finite prefix of ¢ is a prefix of
some member of X, then ¢ is a member of X.

Definition 22. A node is said to be prefix continuous if its set of activity
sequences is prefix continuous.
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Lemma 7. Sequential nodes are prefix continuous.

Proof : Let ¢ be an infinite sequence of events, such that every finite prefix
of ¢ is a prefix of an activity sequence. Let ¢ be an infinite sequence of
events obtained by putting an arrival event of the same value immediately
before every input event in ¢. Then we note that every prefix of ¢’ is a
prefix of a trace, using lemma 4, coupled with the fact that every finite
prefix of ¢ is a prefix of an activity sequence that we can “fill in” in the
above manner. Let s1,s;... be the computation sequences corresponding
to these traces, extending the prefixes of ¢’. We assume that in each of these
computation sequences, every arrival event immediately precedes the cor-
responding input event, because we can always ensure this by pushforwards
and pushbacks.

Let u; be the smallest prefix of s; containing all the first ¢ events of ¢'.
Then we claim that u; is a prefix of u;4; for every ¢ > 0. If not, suppose
u; and u;y, first differ at some state, from which the next events in u; and
u;41 are different. They cannot first differ at some event in t’. And these
next events cannot both be non arrival events, because this would violate
sequentiality. So one of the events must be an arrival event, and the other
must be an internal event. But then the event following the arrival event
in s; is an input event, and the internal event must be enabled in the same
state as the input event, by monotonicity, thus violating sequentiality.

Then the limit s’ of the sequences uy,us ... is a computation sequence.
By sequentiality, it follows that there is no event that is continuously en-
abled from some point on and does not happen — if there was some con-
tinuously enabled event, then since ¢ is infinite, there would be some state
in which two non arrival events are enabled, violating sequentiality. So the
computation sequence is completed, and therefore ¢ is a trace and ¢ is an
activity sequence. i

3.3 Choice Automata

The choice nodes described in the introduction may be easily defined for-
mally. Essentially, arrival events are always enabled, and internal events
trigger the output behaviour. All we will say here is that once an input
event is executed, the corresponding output event must be executed be-
fore the next input event. This is to ensure that unfair choice is prefix
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continuous.

We note that weakly fair choice is not prefix continuous. Let a(v) rep-
resent the arrival of value v on the input channel. Let i:(v) represent the
corresponding input event — the value v getting read. Let o;(v) and oy(v)
represent the output events for outputting value v on the first and second
output channel respectively. Then (v1), 01(v1), 2(v2), 01(v2),%(v3), 01(v3) . ..
is a sequence of events such that every prefix is a prefix of an activity
sequence, but the whole sequence is certainly not an activity sequence, be-
cause there are infinitely many output events on the first output channel
and no output events on the second output channel — this is not possible
by the definition of weakly fair choice.

4 Scheduling

In this section we examine certain general properties of sets of traces. One
important point is that when one combines two networks, without making
any interconnections, we must ensure that the traces of the composite sys-
tem contain events from each of the subnetworks. To this end we define a
certain notion of “scheduled” trace. We then show that every trace has an
observably equivalent scheduled trace. Intuitively, a trace is scheduled if
every node is guaranteed to make progress in a bounded number of steps.
This means that in all such traces, if an event is “enabled” at some point,
then the event occurs in the trace within a bounded amount of time. We
show that the set of scheduled traces is prefix continuous.

We begin with a lemma that pinpoints the problem that arises if we do
not worry about scheduling.

Lemma 8. The set of traces of a network composed of sequential processes
1s not necessarily prefix continuous.

Proof: Consider a network with two disjoint subnetworks. Consider a
prefix of a trace of the network such that one of the subnetworks, say the
first, has an enabled event. It is possible to have a sequence of prefixes of
traces in which only the second subnetwork makes progress. Since there
are no assumptions on the relative speeds of processes, these are possible
prefixes of traces of the entire network. The limit of this sequence is an
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infinite sequence in which only the second subnetwork makes any progress;
this is not a trace of the entire network. il

We now develop the machinery needed to avoid this problem. We denote
the ith element in sequence ¢ by ¢[i]. We write ¢[1..m] to stand for the prefix
consisting of the first m events of t. We sometimes refer to ¢[¢] as the element
at time :.

Definition 23. An incomplete prefix of a trace is a prefix of a trace that
1s not itself a trace.

This means that an incomplete prefix of a trace is finite, and can be ex-
tended to a trace by adding events at its end. An incomplete prefix of a

trace is certainly not S-maximal. A prefix of a trace will be incomplete
because there is some event that is enabled but that has not occurred as
yet. The definition of a scheduled trace ensures that such enabled events
happen “as soon as possible.”

We first describe how to construct a well-founded partial order, that will
represent the “causal” order between events in the trace. We then prove
that every total ordering of this partial order is a trace, and one of these
total orders corresponds to “scheduling” the events of the trace. We first
define a relation <;, and obtain the desired partial order < as its reflexive
transitive closure.

