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The Weighted Majority Algorithm

Nick LITTLESTONE* AND MANFRED K. WARMUTH®

Department of Computer Science, University of California at Santa Cruz,
Santa Cruz, California 95064

We study the construction of prediction algorithms in a situation in which a
learner faces a sequence of trials, with a prediction to be made in each, and the goal
of the learner is to make few mistakes. We are interested in the case where the
learner has reason to believe that one of some pool of known algorithms will
perform well, but the learner does not know which one. A simple and effective
method, based on weighted voting, is introduced for constructing a compound
algorithm in such a circumstance. We call this method the Weighted Majority
Algorithm. We show that this algorithm is robust in the presence of errors in the
data. We discuss various versions of the Weighted Majority Algorithm and prove
mistake bounds for them that are closely related to the mistake bounds of the best
algorithms of the pool. For example, given a sequence of trials, if there is an
algorithm in the pool .o/ that makes at most m mistakes then the Weighted
Majority Algorithm will make at most c(log |.2/| + m) mistakes on that sequence,
where ¢ is fixed constant. 1994 Academic Press, Inc.

1. INTRODUCTION

We study on-line prediction algorithms that learn according to the
following protocol. Learning proceeds in a sequence of trials. In each trial
the algorithm receives an instance from some fixed domain and is to
produce a binary prediction. At the end of the trial the algorithm receives
a binary label, which can be viewed as the correct prediction for the
instance. We evaluate such algorithms according to how many mistakes
they make [Ang88, BF72, Lit88, Lit 89b]. (A mistake occurs if the
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prediction and the label disagree.) We also briefly discuss the case in which
predictions and labels are chosen from the interval [0, 1].

In this paper' we investigate the situation where we are given a pool of
prediction algorithms that make varying numbers of mistakes. We aim to
design a master algorithm that uses the predictions of the pool to make its
own prediction. Ideally the master algorithm should make not many more
mistakes than the best algorithm of the pool, even though it does not have
any a priori knowledge as to which of the algorithms of the pool make few
mistakes for a given sequence of trials.

The overall protocol proceeds as follows in each trial: The same instance
is fed to all algorithms of the pool. Each algorithm makes a prediction and
these predictions are grouped together to form the instance that is fed to
the master algorithm. The master algorithm then makes its prediction and
receives a label, which it passes to the whole pool. We make no
probabilistic assumptions about the choice of the instances and the labels;
that is, the bounds we prove in this paper on the predictive performance
of various algorithms all hold for a worst case sequence of instances and
labels.

Our goal can be thought of as one of constructing learning algorithms
that learn to take advantage of patterns in the input in order to make few
mistakes. The scheme that we present for combining algorithms is general
in the sense that, whatever types of patterns are handled by algorithms
in the pool, these patterns are handled by the resulting combination of
algorithms. We present two types of results: relative and absolute. The
relative results give the number of mistakes of the master algorithm as a
function of the number of mistakes of the pool members; these results do
not depend on any details about the patterns handled by the algorithms.
To apply the relative results we want to start with a pool of algorithms
that contains one or more members capable of handling whatever input
we face without many mistakes. If this pool is not too big, then the
combination algorithm formed by applying the master algorithm to the
pool will not make many mistakes. If, in addition, all of the algorithms in
the pool are efficient and the pool is sufficiently small then the resulting
algorithm will be computationally efficient.

For the absolute results we make particular assumptions about the input
and look for a pool that will do well under these assumptions. We take a
particular interest in patterns in the information seen by the learner in

" Notable differences of this paper from earlier versions [LW89a, LW89b] inciude more
general derivations of bounds for various versions of the Weighted Majority Algorithm
(Section 5) and the insertion here of some previously omitted proofs (Sections 7 and 8). In
addition, we have modified Algorithm WMI (now called WMI,, Section 4), and we have
included some new results about infinite pools in Section 7. We have also amplified the
discussion of the randomized algorithm WMR (Section 6).
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which labels (usually) depend functionally on the instances. The function
that maps from the instances to the labels is called the targer function. We
say that a trial is consistent with a particular target function f if the label
of the trial is given by the value of f at the instance of the trial. Given a
class of potential target functions (a target class), we are interested in
algorithms that make few mistakes when presented with any sequence of
trials that is consistent with a target function chosen from the class. We
sometimes also put additional structure on target classes, and ask that
algorithms make fewer mistakes for some functions in a class {for example,
functions that we consider simpler) than for others. In this paper we
discuss the construction of such algorithms for various target classes by the
application of master algorithms to pools that have been tailored for the
given target classes.

We also want to be able to handle cases in which the data seen by the
learner are noisy or for some other reason are not quite consistent with any
function in the target class, or even any function at all. The number of
anomalies of a sequence of trials with respect to a given target function is
defined to be the number of trials that are not consistent with the function.
The number of anomalies of a sequence of trials with respect to a given
target class is the least number of anomalies of that sequence with respect
to a member of the class. We are interested in algorithms that are able to
learn target classes in the presence of anomalies, that is, in algorithms that
are able to make few mistakes on any sequence of trials that has few
anomalies with respect to the target class. We will look at the rate of
growth of the number of mistakes with the number of anomalies.

There is a straightforward way to construct a canonical algorithm for
learning any particular finite target class of computable functions. A pool
of algorithms is formed from the functions of the target class. Each function
f of the target class is represented by an algorithm of the pool that
computes f; at each trial the prediction made for an instance x by that pool
member is just f(x) (such an algorithm pays no attention to the labels). We
refer to pools of this type interchangeably as pools of algorithms and as
pools of functions. The Halving Algorithm [Ang88, BF72] (it is given this
name in [Lit887]) can be interpreted as a master algorithm that learns a
target class using such a pool. For each instance, the Halving Algorithm
predicts according to the majority of all consistent functions of the pool.
(A function is consistent if its values agree with the labels on all instances
seen in the previous trials.) Note that the functions that are not consistent
have been eliminated from the decision process. Each time the master
algorithm makes a mistake a majority of the consistent functions are
eliminated. If the sequence of trials is such that there is a consistent
function in the pool F then the Halving Algorithm makes at most log, | F|
mistakes. This type of scheme has been previously studied by Barzdin and
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Freivalds [BF72, BF74], who worked with a variation that applies to
infinite pools of functions.

We would like an algorithm that still functions well in the presence of
anomalies. If the number of anomalies of a sequence of trials with respect
to a pool of functions is non-zero, the Halving Algorithm eventually
eliminates all functions of the pool, and there are no functions left to base
the future predictions on. The new master algorithm we develop here,
called the Weighted Majority Algorithm (WM), is more robust.’

We describe the deterministic version of the Weighted Majority
Algorithm as it applies to finite pools of arbitrary prediction algorithms
making binary predictions. (Later we give other versions of the algorithm
in which these qualifications are varied.)

WEIGHTED MAJORITY ALGORITHM (WM). Initially a positive weight
is associated with each algorithm (function) of the pool. (All weights
are initially one unless specified otherwise.) Algorithm WM forms its
prediction by comparing the total weight ¢, of the algorithms of the pool
that predict O to the total weight ¢, of the algorithms predicting 1. WM
predicts according to the larger total (arbitrarily in case of a tie). When
WM makes a mistake,® the weights of those algorithms of the pool that
disagreed with the label are each multiplied by a fixed f such that
0<f<L O

If WM is applied to a pool of functions with =0 and the initial weights
are equal, then it is identical to the Halving Algorithm. If >0, then WM
gradually decreases the influence of functions that make a large number of
mistakes and gives the functions that make few mistakes high relative
weights. No single inconsistency can eliminate a function. Suppose that
WM is applied to a pool F of functions and that the sequence of trials has
m anomalies with respect to F. In this case WM makes no more than a
constant times log F} + m mistakes, where the constant depends on the
fixed parameter . In the case where the Vapnik—Chervonenkis dimension
[VC71, BEHW89] of Fis Q(log |F|), our lower bounds imply that WM is
optimal (except for a multiplicative constant).

