Speeding up Dynamic Programming
David Eppstein 2
Zvi Galil 123

Raffaele Giancarlo 124

L Computer Science Department, Columbia University, New York, USA
2 Work supported in part by NSF grants DCR-85-11713 and CCR-86-05353
3 Computer Science Department, Tel-Aviv University, Tel-Aviv, Israel
4 Dipartmento di Informatica, Universita di Salerno, 184100 Italy;
Supported by Italian Ministry of Education, Project “Teoria degli Algoritmi”

Summary: A number of important computational problems
in molecular biology, geology, speech recognition, and other
areas, can be expressed as recurrences which have typically
been solved with dynamic programming. By using more so-
phisticated data structures, and by taking advantage of further
structure from the applications, we speed up the computation
of several of these recurrences by one or two orders of magni-
tude. Our algorithms are simple and practical.

Introduction

Dynamic programming is one of several widely used problem-
solving techniques. In applying the technique, one always seeks
to take advantage of special properties of the problem at hand

to speed up the algorithm. There are very few general tech-
niques for speeding up dynamic programming routines and ad
hoc approaches seem to be characteristic. The only general
technique known to us is due to F. Yao [22]. She considered
the following recurrence relations:

c(i,1) = 0;

(i,) = w(i,) + min {e(i, k — 1) + c(k,§)}, fori < .
i<k<j

(1)

Yao proved that if the weight function w satisfies the quadran-
gle inequality

w(k,j) +w(l, ") <w(l,j)+w(k,j’), forall k <1<j<j,
(2)
then the obvious O(n?) algorithm can be sped up to O(n?).
A corollary of this result is an O(n?) algorithm for computing
optimum binary search trees, an earlier remarkable result of
Knuth [9].
In this paper we consider the problem of computing two
similar recurrences: the one-dimensional case
Elj] = min D] +w(i,j), (3)
and the two-dimensional case
Eli,j)= min D[/, j'+w(+5',i+j). (4)
1<i'<i
1<5'<y

We assume that the values of D are easily computed from
the corresponding values of F; as a simple example (which
turns out not to be interesting for the cases we consider) we
might take D[i] = E[i]. To begin the recurrence we are given
the value of E[1], or in the two-dimensional case E[i, 1] and
E[1,] for all 7 and j.

Two dual cases arise in applications. In the concave case,
the weight function w satisfies the quadrangle inequality above.
In the conver case, the weight function satisfies the inverse
quadrangle inequality. We are more concerned with the con-
vex case, but simple modifications of our algorithms solve the
concave case as well.

The obvious dynamic programs for the two recurrences
above solve them in time O(n?) and O(n?) respectively. By
useing the assumption of convexity, we reduce the times to
O(nlogn) and O(n?log®n). If w satisfies an additional prop-
erty, held by many simple functions such as logarithms and
roots, these times can be further reduced to O(n) and
O(n%lognloglogn).

Despite the similarity, Yao’s result does not seem to ap-
ply in our case. She uses the quadrangle inequality to limit the
possible values of the index k which could achieve the minimum
in recurrence 1. In our case, no such limit seems to apply; in-
stead we use more sophisticated data structures to achieve our
speedup. It should also be noted that our solution of recur-
rence 4 does not follow from that for recurrence 3. However
similar techniques and data structures are used in both cases.
We believe that these techniques and data structures will be
useful in speeding up other dynamic programs.

1

Dimension 1: Sequence Comparison with Gaps

In this section we consider the problem of computing recur-
rence 3. This problem appears as a subproblem in dynamic
programming solutions to various problems. Obviously, it can
be solved in time O(n?), and for a general weight function no
better algorithm is possible.

Two dual cases arise in applications. In the concave case,
the weight function satisfies the quadrangle inequality. In this
case we say that w is concave. In the convex case, the weight
function satisfies the inverse quadrangle inequality, and we say
that w is convex. In both cases we show how to use the assumed
property of w to derive an O(nlogn) algorithm. Even better,
linear-time algorithms are obtained if w satisfies the following,
which we call the closest zero property: for every two integers
I and k, with [< k, and for each real number a, the smallest
value z such that x > k and w(l,z) — w(k,z) —a = 0 can be

found in constant time.

Surprisingly, the two algorithms are also dual in the fol-
lowing sense: Both work in stages. In the j-th stage they
compute F[j], which is viewed as a competition among indices
1,2,...,5 — 1 for the minimum in recurrence 3. They main-
tain a set of candidates which satisfies the property that E[j]
depends only on D[k] + w(k,j) for k’s in the set. Moreover,
each algorithm discards candidates from the set, and discarded
candidates never rejoin the set. To be able to maintain such
a set of candidates efficiently one uses the following dual data
structures: a queue in the concave case and a stack in the con-
vex case. The algorithm for the convex case is sketched below;
more complete details of both cases can be found in [5].