Definition 24. For a trace ¢ of a network N, ¢[i] <, t[j] if

(i) t[¢] and t[;] are both arrival events or both input events or both output
events for the same channel, and ¢ < j.

(i) t[é] is an arrival event and t[j] is the corresponding input event on the
same channel.

(iii) t[¢] and t[;] are locally controlled events for some node P in the net-
work, and ¢ < j.

Definition 25. < = (<;)*

We are not claiming here that we get exactly the causality relation between
the events of a trace, but we do get a refinement of it, and this is sufficient
for our purposes.
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Lemma 9. < is a well-founded partial order.

Proof : First, we prove that t[i] <; t[j] implies that 7 < j. If ¢[i] <, t[j]
by cases (i) or (iii), then i < j by definition. If t[s] <, ¢[j] by case (ii),
then ¢[i] and t[;] are corresponding kth events on some channel, for some
k > 0. In this case, : < j because, in any trace, the kth arrival event on
any channel precedes the corresponding input event on that channel. Now
it is immediate that <; is well-founded, due to the well-foundedness of the
natural numbers.

< is certainly reflexive and transitive by definition. Now ¢[i] < t[;]
implies that there is a finite chain t[1] = #[1;] <; t[i2] <1 ... < tlix] = tly],
with possibly k¥ = 1. Now, if ¢[i] < t[5] and ¢[j] < t[¢], then if ¢ # j, then
t < J, and so j £ 1, contradicting ¢[j] < ¢[¢]. Therefore i = j, proving
antisymmetry.

Well-foundedness follows from the fact that an infinite descending -
chain would imply an infinite descending chain of natural numbers, which
is impossible. W

We shall sometimes denote the partial order < associated with trace ¢
by <;.

Lemma 10. Iftis a trace of a finite network of sequential and choice nodes,
then any total ordering of the partial order of ¢ is a trace of the network.

Proof : Let ¢’ be the trace to which the partial order < corresponds.
Let tp and tp be the projections of ¢ and ¢ respectively onto node P.
Then, t} is a node trace, because t' is a trace. We note that, for any node
P in the network, the locally controlled events for that node are totally
ordered. Therefore, the restriction of ¢p and the restriction of ) to the
locally controlled events of P are the same. Moreover, for every input event
in tp, the corresponding arrival event precedes it, because this precedence
holds in ¢/, and so in the partial order. Therefore, it immediately follows by
lemma 5, that tp is a node trace. Therefore the projection of t onto every
node is a node trace, and therefore, ¢ is a network trace. il

To schedule a trace, we dovetail among the sequences of arrival events,
read events and output events at the various channels of the network, mak-
ing sure at each step, that when an event is considered to be the next
event in the new trace, then all its predecessors in the partial order have
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already been considered. Corresponding to each input channel and each in-
ternal channel, there is a sequence of arrival events and a sequence of read
events associated with it. Corresponding to each output channel, there is
a sequence of output events associated with it. Each such sequence is asso-
ciated with an end of a channel, or a port. Note that there are two ports
associated with an input channel, one port is associated with the end of
the input channel at the node. The other port can be thought of as being
associated with the “other end” of the input channel, where an “external
agent” outputs values onto the channel.

Definition 26. Let N be a network with m ports. A scheduled trace,
t, of N is one that satisfies the following property. Suppose that t[1..n]
projected onto a particular node, say A, is an incomplete trace of A, then
there will be an event local to A, and not an input + event to A, by time
n+m.

Note that if every prefix of a trace is scheduled then the entire trace is
scheduled.

Definition 27. A port order of a finite network with m ports is defined
to be a total ordering po, p1, p2, - - - Pm—1 of the m ports of the network.

Definition 28. For any finite network with m ports, and any port order
o, the scheduling operation Sg is defined as follows : Let < be the
partial order of a trace t. Then So(t) is a total ordering of the events of ¢,
such that the following holds. So(t)[1] is an event on the first of the ports
D0, P1, P2, - - - Pm—1 such that it has no predecessor in the partial order. This
is guaranteed by well-foundedness. If So(t)[:] is an event corresponding to
port k, then So(¢)[¢+1] is an event on the first of the ports k+1modm,...k
such that each of its <-predecessors is in So(t)[1..1].

Lemma 11. Iftis a trace of a finite network of sequential nodes and choice
nodes with m ports, then So(t), for any port order o, is a scheduled trace
of the network.

Proof : So(t)is a total ordering of the partial order of the trace t. Hence,
by lemma 10, it is a trace of the network.