For the general case where WM is applied to a pool .« of algorithms we
show the following upper bounds on the number of mistakes made in a
given sequence of trials:

1. O(log |/| + m), if one algorithm of o/ makes at most m mistakes.

2 Related ideas for working with pools of learning algorithms have been developed within
the framework of inductive inference in the limit [FSV89, Pit89, PS88].

* The mistake bounds that we prove in this paper actually hold for two versions of WM,
one that modifies weights only when a mistake is made (this version is given here) and one
that modifies weights at every trial by the multiplicative changes described.
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2. Oflog (|.%/|/k)+ m), if each of a subpool of k algorithms of ./
makes at most m mistakes.

3. O(log (|.97|/k)+ m/k), if the total number of mistakes of a subpool
of k algorithms of ./ is at most m.

Note that if the subpool size k 1s Q(|.<7|) then the bounds for cases 2 and
3 are O(m) and O(m/k), respectively. We give an example of how Case |
can be applied. Suppose that the instance domain is {0, 1}". Boolean
functions of the following form are called r-of-k threshold functions:
f(xy, ., x,)=1Iff Z;; 1 X;, =7, where k, r, and the distinct i; are integers in
the range from 1 to n. Suppose we wish to design a prediction algorithm
that has a small mistake bound for the target class of all r-of-k threshold
functions (as r and k& vary in the range 1<r<k<n). The algorithm
Winnow [Lit88] (the Fixed Threshold algorithm of [Lit89b])} can be
used, with a bound of O(knlogn) mistakes. We can obtain this bound
without a priori knowledge of r or k. If we know an upper bound r'
on the value of r, the mistake bound of Winnow can be improved to
b, = O(kr'log n), which grows only logarithmically in » when k& and #'
remain small. The improvement of the mistake bound to b,. is obtained by
choosing parameters for Winnow that depend on r'. Let A4,  denote
Winnow when tuned to #". If 4,. receives a sequence that is not consistent
with any r-of-k threshold function such that r<r', then the number of
mistakes that it makes might greatly exceed b,..

We can overcome not knowing r by applying WM to the pool
{A2}0<i<riogny- From the results presented in this paper, it follows that
the number of mistakes made in this manner for a sequence consistent with
an r-of-k threshold function is bounded by a constant times loglogn+b,,
which is O(kr log n).

The applications of the Weighted Majority Algorithm that we consider
fall into two categories. The first category is illustrated by the previous
example, where it is used to combine a small number of algorithms to
produce a combination that is computationally efficient with good mistake
bounds. Examples such as this one show that the Weighted Majority
Algorithm is a powerful tool for constructing new efficient learning
algorithms. It can be used in cases where there are several types of
prediction algorithms available, or there is a choice of parameters for a
learning algorithm, and the learner is unsure as to which choice is the best.
The resulting algorithm is efficient whenever the pool consists of a small
number of efficient algorithms. The second category of use involves
applying the Weighted Majority Algorithm to pools of functions. This use
gives mistake bounds that grow at close to the optimal rate as the number
of anomalies grows and establishes the best that can be achieved in this
respect for deterministic algorithms. Many function classes of interest,
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however, are too large to make this use of WM computationally practical.
Note that a smaller pool size is required for efficiency than for small
mistake bounds, since all of the pool algorithms need to be simulated,
while the number of mistakes grows only logarithmically with the size of
the pool.

In Section2 we prove mistake bounds for the Weighted Majority
Algorithm WM which show that in some sense it can be used to select the
predictions of the right subpool of algorithms. In Section 3 we discuss a
modification of WM that never decreases its weights below a certain lower
threshold. This variant of WM, which we call WML, has even stronger
selective capabilities. Suppose that we are given a sequence of trials such
that there is one algorithm in the pool that makes few mistakes (say m,)
for an initial segment of the sequence and a second algorithm that makes
m, mistakes for a second segment of the sequence, and so forth. Assume
the original sequence is partitioned into s segments. WML has no a priori
knowledge as to how many segments there are, when the different segments
begin, and which algorithms perform well in each segment. We can show
that the number of mistakes made by WML is bounded by a constant
times (slog ||+ Y i_, m;). For example, suppose that the algorithms of
the pool are functions and each segment of the sequence is consistent with
some function of the pool. Intuitively this means that the sequence is
labeled according to some target function of the pool but at the end of each
segment the target function changes. Each time the target changes to a new
function, there is a cost of O(log |.«/|) mistakes in the mistake bound for
WML. We describe the details of this modification in Section 3.

In Section 4 we investigate a second variant of WM which deals with
countably infinite pools of algorithms, indexed by the positive integers.
Barzdin and Freivalds [BF72, BF74], considering pools of (recursive}
functions, show that there is an algorithm that makes at most
log, i + log, log i + o(log log i) mistakes when given any sequence of trials
consistent with the ith function. We use an adaptation of their method
applicable to pools of algorithms even in the case where no algorithm in
the pool is consistent with the sequence of trials (i.e., every algorithm
makes mistakes). We describe a variant WMI, of the Weighted Majority
Algorithm that has the property that for any countably infinite pool, any
sequence of trials, and every index i, the number of mistakes it makes
is bounded by a constant times (log/+ m;), where m; is the number of
mistakes made by the ith algorithm of the pool on the given sequence of
trials.

We give a number of upper bounds obtainable when different initial
weights for the algorithms are used. The variant WMI, incorporates a
method of Barzdin and Freivalds that lets one deal explicitly with
computational imprecision.
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An application of these techniques to deal with an unknown parameter
can be found in [HSW90]. The classes DIFF(C, B) discussed in that
paper have the property that each function in such a class has a certain
“depth,” which is a non-negative integer. The basic algorithm given in that
paper requires as input an estimate of the depth of the target. Mistake
bounds are derived [HSW90, Fig. 10] under the assumption that this
estimate is at least as large the actual depth; to obtain a good bound it
must not be too much larger than the actual depth. A version of WMI, was
used to deal with the case where a good estimate of the depth is
unavailable. Algorithm WMI, was applied to an infinite pool, where every
algorithm in the pool was the basic algorithm, with each pool member
using a different estimate of the depth. Algorithm WMI, was used since
there was no a priori upper bound on the depth, and thus a finite pool
would not suffice. This constitutes another example where the weighted
majority techniques lead to an efficient algorithm for learning a
parameterized function class, provided that an efficient algorithm is known
when the parameter is given.

In Section 5 we generalize WM to WMG, which is able to handle pools
whose members produce predictions chosen from the interval [0, 1].
WMG uses the weighted average of the predictions of the pool members
to form its own prediction: it predicts 1 if the average is larger than 1, 0
if the average is less than i, and either 0 or 1 if the average is 1. The
predictions of WMG and the labels are still binary. In the same section
we also prove bounds for a continuous variant WMC of WM which
allows the predictions of the algorithms of the pool and the master as well
as the labels to be in [0, 1]. WMC simply predicts with the weighted
average of the predictions of the pool members. The purpose of Section 5
is a unified treatment of the proofs of all upper bounds for WMG, WMC
as well as a randomized version WMR introduced in Section 6. In the
concluding section, we give a table that compares all of the varieties of the
Weighted Majority Algorithm that we discuss. Simple but specialized
proofs for each of the upper bounds for WMG and WMR are provided
in the appendix.