Notice that in the special case that D[j] = E[j] our prob-
lem is the single source shortest path problem for the com-
plete acyclic graph where edge lengths are given by the weight
function w. However, neither the convex nor the concave case
is interesting, since the quadrangle inequality implies the in-
verse triangle inequality and the inverse quadrangle inequal-
ity implies the triangle inequality. Thus in the convex case
E[j] = D[1] + w(1,j) and in the concave case E[j] = D[1] +
w(1,2) +w(2,3)+ - +w(j—1,5).

We use recurrence 3 to compute various versions of the
modified edit distance defined as follows. Given two strings
over alphabet ¥, * = x1- -2, and ¥ = y1---yYn, the edit
distance of x and y is the minimal cost of an edit sequence that
changes x into y. This sequence contains operations deleting
single characters from z, inserting single characters into ¥, and
substituting characters in « for different characters in y. Each
operation has an associated cost, and the cost of a sequence
is the total cost of all its operations. The minimum cost edit
distance can be computed by a well known dynamic program
in time O(mn).

Notice that a sequence of deletes (inserts) corresponds to
a gap in z (y, respectively). In many applications we would
like the cost of such a gap to be nonlinear. In particular the

2

cost of deleting x;41 - - - £, might be taken to be

w(l, k) = f1 (@t @141) + £ (@n, 2041) +9(k =1, (5)

The cost consists of charges for breaking the sequence at z; 41
and x, plus an additional cost that depends on the length
of the gap. If g is convex (or concave), then w will also be
convex (concave). The modified edit distance is defined to be
the minimum cost of an edit sequence which changes = into y,
where the costs of gaps in x are as in equation 5, and similarly
the costs of gaps in y are derived from an analogous weight
function w’.

To compute the modified edit distance, we consider a dy-

namic programming equation of the form

D[Zvj] = mln{D[Z - 1’] - 1] + 5($iyyj)7E[i’j]7F[i7j]}

Eli.j) = _min Dli,k) + w(k j) (©)

F[i, j| = OSIlHSi?_l DL, j] +w'(l,4)
with initial conditions DI[i,0] = w'(0,7) for 1 < ¢ < m and
DJ0, j] = w(0,j) for 1 < j <mn.

The obvious dynamic program to solve this recurrence
takes time O(mn-max(m,n)). Notice that the computation of
DJi, j] reduces to the computation of E[i, j] and F'[i, j], and the
computation of a row of F and of a column of F' are each just
the same as the problem discussed above. So if the weight func-
tions w and w’ satisfy the inverse quadrangle inequality, we ob-
tain an algorithm that computes the matrix D in O(mnlogmn)
time, and even better O(mn) time if the weight functions sat-
isfy the closest zero property.

This dynamic programming scheme arises in the context
of sequence comparison in molecular biology [17], geology [19],
and in speech recognition [14]. In those fields, the most nat-
ural weight functions are convex. In molecular biology, for
instance, the motivation for the use of convex weight functions
is the following. When a DNA sequence evolves into another
by means of the deletion, say, of some contiguous bases, this
should be seen as a single event rather than as the combination
of many separate deletions of smaller regions. Accordingly, the
cost of the contiguous deletion must be less than the total cost
of the smaller deletions. Experimental evidence supports this
theory [4]. In geology and speech recognition, analogous rea-
soning motivates the use of convex weight functions.

For the concave case, good algorithms were already known.
Hirschberg and Larmore [7] assumed a restricted quadrangle in-
equality with k£ <1 < j < j’ in inequality 2 that does not imply
the inverse triangle inequality. They solved the “least weight
subsequence” problem, with D[j] = E[j], in time O(nlogn)
and in some special cases in linear time. They used this result
to derive improved algorithms for several problems. Their main
application is an O(nlogn) algorithm for breaking a paragraph
into lines with a concave penalty function. This problem had
been considered by Knuth and Plass [11] with general penalty

3

functions. The algorithm of Hirschberg and Larmore, like our
algorithm, uses a queue. Surprisingly, our algorithm, which
solves a more general case, is slightly simpler and in many cases
faster, as in our algorithm the queue is sometimes emptied in
a single operation.

Wilber [21] obtained an ingenious O(n) algorithm, also for
the concave case, based on previous work by Aggarwal et al. [1].
His algorithm is recursive and its recursive calls use another
recursive algorithm, so the constant factor in the time bound
is quite large. Wilber claims that his algorithm is superior to
our O(nlogn) one only for n in the thousands.

Miller and Myers [12] independently discovered an algo-
rithm for the convex case which is similar to ours. Their treat-
ment however is considerably more complicated. Klawe [8] has
recently found a different algorithm, again using that of Ag-
garwal et al., which solves the convex case in time O(nlog™ n).
She later improved it even further obtaining an O(na(n)) time
bound (personal communication). As in the case of Wilber’s
algorithm, the constant factors involved are large, so Klawe’s

algorithm is mainly of theoretical interest.