Suppose the projection s of So(t)[1..1] onto a node A in the network is
an incomplete trace of A. Then there is a next input — event or output +
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event for A, in So(t). If this event is an input — event then the input —
event must be in So(t) by time ¢ +m by the definition of So. Otherwise the
event is an output + event with all its <-predecessors in So(t)[1..7], and,
by the definition of So, it must be in So(t) by time 7 + m. W

Definition 29. Let < be a partial order. An infinite sequence f; < 32 < ...
is said to be eventually increasing if it is non-decreasing and there is no
i, such that 8; = ;41 =....

Lemma 12. For any finite network of prefix continuous nodes, the set of
all scheduled traces is prefix continuous.

Proof : Suppose N is any network of prefix continuous nodes. Suppose
that 7 is an infinite sequence with every prefix being a prefix of a scheduled
trace. Suppose that 7 is not a trace of the network. Then the projection of
7 onto the channels of some node A of the network is not a node trace. Let
a; be the projection of the prefix 7[1- 7] of 7 onto the channels of the node
A. Then each q; is a prefix of a node trace, and the limit of the ¢;’s is the
projection of 7 onto the channels of node A. Further, let 3; be the activity
sequence corresponding to «;, i.e. all events of «; except the arrival events.

Case 1 : The B;’s form an eventually increasing sequence. Then, by
prefix continuity, the limit of the f3;’s is an infinite activity sequence of
the node. Then, using lemma 4, the limit of the ;’s is a node trace,
contradicting the assumption.

Case 2 : for some ¢, for all j > ¢, 3; = ;. Since, by assumption, the
projection of 7 onto the channels of the node A does not form a node trace,
some a; for j > ¢ is an incomplete prefix of a node trace. Then, by the
definition of scheduled trace, since 7[1..j + m] is a prefix of a scheduled
trace, Bj4m extends §;. This contradicts the assumption that 8; = §; for
all j > 1.

Thus 7 is a trace of the network, and hence is scheduled, as every prefix
of 7 is a prefix of a scheduled trace. Therefore the set of scheduled traces
is prefix continuous. |

5 Nonexpressibility of Fair Choice

The proofs of our first two theorems are based on the branching structure
of tree representations of traces. The first theorem states that choice with
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signal cannot implement weakly fair choice. One might be tempted to think
that this amounts to an easy proof that discontinuous primitives cannot be
implemented by continuous components. Unfortunately the set of all traces
of a network composed of prefix continuous nodes is not prefix continuous.
We can, however, construct a tree such that every path in it represents a
scheduled trace of the network. A continuity argument can be applied to
the set of scheduled traces.

Our main theorem states that there is no network consisting of finitely
branching prefix continuous nodes and WCS nodes that implements SFC.
This of course does not follow directly from continuity arguments, because
WCS does not satisfy our continuity property. We consider a network that
supposedly implements SFC. We express the set of scheduled traces of the
network as the union of a countable family of trace sets. We show that
the traces in each member of the family is prefix continuous. We build
a tree representation of the traces in each family. We quotient the tree
by contracting all edges that do not correspond to an output event on an
output channel. Each quotiented tree is finitely branching. Finally we
diagonalize to exhibit a possible output sequence of strong choice that is
not produced by any trace of the network.

First we establish the required definitions and lemmas.

Definition 30. If C is a set of traces of a network, then T(C) is the tree
whose nodes are finite prefixes of traces in C and such that prefix s’ is a
child of prefix s just in case s’ can be derived from s by adjoining a single
event onto the end of s. We assume that each edge is labeled with the last
event of the prefix of the descendant node.

We note that the set of sequences corresponding to the paths in the tree
from the root is not necessarily equal to the set of traces C. All that can
be said is that, for every sequence corresponding to a path in the tree from
the root, every prefix of this sequence is a prefix of a trace in C.

Definition 31. A node P is said to be finitely branching if for any se-
quence of events ¢t that is an incomplete prefix of a node trace for P, there
are only finitely many locally controlled events that can be the next event
after the sequence of events ¢ in any node trace of P.

Note that there are clearly infinitely many arrival events that can be the
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next event after the sequence of events . The definition restricts the number
of locally controlled events that can be the next event.

We note that all sequential primitives are finitely branching. Moreover,
all our choice primitives are also finitely branching.

Lemma 13. If NV is a network of finitely branching nodes then the tree of
traces of NV for a fixed input is finitely branching.

Proof : Suppose s is a prefix of a trace. Then the next event of the trace
could be an input event on any of the finitely many input channels, or,
an event corresponding to some node in the network. There are finitely
many of these too, because there are finitely many nodes, and each node is
finitely branching. Therefore, s has only finitely many children in the tree
of traces of N for a fixed input at the input channels. So every vertex in
the tree has finitely many children, i.e. the tree is finitely branching. il
The following theorem follows easily from Kcenig’s Lemma.

Theorem 1. No network of finitely branching, prefix continuous nodes,
including CS, can implement weakly fair choice.

Proof : Suppose there is a finite network of finitely branching, prefix-
continuous nodes, implementing WFC. Then the network has one input
channel and two output channels, corresponding to those for a WFC node.
We fix the input stream to be 1,2,3.... Then the first output channel c,
say, of the network is guaranteed to have at least one value output on it.
This value can be any positive integer.