In Section 6 we discuss the properties of the randomized version WMR
of the Weighted Majority Algorithm. The main result of this section is an
expected mistake bound for WMR. The proof relies on the lemmas used to
prove bounds for WMG and WMC in the previous section. Like the deter-
ministic algorithms WMG and WMC, the randomized algorithm WMR
also uses the weighted average of the predictions of the pool members for
making its prediction: it predicts 1 with probability equal to the average.
An alternate interpretation of the randomized algorithm involves making
each prediction by choosing a member of the pool at random {with
probability proportional to its current weight) and predicting 1 with
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probability equal to the prediction of the chosen pool member. The
randomized version of the algorithm has the property that the weights
can be updated so that the rate at which WMR is expected to make mis-
takes in the long run can be made arbitrarily close to the rate at which
the best prediction algorithm in the underlying pool makes mistakes.
With an appropriate measure of loss the same holds for the deterministic
algorithm WMC whose predictions are allowed to be in [0, 1]. This
represents an improvement by a factor of 2 over the limiting mistake
bound we give for the deterministic algorithm WMG, whose predictions
must be binary.

We consider in Sections 7 and 8 the special case in which the basic
algorithm WM is applied to pools of functions. In Section 7, we assume
that the pool contains a function consistent with all of the trials. Let M, be
a bound on the number of mistakes made by WM if the ith function in the
pool is consistent. Changing the initial weights can be used to decrease
some of the M, at the expense of increasing others. For certain classes
of functions we characterize what sets of M, are possible mistake bounds
for the Weighted Majority Algorithm, and show that for these classes of
functions no other algorithm can do better. In Section § we consider the
case in which no function in the pool is consistent with all of the trials; we
prove a lower bound on the rate at which the mistake bounds must grow
as the number of anomalous trials grows. We compare that lower bound
with the upper bounds that we obtain from the Weighted Majority
Algorithm. Under certain conditions the Weighted Majority Algorithm
is provably a small constant factor from optimal. We make a similar
comparison for the randomized algorithm WMR.

The concluding section, Section 9, gives an overview of the various
algorithms introduced here and mentions a number of directions for future
research.

DeSantis et al. [DMWS88] applied an algorithm similar to WMC to a
countably infinite pool (as in WMI,) in a completely different setting. For
a countably infinite indexed pool of conditional probability distributions
the goal is to iteratively construct a “master” conditional probability
distribution which assigns a probability to the examples secen so far
that is close to the highest probability assigned to the examples by any
conditional probability distribution in the pool.

More recent work on learning classes of Boolean functions is given in
[HKS91, HO91]. This work presents a Bayesian approach that considers
average case upper bounds on the loss of prediction algorithms and gives
upper bounds on the loss in terms of the Vapnik—Chervonenkis dimension
[VC71, BEHW89]. The Bayes optimal classification algorithm that they
consider is a special case of the Weighted Majority algorithm WM, and
the randomized version WMR is the Gibbs algorithm of [HO91].
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Furthermore our algorithm WMR is similar to a learning procedure
studied in [LTS89]. However, the analysis given there is very different
from ours.

Notations and Assumptions. In this paper we design various master
algorithms that use the predictions of the pool of algorithms to make their
own predictions. Each algorithm in the pool is given an initially positive
and always non-negative weight that is updated at the end of each trial.
The default values for all initial weights are 1. The total initial weight of all
algorithms in the pool is denoted by w,,;, and the total final weight after
all examples have been processed by wy,.

For logarithms, we use “In” to denote natural logarithms and “log,” to
denote logarithms to the base 2. Where the choice of base is not significant,
such as in big-O and little-o notation, and in formulas consisting of ratios
of logarithms, we omit designation of the base; for ratios we intend that
the same base be chosen for numerator and denominator. Throughout the
paper we implicitly assume that all sequences of instances and labels are
finite. Note that if a fixed mistake bound holds for all finite sequences, then
it must also hold for all infinite sequences. Many readers may be unfamiliar
with the symbol .%--it is a capital script S.

2. PROVING MISTAKE BOUNDS FOR THE WEIGHTED MAJORITY ALGORITHM

In this section we prove the bounds on the number of mistakes for the
basic Weighted Majority Algorithm WM. For this and the next two
sections the predictions of the algorithms in the pool and the master
algorithm must all be binary (that is, in {0, 1}). Recall the description
of WM given in the Introduction. For a given trial, we use ¢, and ¢, to
denote the total weights of the algorithms in the pool that predict 0 and 1,
respectively.* The parameter f is the factor by which weights are multiplied
in case of a mistake and is always in the range 0 < f§ < 1. We suppose that
we run WM with a pool &/ of prediction algorithms, indexed with the
integers from 1 through |.</|. We use the notation introduced at the end of
Section 1.

All proofs are surprisingly simple. We show that after each trial in which
a mistake occurs the sum of the weights is at most « times the sum of the
weights before the trial, for some < . In trials where no mistake occurs

* Two generalizations, WMG and WMC, of this deterministic master algorithm WM are
given in Section 5. Both master algorithms allow the predictions of the algorithms in the pool
to be continuous in [0, 1] instead of only binary. The predictions of WMG must be binary
and the predictions of WMC are allowed to be continuous in [0, I ]. Theorem 5.1 gives the
same bounds for WMG as Theorem 2.1 and a slightly better bound is given for WMC in
Theorem 5.2.
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the total weight may only decrease. Thus w,,;, 4" = wg, must hold, where m
is the number of mistakes of WM. This implies that m is at most

lOg( wini[/wﬁn)
log(1/u)

The proof below uses u= (1+ f)/2.

THEOREM 2.1. Let % (script capital “ess”) be any sequence of instances
and binary labels. Let m be the number of mistakes made by WM on the
sequence & when applied to a pool /. Then

m log(Wini/Win)
“log (2/(1+B))

Proof. By the above discussion we only need to show that in trials in
which WM makes a mistake the ratio of the total weight after the trial to
the total weight before the trial is at most (1 + f)/2. Before the trial the
total weight is g, + q,. Suppose, without loss of generality, that in this trial
the learner’s prediction was 0, and thus g,>g¢,. In this case the total
weight after this trial will be

1+5

) (Go+4q:)- 1

1-8
ﬂqo+q1<qu+ql+—T(qo—q|)=

Note that wg, =37, w, 8™, where w, denotes the initial weight of the
ith algorithm in the pool, and m; denotes the number of mistakes made by
that algorithm on the sequence <. When =0, we use the convention
0°= 1. As discussed in the introduction, if =0 and the initial weights are
equal, then WM is the Halving algorithm. In that case, if all m, are positive
then wg, =0 and the bound of the theorem becomes vacuous.

For the following corollaries we assume that >0, and also that all
initial weights are 1. Otherwise, our assumptions and notation are as in the
theorem.

COROLLARY 2.1.  Assume that & is a pool of n prediction algorithms and
that m; is the number of mistakes made by the ith algorithm of the pool on
a sequence F of instances with binary labels. Then WM when applied to pool
of with equal initial weights makes at most

log n+m;log(1/8)
log(2/1 + B)

mistakes on the sequence &, for 1 <i<|./|.