The convex one-dimensional algorithm (sketch)

Let C(k,r) denote D[k]+w(k,r). Given a pair of indices [and
k, with [< k, let h(l, k) be the minimal index h, with k < h <
n, such that C(I,h) < C(k,h); or if no such index exists let
h(l,k) = n+ 1. Then it can be shown that C(l,j") > C(k,j’)
for all j' satisfying k < j' < h, and also that C(l,5") < C(k,j")
for all 5/ satisfying h < j" < n. If w satisfies the closest zero
property, h(l, k) can be computed in constant time. For more
general w we may compute h(l, k) in time O(logn) by using a
binary search, taking advantage of the above inequalities.

The list of candidates is represented in a stack S of pairs
(Ktop, Ptop)s (Ktop—1,Ptop—1), ---, (ko,ho). At stage j of the
computation, the pairs on the stack will form a set of prop-
erly nested intervals around point j. The values of C(k,7)
will be monotonically nondecreasing as we go down the stack.
Thus the pair (Ktop, htop) Will form the narrowest interval, and
k = kiop will have the best value of C'(k,j) among all candi-
dates for j. When we start to compute points past hip, the
candidate from the next pair below the top will have a better
value, and this will remain true throughout the computation,
so we then pop the stack and no longer consider the old ki
as a candidate.

To find the value of E[j] we need only compare C(kiop, j)
with the value from the newly added candidate C(j — 1, 7). If
7 —11is worse, it remains worse for the rest of the computation,
so we need not add it to the candidate list. Otherwise, we
insert 5 — 1 as a new candidate onto the stack, and remove
the candidates that because of this insertion can no longer win
any of the future comparisons. It can be shown that, after
these steps, the stack properties described above will continue
to hold for j 4+ 1, and we can repeat the computation.

Let K (r) and H(r) denote the first and second component
of the rth pair from the bottom in stack S. The bottom pair

4

of the stack is a dummy pair, with H(0) = n + 1; the value of
K (0) will vary with the course of the algorithm. The algorithm
for solving the convex case of recurrence 3 can be written more
formally as follows.
begin
push (1,7 + 1) onto S;
for j — 2 to n do begin

E[j] — C(K(top),J);
else begin
E[j] = C(j —1,5);
while S # () and
C(j —1,H(top) — 1) <
C(K(top), H(top) — 1) do
pop 5
if S=0 then
push (j —1,n+ 1) onto S
else
push (j — 1, h(K (top),j — 1)) onto S
end;
if H(top) =7+ 1 then pop S
end
end

Dimension 2: RNA Secondary Structure

In this section we examine recurrence 4, which for convenience
we repeat here:
E[i,j] = min D[’ j'l +w(i +j',i + j)
1<i’<i
1<j'<j
The recurrence can be solved by a simple dynamic pro-
gram in time O(n*); fairly simple techniques suffice to reduce
this time to O(n?) [20]. In this paper we present a new al-
gorithm, which when w is convex solves recurrence 4 in time
O(n? log? n). For many common choices of w, a more com-
plicated version of the algorithm solves the recurrence in time
O(n%*lognloglogn). Similar techniques can be used to solve
the concave case of recurrence 4. Our algorithms do not follow
from those of the previous section, and are more complicated,
but should still be simple enough for practical application.
The recurrence above has an important application to the
computation of RNA secondary structure [13, 20]. After a
simple change of variables, one can use it to solve the following

recurrence:

Clp,ql= min Glp',¢]+9((0' —p)+(q—4q)) (7)

p<p’<q’'<q

Recurrence 7 has been used to calculate the secondary
structure of RNA, with the assumption that the structure con-
tains no multiple loops [13]. Our algorithm computes this
structure in worst case time O(n?log®n), under the realistic
assumption that the energy function w of a loop is a convex
function of the number of exposed bases in that loop. It is
possible to calculate RNA secondary structure with multiple
loops, but this seems to require time O(n?) for linear energy
functions, or O(n?) for general functions [20].

5

Contention Within a Diagonal

In recurrence 4, we call each of the points (i’,7’) that may
possibly contribute to the value of Eli, j| candidates. We con-
sider the computation of E[i,j] as a contest between candi-
dates; the winner is the point (i, j) with the minimum value
of D[/, j'1+w(i' +j',i+7). If we can find a way of eliminating
many candidates at once, we can use this to reduce the time
of an algorithm for solving recurrence 4.

We say that two points (7, 7) and (¢/,j’) in the matrices D
or E are on the same diagonal when i + j = i’ + j'. By the
length of a diagonal we mean the number of points on it; e.g.
the longest diagonal in the matrix has length n rather than
nv/2. We say that (k, 1) is in the range of (,7) when k > i and
[> j; that is, when point (4, 7) is a candidate for the value of
E[k,]1].