Let S be the set of scheduled traces with respect to a port order. Ev-
ery trace has a scheduling with respect to any port order. Therefore, for
every possible output sequence of the network onto channel c, there is a
scheduled trace in S which outputs that sequence on c¢. We consider the
tree T'(S), and we prune every path at the first output event on that path
onto channel ¢. By lemma 12, every path in the tree is a network trace,
and so has an output event on c¢. Moreover, by lemma 13, T(S) is finitely
branching. Therefore the pruned tree is a finitely branching tree with no
infinite paths. By Kcenig’s lemma, the tree is finite. So there are finitely
many leaves, i.e. finitely many possibilities for the first output event on
channel c¢. This means that the network does not implement weakly fair
choice — contradiction. ll
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The next theorem shows that strongly fair choice cannot be produced
from a weakly fair choice even with a signal. The proof requires a diagonal-
ization argument; cardinality or Kcenig’s lemma arguments by themselves
do not seem sufficient.

Theorem 2. No network of finitely branching, prefix continuous nodes and
WCS nodes can implement SFC.

In order to prove this theorem we need several definitions and lemmas.
We make explicit the fact that WFC embodies a countable choice. First
we give a definition for events that lead upto this countable choice.

Definition 32. Let N be any network and let ¢ be any sequence of events
in that network. 2 is said to be a choice initiation time for t if there is
a weak choice or weak signal choice node n in N and a non-signal output
channel ¢ of n such that t[¢] is either

1. the first output event on c in ¢, or,

2. there is no output event on channel ¢ prior to time 7 in ¢, and #[¢] is
a + event on the input channel of n.

Such a t[¢] is called an initiation event.

Definition 33. Let s be a finite sequence of events on a network N. An
initiation-free extension of s is a sequence ¢ such that s is a prefix of ¢
and such that all initiation events in ¢ occur in the initial sequence s.

The next lemma follows from the definition of weak fair choice.

Lemma 14. For any trace ¢ of a network, there exists some finite prefix s
of t such that ¢ is an initiation-free extension of s.

Proof : We show that each weak choice or weak signal choice node in
the network has a last choice initiation time.

Let ' be the projection of ¢ onto the channels of a weak choice or weak
signal choice node.
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(i) there are output events on both the output channels (both the non-
signal output channels in the case of a weak signal choice node). In
that case, the first output event on the first output channel is the
mth event, say, in ¢, and the first output event on the second output
channel is the m’th event, say, in t. Then the last choice initiation
time for this node is max(m,m’).

(ii) there are no output events on one of the output channels. Then there
must be only finitely many input + events in #/. Let the last of these
be the mth event in ¢. Also let the first output event on the other
output channel be the m'’th event in ¢. Then the last choice initiation
time for this node is max(m,m’).

Since there are finitely many weak choice and weak signal choice nodes, if ¢
is the maximum of their last choice initiation times, then ¢ is an initiation-
free extension of t[1],...¢[:]. B

Definition 34. Let NV be a network and s a finite sequence. We define C,
to be the set of all scheduled traces of the network, that are initiation-free
extensions of s.

Lemma 15. For any finite network NNV, there are countably many sets of
the form C,, for s any finite sequence of events of the network.

Proof : Each event is a triple, and there are countably many of these,
assuming that there are countably many values that may be transmitted
on a channel. Therefore, there are countably many finite sequences of
events, and so there are countably many sets of the form C,. |

Note that even though every member of C, is an initiation-free extension
of s, every path in T(C,) is not necessarily a member of C,, and so not
necessarily an initiation-free extension of s. So the following lemma, is
required.

Lemma 16. For any finite network NV, and any sequence of events s of the
network, any path in T(C,) is an initiation-free extension of s.

Proof : Let t be a sequence such that every prefix of ¢ is a prefix of some
member of C,. Since every trace in C, starts with the prefix s, ¢t must also
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start with the prefix s. It follows from the definition of an initiation time
that if ¢ is an initiation time in ¢, and a trace t’ is identical to ¢ up to and
including the ith event, then the ith event is also an initiation event in the
trace t’. Hence this ¢th event is in s. Since every prefix of ¢ is a prefix of
some trace t’ in C,, t cannot contain any initiation-events other than events
in the prefix s. i

Lemma 17. For any network N of prefix continuous nodes, weak choice
nodes, and weak signal choice nodes, and for any finite sequence of events
s, C, 1s prefix continuous.

Proof : Let 7 be a sequence such that every prefix of 7 is a prefix of some
member of C,. By lemma 16, 7 is an initiation-free extension of s. We must
show that 7 is a network trace.