643 10824
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Proof. This follows from the above theorem and the fact that w,_,=n
and wg, 2 ™ |}

Note that if the initial weights were not assumed to be equal then logn
in the above bound would need to be replaced by log(w;,,/w,), where w,
1s the initial weight of the /th algorithm.

COROLLARY 2.2. Assume that of is a pool of n prediction algorithms and
that there is a subpool of o of size k such that each of the algorithms of the
subpool makes at most m mistakes on a sequence ¥ of instances with binary
labels. Then WM when applied to pool of with equal initial weights makes
at most

log(n/k)+ mlog(1/B)
log(2/(1+ f))

mistakes on the sequence .

Proof. This follows from the above theorem and the fact that w,,; =n
and wg, = k™.

COROLLARY 2.3. Assume that o/ is a pool of n prediction algorithms and
that there is a subpool of of of size k such that all algorithms of the subpool
together make at most m mistakes in total on a sequence & of instances with
binary labels. Then WM when applied to pool of with equal initial weights
makes at most

log(n/k) + (riv/k) log(1/P)
log(2/(1 + B))

mistakes on the sequence .

Proof. Without loss of generality, let the first k algorithms of &7 be the
subpool. Thus >%_, m, < and wg, = 34_ | B Since the latter sum is at
least kB™%, it is easy to derive the bound of the corollary using the previous
theorem. ||

A similar bound to those of the above corollaries can be proven for the
case when f=0 and the total number of mistakes of the subpool is 0. In
that case the upper bound on the number of mistakes made by WM
becomes log,(n/k).
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3. SHIFTING TARGET

The crux of what we have shown so far is that if 0 <f < 1, then WM
selects the right information from a pool of algorithms: <1 allows it
to home in on the right information and f>0 assures that any change
that is made is gradual; any update that leads away from the goal can be
reversed. There is a cost for changing the weights only gradually since the
algorithm does not home in as fast.

We now modify WM so that its recovery capabilities are made even
stronger. Suppose that a particular unknown subpool of a pool of
algorithms has good predictive performance (as characterized in the
above corollaries). However, after a number of trials a different subpool
has good performance and the performance of the original subpool
degrades. Then a third subpool takes over and so forth. We want to
modify WM so that it keeps track of predictions of the right subpool
without too many additional mistakes. In what follows we consider only
subpools of size 1. (Generalizations in the spirit of the above corollaries
are easily obtained.) Thus the scenario is that one algorithm of the pool
makes few mistakes for an initial number of trials. After that some other
algorithm of the pool performs well for a number of trials and so forth.
The modified Weighted Majority algorithm WML has no a priori
knowledge as to which algorithm’s prediction is currently accurate or for
how many trials.

WEIGHTED MAJORITY ALGORITHM (WML). The algorithm has two fixed
parameters, B and y, with the ranges 0 <f <1 and 0 <y <1, respectively.
Each algorithm of the pool .o/ receives a positive initial weight. The
algorithm WML is identical to WM except that whenever the original
algorithm updates a current weight (by multiplying it by f), the modified
algorithm only makes the update if the weight before the update is larger
than y/|.%/| times the total weight of all algorithms at the beginning of the
trial.

Note that in the case y =0, WML is identical to WM.

LEmMMA 3.1, Let & be any sequence of instances with binary labels and
let my be the minimum number of mistakes made on the sequence ¥ by any
one of a pool & of n algorithms. If the initial weight of each algorithm is at
least By/n times the total initial weight, then WML when applied to pool s
makes at most

log(n/(By)) + m, log(1/B)
log(1/u)
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mistakes on &, where u=(1+ )2+ (1 — B)y. Furthermore, the final weight
of each algorithm is at least By/n times the total final weight.

Proof. Assume without loss of generality that the prediction of WML
was O in a trial in which a mistake was made. Thus weights of pool
members predicting 0 are to be decreased. Let ¢, and ¢, be the total
weight at the beginning of the trial of the algorithms predicting 0 and 1
respectively. Let ¢* be the total weight of the algorithms of the pool that
predicted 0 but whose weights are not changed during this trial because
they are too small. By assumption ¢* <y(g,+ ¢,). Then the total weight
after the trial will be B(qo—q*)+q*+¢, <((1+B)/2)go +¢,)+ (1~ p)g*.
The ratio of this total to the total before the trial is bounded by
((1 +8)/2)+ (1 —B)y. Since we have assumed that y <31, this bound is
less than 1. Thus a bound for WML follows from the argument at the
beginning of the previous section using the fact that the final sum of
weights is at least (fiy/n) wi, ™

It is easy to see that since the total weight is never increased, and
individual weights are not decreased if they are too small, the final weight
of each algorithm will have the specified relation with the total final
weight. |

We can apply the above lemma to subsequences of a sequence of trials
and get the following.

THEOREM 3.1. Let & be a sequence of instances with binary labels and
let #, .., % be any partitioning of & into k subsequences. Let |, be the
number of trials in the ith subsequence. Let </ be any pool of n algorithms
and let m; be the minimum number of mistakes made by any algorithm of
the pool <f on the subsequence ¥, for | <i<k. If all initial weights of the
algorithms are at least ( fy/n) times the total initial weight, then WML when
applied to pool o/ makes at most

i min ({l 10g(n/(/3}'))+mf10g(1/[f)}>
" log(1/u)

i=1

mistakes on ¥, where u=(1+ )2+ (1 — B)y.

Proof. We simply apply the previous lemma to each subsequence . |

4. SELECTION FrOM AN INFINITE PooL

In this section we assume that there is a countably infinite pool of
algorithms indexed with some computable indexing (that is, we assume
that there exists a simulation algorithm for the pool that can simulate any
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algorithm of the pool, given its index). We assume that the ith algorithm
makes at most m; mistakes for a sequence of instances and labels .. We
will develop a version of the Weighted Majority Algorithm that makes at
most inf;. (c(log, i+ m;)) mistakes on ., where ¢ is a constant that
depends on the parameters of the algorithm.

Assume for the moment that the original algorithm WM could keep
track of infinitely many weights and suppose, for example, that the initial
weight associated with the ith pool member is w,;=1/(i(i+ 1)), for i=1.
Then the total initial weight is w;;, =3 =, w;=1. For each { we have that
the final sum of the weights is at least w,f™ = f"/(i(i+ 1)). Applying
Theorem 2.1 we get that WM makes at most

- <1og i+ 1)+m, log(l/ﬁ)>
log(2/(1 + B))

izl

mistakes when applied to the countably infinite pool on the sequence .&.

The above approach is flawed because we obviously cannot run WM on
infinitely many weights. Instead, we construct an algorithm WMI, that
uses an increasing initial segment of “active” weights.” This algorithm and
its analysis is based on techniques introduced by Barzdin and Freivalds
[BF74] (they consider only the f§ =0 case). These techniques, in addition
to dealing with an infinite pool size, also allow one to work with finite-
precision approximations to the weights in calculating the predictions of
the algorithm. Though we do not consider this issue elsewhere in the paper,
the analysis of this algorithm can be taken as an example of how to take
approximate computations into account.®

WEIGHTED MAJORITY ALGORITHM (WMI,). The algorithm is run on a
countably infinite pool of algorithms, indexed with the positive integers. It
has one fixed parameter f in the range 0<f< 1. It is also given two
computable functions, W and W, defined on the positive integers
{W needs only to be computable to arbitrary precision); the first is used
to determine the initial weights, and the second is some function satisfying
W)z Y., W(j) and lim,_, , W(i)=0. (Since there is flexibility in the
choice of W we can assume for convenience that it is chosen so that it is
exactly computable.) This algorithm is similar to WM. Instead of working

* We use the name WMI, to distinguish this algorithm from the similar algorithm called
WMI in earlier versions of this paper [ LW89%a, LW89b]. The version presented here improves
the best mistake bound that can be obtained from the algorithm to match the essentially
optimal bound of Barzdin and Freivalds [BF72, BF74] in the case where =0 and there
exists a consistent pool member.