In this section we describe a way of eliminating candidates
within the same diagonal. Using these methods, any given
point (7,7) need only compare the values of candidates from
different diagonals; there will be only one possible choice for
the winning candidate from any given diagonal. In the next
section we describe how to compare candidates from different
diagonals in order to achieve our time bounds.

In what follows we will assume that the region below a
diagonal is a right triangle, having as its hypotenuse the di-
agonal below the given one, and having as its opposite right
angled corner the point (n,n). In fact this region need not be
triangular, but if we pretend that our matrices D and E are at
the bottom right corner of 2n x 2n matrices we can extend the
region to a triangle of the given form (figure 1). This extension
will not change the time bounds of our algorithms.

We denote rectangles by their upper left and lower right

corners; that is, by the rectangle extending from (i, j) to (¢/, 5')
we mean the set of points (z,y) such that i < = < ¢ and
j <y <j'. Therange of a point (i, j) is the rectangle extending
from (i+ 1,7+ 1) to (n,n) (figure 2).
Lemma 1. If (4,j) and (¢/, j') are on the same diagonal, and if
DJi, j] < D[, j'], then for all (k,1) in the range of both points,
Dii,jl +w(i+j,k+1) < D[i',j'| + w(i@' + j',k +1). In other
words, (7', j’) need not be considered as a candidate for those
points in the range of (i, j).

Proof: Immediate from the assumption that ¢ + j = i’ +
J.e

Given a point (7,7) on some diagonal, define the upper
bound of (i, j) to be the point (', j") with i < 4, with D[/, j'] <
DJi, j], and with i’ as large as possible within the other two
constraints. If there is no such point, take the upper bound
to be (n,n). Informally, the upper bound is the closest point
above (7, j) on the diagonal that has a lower value than that at
(,7). Similarly, define the lower bound to be the point (", ;")
with ¢ > 4, with D[:", ;"] < Dl[i,j], and with ¢ as small as
possible, or (n,n) if there is no such point. Note the asymmetry
in the above inequalities—we resolve ties in favor of the point
that is further toward the top right corner of the matrix.

6

Observe that, if we order points (i,j) from a single diag-
onal lexicographically by the pair of values (D[, j],) then the
result is a well-ordering of the points such that, if (i’,5’) is a
bound of (4, j), then (¢’,5) < (4,7) in the well-ordering.

Define the domain of (i,j) to be the rectangular subset
of the range of (i,7), extending from (i + 1,5 + 1) to (", j'),
where (¢/,7') is the upper bound of (i,7) and (i",;") is the

lower bound.

Lemma 2. Each point (7,) of a given diagonal need only be
considered as a candidate for the domain of (4, j). The domains
for all points on the diagonal are disjoint and together cover
the set of all points below the diagonal (figure 3).

Proof: If a point below row 7" is within the range of (3, j),
it is also within the range of (¢, j"), so (4, j) will never win the
competition there. Similarly, if a point in the range of (i, 7)
is after column j’ it will be won by (¢’,5’), or by some other
point that is even better.

For any given two points on the diagonal, either one is a
bound of the other or there is a bound of one of the two points
between the two. Therefore no two domains can overlap. To
see that all points below the diagonal are contained in some
domain, first note that each such point is contained in the range
of some point (4, j). Then the only way it can be removed from
that point’s domain is if it is also contained in the range of
one of the bounds of (i,j). But because of the well-ordering
described above we can not continue this process of taking
bounds of bounds forever; therefore there must be some point
on the diagonal containing the original point in its domain. e

Lemma 3. The domains for each of the points on a diagonal
having m total points can be found in time O(m).

Proof: We process the points (7, j) in order by increasing
values of ¢. We maintain a stack of some of the previously
processed points; for each point in the stack, the point below
it in the stack is that point’s upper bound. Each point that
we have already processed, but that is no longer in the stack,
will already have had its domain computed. No lower bound
has yet been reached for any of the points still on the stack.
Initially the stack contains (n,n), which is a lower bound for
some points on the diagonal but which is itself not on the
diagonal.

To process a point (4, j), we look at the point i’, j’ at the
top of the stack. If (i/,5') # (n,n) and DJi,j] < D[, j'],
then (7,j) is a lower bound for (i’,j"), so we can pop (¢/,j')
from the stack, compute its domain from this lower bound and
the upper bound found at the next position on the stack, and
repeat with the point now at the top of the stack. Otherwise,
(7,7) is not a lower bound for any stacked points, but (i, ;)
can be seen to be an upper bound for (i,), so we push (i,)
on the stack. Finally, when all points have been processed, the
points remaining on the stack have (n,n) as their lower bound,
so we may pop them one at a time and compute their domains
as before.