Suppose that 7 is not a network trace. Then the projection of 7 onto
the channels of some node A of the network is not a node trace. We will
proceed as in lemma 12. Let o; be the projection of the prefix 7[1..i] of 7
onto the channels of the node A. Then each q; is a prefix of a node trace,
and the limit of the «;’s is the projection of 7 onto the channels of node A.
Further, let 3; be the activity sequence corresponding to «;, i.e. all events
of a; except the arrival events.

Case 1 : The B;’s form an eventually increasing sequence. Then, if the
node A is not a weak choice or a weak signal choice node, then, by prefix
continuity, the limit of the f,’s is an infinite activity sequence of the node.
Then, using lemma 4, the limit of the a;’s is a node trace, contradicting
the assumption.

If the node A is a weak choice or a weak signal choice node, then the limit
of the §;’s is an infinite sequence, containing infinitely many input events
and infinitely many output events. Since this is not an activity sequence
of the node, it must be the case that all the output events are on the same
output channel, contradicting the requirement that there be output events
on both the output channels if the input is infinite. This means that the
projection of 7 onto node A has infinitely many arrival events for A, and
all of these are initiation events for 7. This contradicts the fact that s is
finite, and 7 is an initiation-free extension of s. Therefore this case cannot
happen.

Case 2 : for some i, for all j > i, §; = ;. Since, by assumption, the
projection of 7 onto the channels of the node A does not form a node trace,
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some a; for j > 7 is an incomplete prefix of a node trace. Suppose that
the network has m ports. Then, by the definition of scheduled trace, since
7[1..j+m]is a prefix of a scheduled trace, 8+ extends B;. This contradicts
the assumption that 8; = §; for all j > 1.

Thus 7 is a trace of the network, and hence is scheduled, as every prefix
of 7 is a prefix of a scheduled trace. As noted earlier, by lemma 16, 7 is
also an initiation free extension of s. Therefore 7 is a member of C;, and
so C, is prefix continuous. i

Definition 35. The complement of an increasing infinite sequence S of
positive integers is defined to be the increasing sequence of all those positive
integers that are not in the sequence S.

We now define a quotienting operation on trees that conceals events
that are not output events on a fixed channel.

Definition 36. Let T be a tree in which the edges are labeled events from
a network N. Let ¢ be a channel of N. We define the quotient of T with
respect to c, written T'/c, to be the tree obtained by contracting every edge
in T that is not an output event on c.

Proof of Theorem 2: Suppose there is a network of finitely branch-
ing, prefix continuous nodes and WCS nodes, implementing strong choice.
Then the network has one input channel and two output channels. We
fix the input stream to the network to be 1,2,3,.... Then the first output
channel c, say, of the network has all increasing infinite sequences of pos-
itive integers, whose complements are also increasing infinite sequences of
positive integers, as possibilities.

Since every trace has a scheduled trace that is locally equivalent to it,
every possible output sequence of the network onto channel c is output by
some scheduled trace.

Let S be the set of all scheduled traces of the network. We divide S
into subclasses C,, as defined earlier. We obtain a countable family of trees
T(C,)]c.

We claim that each tree T(C,)/c is finitely branching. Every path in
T(C,) has infinitely many output events on channel ¢, since every path in
the tree is a network trace by lemma 17. Consider any node n of the tree
such that the prefix associated with that node ends in an output event on
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c. These are exactly the nodes that remain after the quotienting. We prune
every path from n at the first output event on channel ¢. Since the tree
T(C,) is finitely branching the pruned tree below n is also finitely branching
and has no infinite paths. By Kcenig’s lemma, the tree is finite. So there
are finitely many leaves. Thus in the quotiented tree, n has finitely many
children corresponding to the finitely many leaves of the above pruned tree.

We name these quotiented trees T7,7T3,.... Each path in any of these
trees must correspond to an infinite increasing sequence of positive integers.
To obtain a contradiction, we construct, by diagonalization, an infinite
increasing sequence of positive integers with infinite complement, that will
be in none of these trees. Since every tree, T}, is finitely branching, every
level of each T; has finitely many vertices. Hence, there is a maximum
positive integer that occurs at that level. Let this maximum positive integer
for the jth level in the ith tree be called M;;. We define s[1], the first
element of the sequence being constructed, to be any positive integer greater
than M, ,, say M;; + 1. Having fixed the elements s[1],s[2],-- -, s[i — 1], we
define s[7] to be any positive integer greater than max{M;;, s[i — 1] + 1}.
This is certainly an infinite increasing sequence. Moreover, between any
two consecutive elements s[¢ — 1] and s[i] of the sequence, there is at least
one positive integer not in the sequence, namely s[i —1]+1. So the sequence
has an infinite complement. But this sequence is not in any of the trees
T:,T,---. This is because, for any 7, the ith element of the sequence is
greater than M;;, and this is the greatest integer at the ith level of T;.