® The earlier version, WMI [LW89a, LW89b], does not take finite precision into account.
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with the weights of all of the algorithms, WMI, works with only the
weights of an active subpool in each trial. The prediction of the algorithm
is based solely on the predictions of the active subpool and only weights
corresponding to algorithms of the active subpool are subject to change.
The active subpool consists of pool members with indices 1 through /, for
some / that is determined by the algorithm. The value of / is initialized to
zero. Then initially and at the conclusion of any trial in which a mistake
is made it is increased if necessary, until the inequality W(/+ 1)<
ut W(1)/((1 — B)(m + 1)(m + 2)) is satisfied, where u = (1 + $)/2 and m is
the number of mistakes that have been made. When / is increased the
weights of the newly active algorithms are initialized. The initial weight of
the ith algorithm of the pool is set to W{(i). To make a prediction, WMI,
computes the sum g, of the weights of the active pool members predicting
0 for the current instance, and the sum ¢, of the weights of the active pool
members predicting 1. Suppose that a total of m mistakes have been made
in previous trials. If go>¢q,+u™ " "W(1)/((1 —B)m+ 1)(m+2)) then
WMI, predicts 0; if q,>gqq+ " ' W(1)/(1 —B)m+1)(m+2)) then
WMI, predicts 1. If neither of these inequalities holds, WMI, is allowed to
predict 0 or 1. (This allows WMI, to use finite-precision approximations to
qo and g,.) After the label is received in a trial in which WMI, has made
a mistake, the weight of each active pool member that disagreed with the
label is multiplied by f. The final action of each trial in which a mistake
is made is to increase / as necessary, as described earlier. [

o

When the sums of tails of the series }  , W{(i) are easy to compute,
it is natural to take W(i)= ;=i W(j). When this is done, W(1) is the
sum of the initial values of the full infinite sequence of weights. Note that
instead of storing the current weights, an implementation of WMI, can
store the number of mistakes made by each pool member (while active)
and use this information to calculate ¢, and ¢, to the necessary preci-
sion.

THEOREM 4.1. Let & be any sequence of instances with binary labels on
which the ith algorithm A; makes at most m; mistakes (for all i=1). Let
W and W be computable functions satisfying the inequality given in the
description of WMI,. After any initial sequence of trials, let w; be the
current value of the ith weight of WMI,, for i <1, and let w,= W(i) for i > L.
Let u= (14 B)/2. Then the following holds for WMI, when applied to the
countably infinite pool of on the sequence ¥ :

1. At the beginning of any trial the size of the active pool is the mini-
mum [ such that W+ 1)<u™ V' W(1)/((1 = B)(m+ 1)(m+2)), where m is
the number of mistakes that have been made by WMI, in prior trials.
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2. After any initial sequence of trials in which m mistakes have been
made by WMI,

i w,<<2~

i=1

1 .
+1>u wi(1).

3. If0< B <], then the total number of mistakes made by WMI, is at
most

(log( W(1)/W(i)) + m, log(1/B) + log 2)
inf
i1 log(1/u)

If B=0 and for some i, m,-=(),Athen the total number of mistakes made by
WMI, is bounded by 1 + log,(W(1)/W(i)).

Proof of 1. This follows immediately from the construction of
WMI,. |

Proof of 2. We prove this by induction on m. It clearly holds for m = 0.
Suppose that the claim holds for some m >0 and consider the trial in
which the (m+ 1)st mistake is made. Let g, be the sum of the weights, at
the beginning of that tnal, of the active pool members predicting 0, let g,
be the sum of the weights of the active members predicting 1, and let ¢*
be the sum of the (future initial) weights of the inactive members. Thus
G*=37 ., WS WU+ D) <u™ " W()/((1—B)(m+1)(m+2)). Suppose
that WMI2 predicted 0. (An analogous argument applies in the case that
WMI, predicted 1.) Thus we must have ¢, <g,+ 1" W(1)/((1-p)
(m+ 1)(m+2)). The (m+ 1)st mistake causes the total weight 37 | w, to
be updated to

l—ﬂ rn+lW(1)
ﬂqo+ql+q*</5qo+q[+—2——(qo—q1+(1_ﬁ)(m+1)(m+2))+q*

"t (1) >

L-B\/
(q0+q:+4q* ’+( > )(q TA=hm+ im+2)

L8
<—-2—”<

m+

! l)u’"W(l)

+1—ﬂ< 2u
2 \(1=B)m+1){m+2)

— ] m+ 1L
_(2 m+2)u WD),

as desired. 1

)m‘ Ww(l)
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Proof of 3. First we consider the case 0 < ff < 1. Since the ith algorithm
in the pool makes at most m; mistakes, the final sum of the weights
>, w,is at least B W(i). By 2, if WMI, makes m mistakes then the final
sum of the weights is at most 2u” W(1). Solving the resulting inequality for
m gives the desired upper bound on m. When m,; =0, then the final sum of
the weights is at least W(i). When =0, then u= 3. Thus if WMI, makes
m mistakes in this case then W(i) <2($)” W(1), which yields the desired
bound. |

As we vary our choices of initial weights we encounter a trade-off
between the size of the mistake bound that we obtain and the size to which
the active pool may grow.” We examine this trade-off in the following
coroilaries, which follow immediately. For brevity, we omit statement of
the results for f=0. Some results regarding the f =0 case are given at the
end of the next section.

COROLLARY 4.1. Let & be any sequence of instance with binary labels
on which the ith algo‘rithm makes at most m; mistakes (i=1). Let
W)= 1/(i(i + 1)) and W(i)=X 7, W(j)=1/i. Then the following holds for

j=i

WMI, when applied to the countably infinite pool of on the sequence & :

1. After m mistakes have been made by WMI, the size of the active

pool is
2 n+ 1
lr(l—[f)(m+l)(1n+2)<—l—+——ﬁ-> —|—1.

2. If B>0 the total number m of mistakes made by MWI, is at most

inf

izl

<log2(i(i+ 1)) +m;log, (1/8) + 1>
log,(2/(1+ 8)) '

In the introduction of this section we derived a bound for running WM
on infinitely many weights. The bound for this infeasible algorithm is iden-
tical to the one given in the above corollary except for the absence of 1 in
the numerator. Note that in the above corollary the pool size grows
exponentially in m, which is of course an improvement over an infinite pool
size. In Section 7, we study the best that can be done when =0, without
regard to computational complexity; we give a weight sequence that gives
a somewhat smaller mistake bound than the bound of this corollary. There
we are uninterested in the pool size. For the rest of the current section we

"1f the same weight sequence is used, the earlier algorithm WMI [LW89a, LW89b] uses
a slightly smaller active pool, at the expense of a slightly larger mistake bound. See
[LW89a, LW8Ib] for the corresponding versions of Corollaries 4.1, 4.2, and 4.3.
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take the point of view of one interested in practical application of this
algorithm, for whom questions of computational efficiency, and therefore of
the size of the active pool, are important. We thus do not want the pool
size to grow exponentially in the number of mistakes that are made
(particularly in cases where the number of mistakes grows linearly with the
number of trials, which can be expected, for example, when the learner
faces noisy data; see Section 8).