Each point is pushed once and popped once, so the total

7

time taken by the above algorithm is linear. As we have seen
the processing of each point maintains the required properties
of the stack, so the algorithm correctly computes the upper
and lower bounds, and therefore also the domains. e

We now give a more formal description of the algorithm
described above. We denote the stack by S. Each position p on
the stack consists of three components: V(p), I(p), and J(p).
V(p) is the value of D at the point indexed by I(p) and J(p).
The stack contains a dummy member at its bottom, which is
marked by having a V value of —oco. We use kK = ¢ + j to
denote the number of the diagonal for which we are computing
the domains.

begin
push (—oo, n,n) onto S;
for i <« max(1,k —n —1) to min(k,n — 1) do
begin
j—k—1;
while V (top) > D[i,j] do begin
domain(I(top), J(top)) <
rectangle from
(I(top) + 1, J(top) + 1)
to (i, J(top — 1));
pop S
end;
push (DJi,j],4,7) onto S
end;
while V(top) > —co do begin
domain(I(top), J(top)) «—
rectangle from
(I(top) + 1, J(top) + 1)
to (n, J(top — 1));

pop S
end
end

Convex Weight Functions

In the previous section we described a method for quickly re-
solving the competition among candidates within a single di-
agonal; here we will add to this an algorithm for resolving
competition among candidates from different diagonals. The
competition between diagonals works for any weight function,
but here we require the weight function to be convex. We later
describe similar techniques for solving the recurrence when the
weight function is concave.

We will need for our algorithm a data structure that main-
tains a partition of the sequence of numbers from 1 through n
into intervals. We perform the following operations in the data

structure:
(1) Find which interval contains a given number.

(2) Find which interval follows another given interval in the

sequence.
(3) Join two adjacent intervals into one larger interval.
(4) Split an interval at a given point into two smaller intervals.

Such a data structure may be implemented at a cost of
O(logn) per operation using balanced search trees [2, 10, 15].

8

A different algorithm, due to Peter van Emde Boas [16], imple-
ments these operations at a cost of O(loglogn) per operation.
In general the simple search tree version of the data structure
will be sufficient.

We keep a separate such partition for each row and column
of the matrix of the original problem. Each interval in each
partition will have a pointer to its owner, one of the points (i,)
for which we have already calculated Eli,j]. Any point (i,)
may own either some set of row intervals in the row partitions,
or some set of column intervals in the column partitions; but
no point may own both row and column intervals.

We will maintain as an invariant that, if the owner of the
row interval containing point (4, j) is (i, j,), then (4, j) is in the
range of (i, jr), and Dl[iy, jr] +w(ir + jr, i+ 7) is the minimum
such value among all points (i’,j’) owning rows. Similarly,
the owner (i.,j.) of the column interval containing (i,7) is
the best point among all points owning columns. When we
compute Eli, j]| it will be the case for each point (¢, j’) such
that (i,7) is in the range of (¢, j’), that either (¢/,j") owns
some intervals or else (i, j’) can not be the winning candidate
for (i,7). Therefore we may calculate E[i, j] as the minimum
between Dliy., j,|+w(ir+jr, i+7) and Dlic, je] +w(ic+je, i+7),
which requires only two queries to the interval data structures,
followed by a constant number of arithmetic operations.

It remains to show how to add a point (4, j) to the interval
data structures, after E[i,j] has been computed, so that the
invariants above are maintained. We will add points a diago-
nal at a time. First we use the previously described algorithm
to compute the domains for each point on the diagonal. Each
domain is a rectangle; we cut it into strips, which will be in-
tervals either of rows or columns. We choose whether to cut
the domain into row intervals or column intervals according to
which direction results in the fewer strips (figure 4). Then we
combine each strip with the corresponding row or column par-
tition so that (7, 7) ends up owning the subinterval of the strip
containing exactly those points for which (i, j) is better than
the points previously owning intervals in the partition. First
let us compute a bound on the number of strips formed when

we cut the domains.

Lemma 4. The total number of strips from a single diagonal
is O(nlogn).

Proof: Assume without loss of generality, as in the previ-
ous section, that the region to be cut into domains and then
strips is a triangle, rather than having its corners cut off. The
length of the diagonal of the triangle is at most 2n.

Let T'(m) be the largest number of strips obtainable from
a triangle having m elements on the diagonal. As in the proof
of lemma 3, the point on the diagonal having the least value has
a rectangular domain extending to the corner of the triangle,
leaving two smaller triangular regions to be divided up among
the remaining diagonal points. Let us say the sides of this outer
rectangular domain are ¢ + 1 and j + 1; then ¢ and j are the
diagonal lengths of the smaller triangles, and i+j = m—1. The

9

number of strips formed by this outer domain is the smaller of
i+ 1 and j + 1; without loss of generality we will assume this
to be 7 + 1. Then

T(m)= max T(i)+T(j)+1i+ 1. (8)
1+ij=m—1
(5]

Now assume inductively that T'(k) < cklogk for k < m
and some constant ¢ > 1. Let ¢ and j be the indices giving
the maximum in equation 8; note that ¢ < m/2. By induction,
T(m) = O(mlogm) for all m. But the number of strips for
any diagonal is certainly no more than 7'(2n) = O(nlogn). e

Now if we can add a single strip to our row and column
partition data structures in logarithmic time, the resulting al-
gorithm will take the time bounds claimed in the introduction.
In fact our algorithm may take more than logarithmic time to
add a strip, so we cannot bound the time so easily. The result
of adding a strip will be the creation of at most two intervals
in the partition, so the total number of intervals ever created
is proportional to the number of strips. When we add a strip
to the partition, we may also remove some intervals from the
partition; we will charge the time for this removal to the previ-
ous creation of these intervals. Therefore when we add a strip
to the data structure we will be charged O(logn) time for the
creation of intervals, and another O(logn) for those intervals’
later removal, for a total time of O(logn) per strip.