This means that there is an infinite increasing sequence of positive in-
tegers with infinite complement, that is not a possible output sequence at
channel ¢ for the network. Hence the network could not have implemented
strong choice. i

6 Nonexpressibility of Signaling

In this section we explore the nonexpressibility arising from the sequential-
ity of the individual processes. Understanding sequentiality is a fundamen-
tal concern in the semantics of modern programming languages [16,28]. Our
results in this section may be viewed as a first step towards understanding
how sequentiality interacts with indeterminacy. The main theorem states
that one cannot obtain a choice with a signal from an ordinary choice.
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The point is that the signal channel is guaranteed to have as many tokens
output on it as there are inputs. Unfair choice has no output channels on
which a stipulated number of tokens are guaranteed to appear. The only
nodes on which one can guarantee that a certain number of tokens will
appear is a sequential node. In this case, however, the output values are
determined by the input values. We show that this argument extends to
networks composed of choice nodes and sequential nodes. It turns out that
the theorem holds for weakly fair choice as well but not for strongly fair
choice. Thus the result is quite delicate and somewhat counterintuitive.

Definition 37. Suppose that N is a network and c is a channel of N. Let
t be a trace of N. A triple (+,¢,n) is said to occur at time : in trace ¢ if
t[¢] is the nth arrival event or nth input event respectively on channel c.

We may also say (+,c,n) occurs in t if it occurs at some time in ¢t. Note
that a triple is not the same as an event. A triple represents an event in a
trace.

Definition 38. Suppose that N is a network and cis a channel of N. Let R
be a subset of the traces of N. We say that a triple (4, c,n) is guaranteed
in R if it occurs in every trace in R.

Definition 39. Suppose that N is a network and c is a channel of N. Let R
be a subset of the traces of N. We say that a triple (£, c,n) is determined
in R if

Vti,t2 € R. (£,¢,n) occurs at 7 in ¢; and at j in ¢,

We use the following notation. If ¢ is a sequence of events, and c is
a channel of a network, then we define II.(¢) to be the subsequence of ¢
consisting of all the arrival events on channel c. If ¢ is a sequence of events,
and P is a node of a network, then we write IIp(¢) to be the subsequence
of t consisting of the locally controlled events of P.

The following is the central lemma of this section.

Lemma 18. For any network N of sequential nodes and unfair choice
nodes, if R is the set of all network traces with a particular input I, then
every triple (£, ¢,n) that is guaranteed in R is determined in R.
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Proof: The proof proceeds by induction on the earliest occurrence of a
guaranteed triple. Suppose that (+,c,n) occurs at time 1 in a trace t. Then
clearly n = 1. Also c¢ has to be either the output channel of a sequential
node or an input channel of the network. In the first case it is clearly
determined by sequentiality, in the second case it is determined since we
are considering a fixed input.

Suppose that the lemma holds for all triples that have an earliest oc-
currence time less than k in R. Let (—,¢,n) be a guaranteed triple with
earliest occurrence equal to k. Then (+,¢,n) has an earliest occurrence
time < k, hence it is determined, by the induction hypothesis. Therefore,
(—,¢,n) is determined also.

The other case is that a triple (+,¢,n) has an earliest occurrence time
equal to k in R. Suppose that this triple is not determined in R. Then
there are two traces g and h such that II.(¢)[n] # I.(k)[r]. Since they
differ, ¢ cannot be an input channel of the network. Because the triple
(+, ¢, n) is guaranteed, ¢ cannot be the output channel of an unfair choice
node. Thus ¢ must be the output channel of a sequential node A. Without
loss of generality, we can assume g to be the trace in which (+, ¢,n) occurs
at time k. Let the sequence II4(g) be s and the sequence II4(k) be s'.
They differ and, since A is sequential, by lemma 6, they must first differ at
the same triple (—,d, m) where d must be an input channel of A. Clearly
(—,d, m) has an earliest occurrence time less than k& since it occurs before
(+,¢,n) in g. If (—,d, m) is guaranteed then, by the induction hypothesis, it
must be determined, which is a contradiction. The remaining possibility is
that (—,d,m) is not guaranteed. Consider the first non-guaranteed triple,
(£, p,1) that occurs in s. We know that such a triple exists in s since
(—,d, m) is a non-guaranteed triple that does occur in s. Since the triple
(£,p,1) is not guaranteed, there is another trace, r, in which there are
exactly /—1 events on channel p and IT 4(r) agrees with s upto the occurrence
of (+,p,!) in s. Since A is sequential, there are no more locally controlled
events of A in . Thus the triple (+, ¢, n) does not have an occurrence in r,
which is also a contradiction. Thus (+,¢,n) must be determined. B

Theorem 3. No finite network of sequential nodes and unfair choice nodes
can implement choice with signal.

Proof : Suppose there is a finite network N showing this implementation.
Let ¢ be the signal output channel in this implementation. Let the input
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stream to the network be a single element, and suppose R is the set of
network traces with this particular input. Then at least one event is guar-
anteed on channel ¢ in every trace in R. Moreover, it is the case that this
first event on channel ¢ could be (c,0,+) or (c,1,+). This contradicts the
earlier lemma. il

The following theorem is the extension to the case where we allow weakly
fair choice instead of unfair choice.