By choosing a different weight sequence one can ensure that the pool size
grows only linearly in m, but this increases the rate of growth of the
mistake bound with the index i. In the above corollary the dependence on
the index / is logarithmic; below it is linear.

COROLLARY 4.2. Let & be any sequence of instances with binary labels
on which the ith algorithm makes at most m; mistakes (i 2 1). Let W(i) = (3)
and W(i)= 7 W(j)=(3)' "' Then the following holds for WMI, when
applied to the countably infinite pool of on the sequence -

1. After m mistakes have been made by WMI, the size of the active
pool is

[log,(1 — B+ log((m+ 1) (m+2))+ (m+1)log, 1/u7.

2. The total number m of mistakes made by WMI, is at most

inf(i+mil0g2(1/ﬁ)+l)
=1\ log, 2/(1+B)) )

Observe that the weights chosen in both corollaries might be useful for
particular applications. For example, if m,=Q(i), then choosing the
weights as a sequence decreasing exponentially with /i (as in the second
corollary) only increases the mistake bound by a constant factor over the
bound using the choice of weights given in the first corollary. Thus at the
cost of increasing the mistake bound by a constant factor a significantly
smaller pool size is obtained using the exponentially decreasing weight
sequence.

In general, when given an infinite sequence of algorithms A; with mistake
bounds m;,, it is reasonable to choose the initial weights such that

1. /=1 W(j) is finite and

2. the two summands log(W(1)/W(i)) and m,log (1/8) of the
numerator of the bound on the total number of mistakes given in Part 3 of
the above theorem are roughly equal.
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The following corollary gives a weight sequence that is useful when m,
grows exponentially with i A very similar version has been applied in

[HSW90].

COROLLARY 4.3. Let & be any sequence of instances with binary labels
on which the ith algorithm makes at most m; mistakes (i=1). Let
W(iy= (2" and W(i)=2(1)* . Then the following holds for WMI, when
applied to the countably infinite pool </ on the sequence &

1. After m mistakes have been made by WMI, the size of the active
pool is :

[log, [log,(1 — f) + log,((m + 1)(m +2)) + (m + 1) log,(2/(1 + f)) + 1] 1.

2. The total number m of mistakes made by WMI, is at most

inf <2' '+ m; logo(1/B) + 1)
! log,(2/(1 + 8)) '

Proof. Given the inequality W(z')?}:f‘_;,. W(j), parts 1 and 2 of the
coroliary are a straightforward application of parts 1 and 3, respectively, of
the previous theorem. To show the above inequality we bound the infinite

sum from above by the geometric series with ratio i and first summand

"

Z'(%)2,71<' Z (%)i=2(%)2r7—1. l

We give an example making use of the results of this corollary. The
example is generalization of the r-of-k threshold function example given in
the introduction. We assume that we are to learn a class of target functions
using an algorithm A4 that takes a single parameter g. Associated with each
target function are two parameters k > 1 and r (these can be thought of, if
one likes, as measures of the complexity of the target function).

We assume that algorithm A4 has the property that whenever its parameter
g is at least k then the number of mistakes made by A is bounded by
B(q,r)=gq-g(r), for any target function with parameters & and r. If the
parameter g < k, then B(g, r) is not assumed to be a bound on the number
of mistakes (in fact, the number of mistakes the algorithm makes might be
unbounded). Assume that g(r) > r, for all choices of r.

A bound of this form is minimized if we choose the parameter g = k. (We
are not claiming that the algorithm necessarily makes the fewest mistakes
for a given target function when g = k, but that the best bound that we can
obtain from the information given is obtained when ¢ = k. If our bounds
accurately reflect the behavior of the algorithm then this is indeed a
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good choice of g.) Our goal here is to construct an algorithm that makes
a number of mistakes close to B(k, r), without knowing k, for any & and
r and any target function with parameters & and r chosen from the target
class.

Under the assumptions that we have made, the mistake bound for 4(q)
is at most 2B(k, r} for any ¢ in the range k < ¢ <2k. Because of this, it
suffices for our purposes to apply WMI, to the infinite pool of algorithms
A(l), A(2), A(4), A(B), ... Though the optimal choice of ¢ may not be
included in this pool, an algorithm is included whose bound is at most
twice the bound for the optimal choice.

The mistake bound given to us for the ith algorithm of this pool is
m,=B(2" ', r)=2"""g(r) for any i such that 2~ ' > . This bound grows
exponentially in i. Thus the weights given in Corollary 4.3 will serve us
well.

By Corollary 4.3 we get a mistake bound of

2711+ g(r) log,(1/8)) + 1
log,(2/(1 + B)) ’

where i is the least positive integer such that 2'~'>k. By assumption
g(r)=ry. Thus the above expression is bounded by

B(2' ', r)(1/ro +logy(1/8)) + 1
log,(2/(1 + B))

Since B(g, r)=q-g(r), and there exists some i such that £ <2' "' <2k, we
obtain a bound
2Bk, r)(1/ro+log,(1/8)) + 1
log,(2/(1 + B))

which is O(B(k, r)). The active pool size of this algorithm grows
logarithmically in the number of mistakes that have been made.

5. (GENERALIZED ANALYSIS

In this section we introduce two new master algorithms, WMG and
WMC. The original algorithm WM is a special case of the generalized
version WMG. The generalized analysis given here for the new variants is
also used in the next section for deriving bounds for the randomized
version WMR of WM. The purpose of this section is to give a unified
analysis for all three versions WMG, WMC, and WMR. Separate direct
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and simple proofs for the upper bounds of WMG and WMR are provided
in the appendix.

Assumptions for WMG and WMC. Both new algorithms allow the
predictions of the algorithms of the pool to be chosen from [0, 1] (instead
of being binary as for WM). The predictions of WMG must be binary
while the predictions of WMC are allowed to be chosen from the interval
[0, 1]. The labels associated with the instances are assumed to be binary
for WMG and in [0, 1] for WMC.

The update step of the Weighted Majority Algorithm and its variants is
the step in which each weight is multiplied by some factor. In Algorithm
WM this step only occurs during trials in which a mistake is made.
However, it is easy to see that the same mistake bound we have given is
obtained if updates are performed in every trial.

Update Criteria for WMG and WMC. WMC updates at every trial (the
same criterion is used for WMR, introduced in the next section). For
WMG an update step is executed either in every trial or only in trials in
which a mistake occurs.®

We introduce notation to enable us to refer to values that occur in each
trial in which an update step occurs. We use the term update-trial j to refer
to the jth trial in which an update step occurs. We assume that there are
a total of 1 such trials. (Thus ¢ either denotes the total number of trials or
the total number of mistakes, depending on the update criterion.) We
assume that the master algorithm is applied to a pool of n algorithms,
letting x{’' denote the prediction of the ith algorithm of the pool in update-
trial j. Let 2 denote the prediction of the master algorithm in update-trial
J» p*? denote the label of update-trial j, and w'”, ..., w'” denote the weights
at the beginning of update-trial j. (Consequently, w!'* ", ., w!{*" denote
the weights following the final trial.) We assume that all initial weights w!!’
are positive.