Before we describe how to perform the insertion of a strip,
we need the following lemma, which is where we use the as-

sumption that w is convex.

Lemma 5. If w is convex, and if all intervals in the partition
of a row (or column) currently belong to points on an earlier
diagonal or the same diagonal as that of point (i,7), then if
(i,7) is better than the the previous owners for any points in
that row (or column) contained within the domain of (i, 7), it
is better in a single interval starting at the lowest numbered
point of the row (or column) in the domain for (4, 7).

Proof: We prove the lemma for rows; the proof for columns
is the same.

We know from lemma 2 that (¢, j) is the best of all points
on the diagonal within its own domain. An alternate way of
stating the lemma is that, if (i, j') comes from an earlier di-
agonal and is better than (¢,), then it continues to be better
for later points in the row. If this holds, we know that (i,) is
worse than the previous owners of all remaining points in the
row, for if it is worse than (4’, j") it is certainly worse than any
points which have already been found to be better than (i’, ;).

Let (i”,7") be the first point in the row for which (4, 5) is
worse than (i, j'); that is,

Dli, jl +w(i+j,i" +j") = DI, j'T + w(@" + 5/, i" + j"). (9)

Then if £ > 1, point (i”,j"” + k) follows (¢”,j") in this row,
and " + j” <i" + j” + k. By assumption ¢’ + j' < i+ j. Then

10

by convexity of w, the inverse quadrangle inequality

w(i+,i" + " + k) —w(i+j,i" + ") >
w(,L/ +j/’1:// _|_j// +k) _w(Z/ +j/,i,/ +j//),
(10)
holds, and adding equations 9 and 10 gives

Dli, jl+w(i+j,i" + " + k) = D', j'T+ w(@ + 51" + " + k),
(11)
which states that (7,) continues to be worse than (i/, ;). e

We are now ready to describe how to insert the strip for
(i,7) into the row (or column) interval partition, once we have
calculated the domain as described in the previous section.
We first look at the first point (¢, j’) of the strip, and find the
interval containing that point. If the interval owner is at least
as good as (i,7) at that point, then (7, j) is never a winner in
this strip, and we are done inserting the strip. Otherwise, we
split the interval containing (¢’, ;') into two intervals, so that
the second of the two starts at (i’,j’). The first interval will
remain with its original owner, and all or part of the second
will eventually become an interval owned by (i, j). But for now
we leave both intervals having the same original owner. It may
be that when we have finished, more than one interval in the
row has the same owner; this is not a problem.

We have found an interval at the start of which (3, j) is bet-
ter than the other points owning intervals in this row. This in-
terval, which we call the candidate interval, is currently owned
by some other point; this owner may be better than (7, j) at the
other end of the candidate interval. We also need to remember
the interval we have already assigned to owner (i,7); for now
this is the empty interval.

We repeat the following steps: First we find the next in-
terval following the candidate interval. If this interval starts
within the domain of (i, 7), and if (7, j) is better than the owner
of this new interval at the first point of the interval, then (i,)
must be better than the owner of the candidate interval for all
of the candidate interval by lemma 5, and because it is better
at the start of the new interval. In this case we merge the can-
didate interval with the interval owned by (i,7), and set the
owner of the merged interval to be again (7, 7). We remember
the following interval as the new candidate interval, and con-
tinue the loop. Otherwise the interval in which (i, j) is best is
contained within the candidate interval, so we halt the loop.

We now know that the interval in which (¢, j) is best stops
somewhere in the candidate interval. The interval needs to be
divided into two parts; the first part will be owned by (¢, 7),
and the second part left to its original owner. We find the
point at which to split the interval by binary search, at each
step comparing the value of D + w for (i,j) with that of the
previous owner of the candidate interval. The points searched
start at the start of the candidate interval and end either at
the end of the interval or the end of the strip, whichever comes
first.

11

At each step of the loop other than the last, an interval is
removed from the partition, and we can charge the costs of that
step to the interval being removed as mentioned earlier. The
costs not charged are a constant number of interval operations,
including the creation of a constant number of new intervals,
for a cost of O(logn), and the binary search to find the split
point, for another O(logn). For many functions w we can
compute the split point directly, without performing a binary
search; if w is such a function we can use the more complicated
data structure of van Emde Boas [16] to achieve a time of
O(loglogn) per strip insertion.