Theorem 4. No finite network of sequential nodes and weakly fair choice
nodes can implement choice with signal.

In order to prove this theorem, we need several definitions and lemmas.

Definition 40. Let N be a finite network and s a finite sequence of events.
We define C, ; to be the set of all traces of the network for a particular
input I, that are initiation-free extensions of s.

Lemma 19. For any network N of sequential nodes and weakly fair choice
nodes, then every triple (£, c,n) that is guaranteed in C} ; is determined in

I}
s,

Proof : The proof proceeds exactly as in lemma 18, except for the fol-
lowing case. (+,c,n) has an earliest occurrence time equal to k in C.,
and all triples with earliest occurrence times less than k are guaranteed
by the induction hypothesis. Suppose that this triple is not determined in
.1- Then there are two traces g and h such that II.(¢)[n] # H.(h)[n]. We
consider the case where c is an output channel of a weakly fair choice node.
In that case, n = 1, because only one event is guaranteed on an output
channel of a weakly fair choice node. Therefore this is an initiation event,
and so must be in s. Hence g and A cannot disagree on (+,c,n) because
both g and h have the same prefix s, and this contradicts the supposition
that the triple is not determined.
The rest of the cases are exactly as in lemma 18. li
Proof of theorem 4 :  Suppose there is a finite network that is
supposed to implement WCS. Let ¢ be the signal output channel in N. Let
the input stream to N be some infinite stream I. This guarantees that the
output stream on c is infinite for every network trace.
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Every network trace is in some class C; ;, as in lemma 14. Moreover,
every trace in C;; has the same output on channel c. This is because,
since the input I is infinite, there are infinitely many events guaranteed on
channel ¢, and by lemma 19, they are all determined.

As in lemma 15, there are countably many such classes C; ;, and so for
the input I, there are at most countably many different outputs on channel
c. But, by the definition of a signal-choice node, for an infinite input, there
are uncountably many output stream possibilities for the signal output
channel. This means that the network N does not implement a signal-
choice, which contradicts the assumption that it does. il

7 Implementability Results

The main expressiveness results in this paper refer to non-implementability,
using a weak notion of implementation. In this section we establish the pos-
itive implementation results for the primitives that we have introduced. We
do not intend that a great deal of importance be attached to these results,
precisely because we use a relatively weak notion of process equivalence.
We do expect, however, that these implementation results would be true
with a sharper notion of process equivalence. In the present context, the
main point of these results is to establish there are no more negative re-
sults possible; in other words we have completely settled the expressibility
situation for choices and signals.

It is trivial to observe that CS can implement choice, WCS can imple-
ment WFC, and SCS can implement SFC - one just hides the signal output
channel. We will sketch the ideas showing that strong choice can implement
weak choice, and that weak choice can implement choice.

Fact 1. The infinite stream Z* of positive integers in increasing order can
be generated by a simple deterministic sequential process.

Lemma 20. SFC can implement WFC.

Proof : We send Z* into the input channel of a strong choice process.
Then each output stream will be an infinite increasing sequence of positive
integers, by the definition of strong choice. We now use one of these output
streams as an “oracle”. A deterministic Kahn process then uses this oracle
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stream to decide whether either of the output streams of the weak choice
should be finite, and if a stream should be finite, to decide which elements
of the input stream should comprise the finite output stream. W

Lemma 21. WFC can implement choice.

Proof : As in lemma 20, we send Z% into the input channel of a
weak choice process. Then the first element of the first output stream is
an unbounded positive integer. We use a finite number of weak choice
processes to get unbounded positive integers. Using these, a deterministic
Kahn process can then decide if either output stream of the choice should
be empty, in which case the entire input stream should comprise the other
output stream. Otherwise the process just uses a weak choice process to
decide the distribution of input stream elements. i

There are analogous lemmas to prove that SCS can implement WCS,
and that WCS can implement CS.

A surprising result is :

Theorem 5. SFC and SCS are implementation equivalent.

Proof : We trivially observed earlier that SCS can implement strong
choice. To prove that strong choice can implement SCS, we first use a SFC
process, as before, to get an “oracle” i.e. an infinite increasing sequence of
positive integers. A determinate I(ahn process with three output channels
and two input channels can read this sequence and the input stream. The
process puts the :th input stream element on the first output channel if
¢ € oracle stream, and puts the :th input stream element on the second
output channel if z does not belong to the oracle stream. This is decidable
because if 7 does not belong to the oracle stream, an integer > ¢ will be
read from the oracle stream. The process also sends the appropriate signal
0 or 1 onto the third output channel. B

We now state a few corollaries, that, together with the theorems proved,
completely describe the situation between the six choice nodes.