Let s''=3"_ w!'” and

;=
n )3 0F)
S i T
fT ¢

Thus s'" =w,,, and s+ "

Prediction of WMC and WMG. In the case of WMC the prediction '/’

equals 7. For WMG, 4" is 1 when y") is greater than { and is 0 when

747 is less than j (either prediction is allowed if 7 = 1),

= Wi, -

8 More precisely, bounds for WM and WMG hold as long as an update step occurs in cvery
trial in which a mistake occurred and possibly in some trials in which no mistake occurred;
for simplicity, we restrict discussion to the extreme cases mentioned.
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If the predictions are continuous then the notion of mistake has to be
replaced by a quantity that measures how far the prediction is from the
correct label. In this paper we will use the absolute loss. If an algorithm
predicts x in a trial with label p, we say that its loss in that trial is |x — p|;
this definition applies both to algorithms in the pool and to the master
algorithm. We denote the total loss of the master algorithm over all trials
by m, and the total loss over all trials of algorithm i of the pool by m;,.
Since an update occurs in at least those trials in which the master
algorithm makes a mistake, the total loss of the master algorithm is
m=37_, |2~ p"". Algorithms in the pool may incur loss in trials
without updates, so, unless updates occur in all trials, we cannot get the
total loss of algorithms in the pool by summing over update trials. Instead,
we have the inequality m,>3/_, |x{' — p'|. Note that in the case where
both the predictions of the pool members and the labels are binary, the
losses of the pool members become numbers of mistakes, and similarly if
both the predictions of the master algorithm and the labels are restricted
to being binary then the loss of the master becomes a measure of its
mistakes.

More than one form of the update is possible. We will specify a class of
possible updates; our bounds apply to all members of the class. All updates
in the class coincide with the update of WM given in the introduction in
the special case that the pool members produce boolean predictions.

Update step for WMG and WMC. In an update step of WMG and
WMC (and the randomized version WMR of the next section) each weight
w'” is multiplied by some factor F that depends® on §, x!”’, and p*/":

w1 = Fw!/ where F can be any factor that satisfies

BN P — (1= ) X\ — pU]. (5.1)

The following lemma implies that such a factor exists; in particular, either
the upper or the lower bound given for F can be chosen as the update
factor. Recall that we define 0° to equal 1.

LEMMA 5.1. For fz0and 0<r<1, p'<1+r(f—1).

Proof. 1t is easy to check the inequality for the case of f=0. If >0
then the inequality follows from the convexity of 5" as a function of r for

? Theorem 5.1 and 5.2 can be obtained without requiring that F satisly the lower bound
specified in Inequality (5.1) (but since the bounds of these theorems grow as wy, shrinks, the
bounds may become uninteresting if F is too small). Both bounds on F of Inequality (5.1) are
used to obtain Corollaries 5.1 and 5.2
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any fi> 0. Convexity implies that for 0<r<1, g7 < (1 —r)B°+ rf', which
is another way of writing the inequality. |

The next lemma is the basic lemma used to derive bounds for the loss of
the master algorithms WMG and WMC (and for the expected loss of
WMR of the next section),

LEMMA 52, Assume that w!">0 for i=1,.,n Assume 0<f<]1,
0<p’<t, and 0<xV'<1 for j=1,.,t and i=1,.,n Assume
wr DKW (T — (1 =B) (x' = p ) for j=1,..,t and i=1,..,n Then if
B=0 and |y — p V| =1 for some j in {1, .., t} then wg,=0. Otherwise

lm : :
r Z (1= (1=B) |7/ =),

H/ init j =

Proof. First we deal with the case where f =0 and there is a trial j such
that |y’ — p'| = 1. In this case, we have y*’=1— p'”. For this to occur,
for any i such that w!/'>0 we must have |x!") —p"/'| = 1. This forces the
use of update factors that make w!/*Y =0 for all i Thus wy, =0, as
desired. Where this case does not occur, we have from Inequality (5.1) that

s/t I)< Z wi_j)(] _ (I —ﬁ) |x$”—p“’|):s'-’v)— (1 _B) Z Wﬁ-j' 'xin —PU)I-

i=1 i=1
By the triangle inequality, the above is bounded above by

Sl/’)_ (1 _ﬂ) i w}.”(x}»"’—p‘-"’) :Slj) ﬂ) l?(” (1)__plj)s(i)|
i=1
=s2(1—(1=B) [y —p").
Thus

!
S(H»I)SS(I) l"'[ (1 _(1 _ﬁ) \T(”—P(’”‘)-

i=1
Taking logarithms gives the desired result. |

We use the above lemma to obtain the same bound for WMG as we did
for WM in Theorem 2.1. Recall that for WMG, p, i7¢€ {0, 1}, but the
x!{” are allowed to be chosen from [0, 1]. For the case where the x!” are
discrete as well, the algorithms WM and WMG are identical.

THEOREM 5.1. Let & be any sequence of instances with binary labels.
Suppose the algorithm WMG (updating in every trial or only when mistakes
are made) is run with 0 < <1 on the sequence ¥ and m is the total number
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of mistakes of WMG when it is applied to some pool of prediction
algorithms. Then

" log(2/(1+ B))

Proof. If f=0 and |3 —p"Y| =1 for some j in {1, ., ¢}, then w;, =0
and the bound becomes vacuous. Otherwise, let m! be 1 if WMG makes
a mistake in update-trial j, and 0 otherwise. The total number of mistakes
made by WMG is m=3!_, m"’. (For the version of WMG that only
updates when a mistake is made, we are only paying attention to trials in
which a mistake is made; thus m is 1 for all j.) Note that if y* < then
mY'=pY and if y¥'> 1 then m' =1 - pV.

Since log(1 — (1 —B) |y — p|) <0, we have

Yo log(l—(1=8)1y""—p)< Y log(1—(1=B) Iy —p"])

=1 Jst.omll=1
<mlog(1—3(1—p))=mlog(3+3p).

It is easy to see that the conditions for the application of Lemma 5.2 apply
and thus

Wiin 1+

< mlog - |

log
Winit

A simple proof of the above bound that does not rely on Lemma 5.2
is given in the Appendix. The method there is to redefine ¢, and ¢, and
essentially use the proof of Theorem 2.1.

From the definition of the total loss m, of the ith algorithm and the
definition of the update step (Inequality 5.1) we have w!'* " > w!" g™ and
Wi = Y7, wil g™ These inequalities become equalities if an update occurs
in each trial and all update factors are made as small as allowed. Using
these inequalities, corollaries in the spirit of corollaries 2.1 to 2.3 could
easily be derived. We will only state the one corresponding to Corollary 2.1.
For this corollary assume all initial weights are equal and > 0.

COROLLARY 5.1.  Assume that o is a pool of n prediction algorithms and
that m, is the total loss of the ith algorithm of the pool on a sequence & of
instances with binary labels. Then WMG when applied to pool of with equal
initial weights makes at most

log n+m;log(1/B)
log (2/(1+ B))

mistakes on the sequence &, for 1 <i< ||
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In general, the larger the lower bound used for wy, the better the upper
bound provided by the above theorem. If in each update the smallest
allowable factor is used (Inequality (5.1)) then wg, =37 wi''g™
However, if the largest factor s used in each update we get
win 2= 20 wiV T Z, (1= (1= B) |x{” —p'"|), which may be much larger
than the previous lower bound on wg, when g is close to 0. The upper
bounds we derive for WMC and WMR have the same form as the one
given in the above theorem for WMG. Thus the same comments on the
lower bound of wy, apply to those bounds as well.

The next lemma is used for deriving bounds for WMC (and for WMR
in the next section).

LEmMMA 5.3, If the conditions of Lemma 5.2 are satisfied, then

i [yt — pO| gﬂhﬂ‘_ﬁn_)

j=1 -4

Proof. The lemma follows from the observation that In(l —(1—f)
l.})(i) - p(.i\‘)s _ (1 __ﬁ) ‘.},(j! _p(j)] and Lemma 5.2.