The algorithm as a whole proceeds as follows. For each
diagonal ¢ + j = k, k from 2 to 2n, we perform the following
steps:

(1) Look up the owners of each point (,7) of the diagonal in
the row and column partition data structures, and com-
pute E[i, j] and Dl[i, j].

(2) Compute the domains of the diagonal points.

(3) For each point (i,), cut the domain into strips, either by
rows or by columns depending on which gives fewer strips,
and combine the strips with the appropriate partitions.

Theorem 1. The above algorithm computes the values E|i, j]
of recurrence 4 for convex weight functions in total time
O(n?log®n), or in time O(n?lognloglogn) for simple weight
functions.

Proof: The time taken for each diagonal is as follows.
Step 1 takes at most O(logn) time for each point, for a time
of O(nlogn). Step 2 takes time O(n) as described in the
previous section. Step 3 takes time O(logn) time per strip,
or O(loglogn) per strip for simple w. There are O(nlogn)
strips, so step 3 takes time O(nlog®n) or O(nlognloglogn).
There are O(n) diagonals, so the total time for the algorithm
is O(n?log®n), or O(n?lognloglogn) for simple w.

Concave Weight Functions

The concave case is somewhat more complex than the convex
case. In the convex case, lemma 5 states that, when a strips
is added to the collection of strips from earlier diagonals, it
remains in one piece, and so it is not so difficult to add the strip
to our data structures. Unfortunately the concave equivalent of
lemma 5 is that, if a strip were to be added to the collection of
strips from later diagonals, it would remain in one piece. There
are algorithmic techniques that can reverse the order of strip
insertion to comply with this lemma [3], but they would add
another logarithmic factor to the time used for our algorithm.
Instead we replace the partitions of the convex case with the
following data structure.

We maintain for each row and column of the matrix a
complete binary tree, with the leaves labeled in order from 1
to n. Each vertex in the tree, including the leaves, will contain
the name of a strip in the appropriate row or column. If we are
processing a given diagonal, then every strip named in each tree

12

will begin on or before that diagonal, so the point in the row or
column of the tree that is on the diagonal will be contained in
the ranges of the owners of each strip in the tree. We look up
the winning candidate at point (i, j) of the tree for column j
simply by comparing the owners of each strip at the nodes at
and above leaf ¢ in the corresponding tree. Similarly, we look
up the winning candidate for row j in its tree. Then we choose
the winning candidate at (i, 7) to be the minimum of these two
candidates.

Finally we must describe how to insert new strips into
the data structure so that the above lookup procedure results
in the best candidate being found. When we have a newly
computed strip, we add it to a queue of strips kept at its start
point, and only add it to the tree when the computation of
diagonal values reaches that start point. This maintains the
property that each remaining point in the row or column is
contained in the range of the strip owner.

From this property, and using the assumption of concavity,
we can prove that, given two strips, the portions of the row for
which the values have yet to be computed, in which each of the
two strip owners is better than the other, form two contiguous
intervals in the row. In particular, suppose we have two strips,
the owners of which are contending for the points in the interval
from a to b, and suppose some point x appears in the middle
of this interval. Then at most one of the strips can be better
both for some points in the interval from a to x, and also for
some other points in the interval from x + 1 to b. Further, we
can determine which of the strips this is in constant time by
comparing the values for the two owners at points x and z + 1.

Note that these facts are also true in the convex case,
so the algorithm described here will also work if the weight
function is convex. However in the convex case we can use the
simpler algorithms already described.

We insert a strip into the tree as follows. First we try to
add it at the root of the tree. If there is not already a strip at
that node, we simply insert the new strip there. Otherwise we
compare the new and old strips, and find one of them for which
the interval in which it is better is contained in the interval
corresponding to the left or right subtree under the root. We
call this strip the loser; the other strip is the winner. Then we
leave the winner as the strip pointed to at the root of the tree,
and continue inserting the loser in the appropriate subtree. It
can be seen that if we insert strips in this fashion, the lookup
procedure given earlier will always return the best strip for the
given point.

Theorem 2. The values Eli,j] of recurrence 4 for concave
weight functions can be computed in total time O(n?log®n).
Proof: Each lookup and insertion takes time bounded by
the height of the tree, which is O(logn). Each point will be
looked up once in the tree for its row, and once in the tree for
its column, so the total time taken for lookups is O(n?logn).
Since there will be at most O(n? logn) strips inserted, the total
time taken for insertions is O(n?log?n). And the time taken

13

to compute domains is O(n?) as before. e

Conclusions

We have described simple algorithms that speed up two families
of dynamic programs by one and two orders of magnitude. This
may be the first time that incorporation of data structures into
dynamic programming has yielded such a meaningful speedup.