Corollary 1. Choice cannot implement WFC.
Proof : If not, then since CS can implement choice, CS can then implement

WPFC. This contradicts theorem 1. i
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Corollary 2. Choice cannot implement WCS and strong signal-choice.

Proof : If not, then since both WCS and strong signal-choice can imple-
ment CS, choice can then implement CS. This contradicts above corollary.

|
Corollary 3. WFC cannot implement WCS.

Proof : If not, then since WCS can implement CS, weak choice can then
implement CS. This contradicts theorem 2. i

Corollary 4. WFC cannot implement strong choice.

Proof : If not, then since strong choice can implement WCS, weak choice
can then implement WCS. This contradicts above corollary. B

In this paper, we have concentrated on choice primitives, but these came
out of a study of merge primitives, in particular, the study of the power
of “fair merge” [23,26,27]. One of the other merge primitives, proposed
by Park, is called infinity-fair merge. Our interest in this primitive in
the context of this paper is that this merge primitive is implementation
equivalent to strong choice. So a primitive that merges two streams is seen
to be equivalent to a primitive that splits a stream into two streams.

An infinity-fair merge has two input channels and one output channel. If
both the input streams are infinite, then the process outputs every element
of each of the two input streams, that is, the merge is fair. If either of
the two input streams is finite, then the output stream is finite, and either
every element of the first input stream is output, or every element of the
second input stream is output.

Lemma 22. Strong choice is implementation equivalent to infinity-fair merge.

Proof : To prove that strong choice can implement infinity fair merge,
we first use a SFC process, as before, to get an “oracle” i.e. an infinite
increasing sequence of positive integers. A determinate I{ahn process with
three input channels and two output channels can read this sequence and
the input streams. The process makes the ith output stream element, one
from the first input channel if ¢ € oracle stream, and makes the :th output
stream element, one from the second input channel if : does not belong to
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the oracle stream. This is decidable because if 7 does not belong to the
oracle stream, an integer > ¢ will be read from the oracle stream.

To prove that infinity fair merge can implement strong choice, we let
the two input streams of an infinity fair merge be an infinite stream of 0’s
and an infinite stream of 1’s. The output of this infinity fair merge is read
by a deterministic Kahn process that counts the sizes of blocks of 1’s that
appear between blocks of 0’s. If these sizes are a;,as,as. .., then the output
of this process is a;,a; + as,ay +az +as.... |

Similar to weak choice, one could think of weak-j choice processes,
which all behave like a weak choice process, except that for an infinite input
stream, it guarantees ;7 data values on each output channel. We then have
infinitely many processes, weak-j choice, for j = 1,2, .... But the following
lemma says that all these processes are implementation-equivalent.

Lemma 23. Weak choice (or weak-1 choice) is implementation equivalent
to weak-7 choice, for all positive integers j.

Proof : We sketch the implementation both ways here. Given a weak-j
choice process, send Z* onto the input channel. A couple of deterministic
Kahn processes can then each read one element from the two output chan-
nels of the weak-j choice process. At least one data value is ensured on each
output channel for 7 > 1. The processes then ignore the next j —1 elements
on each output, and use the rest of the output streams of the weak-; choice
process to simulate a choice process.

For the other way, use enough weak choice processes (at most 2j needed)
with input streams Z* to get the positions in the input sequence of j — 1
elements on either output. This is possible because from each weak choice
process, we can get an unbounded positive integer, as described in an earlier
lemma. Then use a weak choice process to get the rest of the output. il

8 Conclusion

In this paper we establish new expressiveness results of indeterminate dataflow
primitives. Our work, and other recent results [23,26], shows that there is
a much richer hierarchy of expressiveness properties than had been sus-
pected. Our next two goals are to characterize the class of relations that
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are computed by networks containing various indeterminate primitives and
to develop appropriate semantic theories for such networks.

Recent work by E. W. Stark [33] shows that one can view all the prim-
itives discussed in this paper as exhibiting “internal” nondeterminism. In
other words all the indeterminacy can be taken as arising from internal
choices made by the individual processes. He uses this to characterize the
class of relations computed by such processes. We are looking for a similar
characterization of the relations computed by processes that can signal. We
hope to shed light on the elusive concept of sequentiality [16] in the course
of this study.

Gilles Kahn has developed a very pleasant semantic theory of determi-
nate networks where one can use a simple fixed-point principle to compute
the behaviour of systems. Having a fixed-point principle amounts to be-
ing able to use induction when reasoning about such systems. Given how
complex the purely operational formalisms can be when one deals with in-
determinacy and concurrency, it is important to have semantic principles
that can be used reason about system behaviour. Recently, Rabinovich and
Trakhtenbrot [29] have characterized those networks for which a fixed-point
principle applies. We are seeking to extend the domain of applicability of
such principles. We are using category-theoretic techniques [21,22] and
techniques based on new powerdomains [11] in order to formulate such
principles.
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