Our results are a first step in two closely related programs
of study. The first is to speed up more dynamic programs, and
to determine under what conditions these programs may be
sped up. The second is to find efficient algorithms for molecular
biology. Since in this area of application the problems typically
have very large inputs, theoretical improvements can also have
great practical importance. We have identified over a dozen
open problems concerning time and space improvements for
dynamic programming in molecular biology. One example is
reducing the time for the computation of general (multi-loop)
RNA secondary structures, alluded to earlier, which seems to
represent a three dimensional version of the programs solved
in one and two dimensions by the results in this paper.

Another important open problem related to these results
is to reduce the space consumed by our algorithms. In par-
ticular, the minimum edit distance with affine gap costs was
shown by Hirschberg to be computable with only O(n) space,
without sacrificing the O(n?) best known time bound [6]. Un-
fortunately Z. Galil and Y. Rabini have shown that, in our
algorithm for edit sequences with concave or convex gap costs,
there are many cases in which the stacks require Q(n?) space.
Thus, Hirschberg’s techniques are not sufficient to reduce the
space in this case.

It is well known that, when the weight function is linear
(both convex and concave), the two dimensional dynamic pro-
gram given by recurrence 4 may be computed in time O(n?).
We have recently discovered that this time bound may also be
achieved for a different special case of the recurrence, in which
DJi,j] = Eli,j] and the weight function may be either con-
vex or concave. Perhaps this improvement can be extended to
other, more general, cases, and in particular to the computa-
tion of RNA structure.

14

References

1]

Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter
Shor, and Robert Wilber, Geometric Applications of a
Matrix-Searching Algorithm, Algorithmica 2, 1987,
pp- 209-233.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ull-
man, The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

J.L. Bentley and J.B. Saxe, Decomposable Searching Prob-|j
lems I: Static-to-Dynamic Transformation. J. Algorithms
1(4), December 1980, pp. 301-358.

Walter M. Fitch and Temple F. Smith, Optimal Sequence
Alignment, Proc. Nat. Acad. Sci., 1983, pp. 1382-1385.

Zvi Galil and Raffaele Giancarlo, Speeding Up Dynamic
Programming with Applications to Molecular Biology,
Theor. Comput. Sci., to appear.

D.S. Hirschberg, A Linear Space Algorithm for Computing
Maximal Common Subsequences, Comm. ACM 18, 1975,
pp. 341-343.

D.S. Hirschberg and L.L. Larmore, The Least Weight Sub-
sequence Problem, STAM J. Comput. 16, 1987, pp. 628—
638.

Maria M. Klawe, Speeding Up Dynamic Programming,
manuscript.

Donald E. Knuth, Optimum Binary Search Trees, Acta
Informatica 1, 1973, pp. 14-25.

Donald E. Knuth, The Art of Computer Programming,
Volume 3: Sorting and Searching, Addison-Wesley, 1973.

Donald E. Knuth and Michael F. Plass, Breaking Para-
graphs into Lines, Software Practice and Experience 11,
1981, pp. 1119-1184.

Webb Miller and Eugene W. Myers, Sequence Comparison
with Concave Weighting Functions, Bull. Math. Biol., to
appear.

David Sankoff, Joseph B. Kruskal, Sylvie Mainville, and
Robert J. Cedergren, Fast Algorithms to Determine RNA
Secondary Structures Containing Multiple Loops, in

D. Sankoff and J.B. Kruskal, editors, Time Warps, String
Edits, and Macromolecules: The Theory and Practice of
Sequence Comparison, Addison-Wesley, 1983, pp. 93-120.

David Sankoff and Joseph B. Kruskal, editors, Time Warps,|j
String Edits, and Macromolecules: The Theory and Prac-
tice of Sequence Comparison, Addison-Wesley, 1983.

Robert E. Tarjan, Data Structures and Network Algo-
rithms, STAM, 1985.

Peter van Emde Boas, Preserving Order in a Forest in
Less Than Logarithmic Time, Proc. 16th Symp. Found.
Comput. Sci., 1975.

Michael S. Waterman, General Methods of Sequence Com-
parison, Bull. Math. Biol. 46, 1984, pp. 473-501.

Michael S. Waterman and Temple F. Smith, RNA Sec-
ondary Structure: A Complete Mathematical Analysis,
Math. Biosciences 42, 1978, pp. 257—266.

Michael S. Waterman and Temple F. Smith, New Strati-
graphic Correlation Techniques, J. Geol. 88, 1980, pp. 451—
457.

Michael S. Waterman and Temple F. Smith, Rapid Dy-
namic Programming Algorithms for RNA Secondary Struc-Jj
ture, in Advances in Applied Mathematics 7, 1986, pp. 455
464.

15

[21] Robert Wilber, The Concave Least Weight Subsequence
Problem Revisited, J. Algorithms, to appear.

[22] F. Frances Yao, Speed-up in Dynamic Programming, STAM]}
J. Alg. Disc. Methods 3, 1982, pp. 532-540.

16