Recall that for WMC all predictions and /abels are allowed to be in
[0, 1] and that the prediction of WMC in trial j is A"’ =7 Lemma 5.3
gives an upper bound on the total loss m of WMC. In the next section we
see that this bound is identical to the bound on the expected total loss we
obtain for WMR in Theorem 6.1. Recall that both WMC and WMR
update in every trial. For WMC we assume that all instances and labels are
deterministic.

THEOREM 5.2. Let & be any sequence of instances and labels with labels
in [0, 1]. Let m be the total loss of WMC on the sequence & when applied
to some pool of prediction algorithms. Then

m< In(wini /Wea)
1—8

Proof. The theorem follows immediately from Lemma 5.3. |

It is interesting to compare the above bound for WMC (continuous
prediction) to the bound obtained in Theorem 5.1 for WMG (discrete
prediction). The latter bound is similar in form:

In(Winie /Wein)

In(2/(1 + )y
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The numerators of both bounds are identical. The denominators both
approach zero when f approaches 1. However, the denominator of the
bound for WMC is larger for f less than 1. The ratio of the denominators
approaches 2 as f approaches 1, making the bound for WMC better than
the bound for WMG by nearly a factor of two for § close to 1.

COROLLARY 5.2.  Assume that . is a pool of n prediction algorithms and
that m, is the total loss of the ith algorithm of the pool on a sequence & of
instances with labels in [0, 1]. If we apply WMC to pool o with equal initial
weights, then it has a total loss of at most

Inn+m,In(1/8)
1-p

on the sequence &, for 1 <i< ||

6. RANDOMIZED PREDICTIONS

In this section we give a randomized version of WM called WMR.

Assumptions for WMR. The predictions of the pool members are in
[0, 1]. The prediction of WMR is binary but probabilistic. The labels
associated with the instances are binary.

We will use the notation introduced in the previous section. Recall that
at trial j WMC predicts 7y’ =Y /_ w!/'x/5"_ w!/ which is the weighted
average prediction of the pool members. Also WMG predicts 1 when
7> 1 and 0 when 7' <! (and either when 7’ =1).

Prediction of WMR. The new randomized algorithm WMR simply
predicts 1 with probability 7/,

Note that if the predictions x!” of the members of the the pool are
binary then 7' =g, /(g, + q.), where g, is the total weight of all algorithms
predicting 0 at trial j and g, is defined similarly.

Update Criterion of WMR. Like WMC, WMR updates in every trial.

Update step of WMR. The update step of WMR is the same as the
update step of WMG and WMC described in the previous section
{Inequality (5.1)).

Bounds on the performance of WMR depend on adequate independence
between the randomization performed by WMR and the choice of the
instances and labels. We will obtain bounds on the expected number of

643 108 2-§
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mistakes made by WMR under the following assumption, which we will
refer to as the weak independence condition:

EGY|(xD, p1), L (x, pU)) =92 (as)

for j=1,..,17 (Here we use conditional expectations with respect to
random variables, as described, for example, in [Bil86, Shi84]. The
notation (a.s.) stands for “almost surely,” that is, with probability 1.) The
variables appearing in the condition are defined in Section 5. Note that this
definition allows each of the x!/) and p"’ to be a random variable. If
they are deterministically chosen, then all of the weights and 7' are
deterministic and the construction of the algorithm guarantees that
the weak independence condition holds. (In that case, for the weak
independence condition to hold, it suffices that E(A”)=y'" for all j, which
follows from the construction of the algorithm.)

In addition to bounds on the expected number of mistakes, we will also
give a bound on the probability that the total number of mistakes exceeds
the expected number by some margin. For this bound, we make the
assumption, which we will refer to as the strong independence condition,

EGO (6, p ), s (1, 1), 20, LAY =3 (as)

for j=1, ..., t. Note that in addition to conditioning on the past predictions,
we are also now conditioning on the entire past, present, and future
sequence of instances and labels. Satisfaction of the strong independence
condition implies satisfaction of the weak one.

These independence conditions hold under a variety of assumptions
about the way the randomization of WMR is performed and the way the
instances and labels are chosen. We can assume that the instances and
labels are generated either deterministically or randomly without paying
any attention to the predictions of the algorithm. For the weak
independence condition, we can also let them depend arbitrarily on the
predictions made by the algorithm in previous trials. In the case where the
generation of the instances and labels is independent of the randomization
of the algorithm, the weak independence condition holds even if the
random choices of the algorithm are not independent of each other. For
example, one way to implement the randomization of WMR is to choose
a real number r uniformly from the range [0, 1] and to predict 1 if ' > r.
For the purpose of obtaining expected mistake bounds, it does not matter
whether the random numbers used in each trial are chosen independently
or not; in fact, a single choice of r can be made initially, and this same
number can be used for each trial. In this case, the randomization of the
algorithm is confined to this single choice. If instead a new value for r is
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chosen independently in each trial (and independently of the choice of the
instances and labels), then the strong independence condition holds.

There is another way to perform the randomization. One can make each
prediction by choosing a member of the pool at random, with probability
proportional to its current weight, and then predicting 1 if that pool
member predicts 1 and 0 if it predicts 0. If the pool member’s prediction is
strictly between 0 and 1, then the prediction is determined by a biased coin
flip with the probability of predicting 1 equal to the value of the prediction
of the chosen pool member. As above, the probability of predicting 1 is y/.
If the random choices made by this version of WMR are independent of
each other and of the choices of the instances and labels then the strong
independence condition holds.

In the special case when =0 and all predictions of the pool members
are binary, Maass has observed in independent research [Maa91] that it
suffices to make new random choices in just the trials in which a mistake
has been made. If a mistake is not made in a trial, then one uses the same
pool member for prediction in the next trial. Maass views the algorithm
WMR for this special case with the “lazy” update criterion from a different
perspective than ours and has obtained an elegant derivation of the In n
bound on the expected number of mistakes made by WMR when there is
an algorithm in the pool of »n algorithms (with equal initial weights) that
is consistent with all examples.

In the appendix we show that if the random choices at the end of
each trial with a mistake are independent then the strong independence
condition holds for WMR with the lazy update criterion and the
restrictions that =0 and all predictions of the pool members are binary.

In this section we only show the weaker result that the weak
independence condition holds, and we further restrict the instances and
predictions of the pool members to be deterministic. We assume equal
initial weights. Theorem 6.1 gives the In n bound on the expected number
of mistakes if there is a pool member consistent with all examples. Since the
instances and predictions of the pool members are deterministic, to show
that the weak independence condition holds it suffices to show that
E(4‘") =7 Thus it is sufficient to show that at each trial the member
with which we predict is equally likely to be any of the remaining
consistent pool members. (The choice of pool member is not independent
from one trial to the next.)

We use induction on the trial number to prove this claim. The claim
clearly holds at the first trial. Note that since the sequence of instances and
the algorithms of the pool are deterministic, the determination of which
pool members are consistent at each trial is not a probabilistic event. The
probability of choosing a particular inconsistent pool member for a
response at a given trial is 0. The probability of choosing a particular
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consistent pool member is the probability that it was the chosen member
at the previous trial, plus the probability that a mistake was made at the
previous trial times the probability of choosing the particular member at
this trial. If there were », consistent members before the previous trial
and n, before the current trial, then from the induction hypothesis the
probability of making a mistake at the previous trial is (n, —#n,)/n,. Thus
the probability of choosing a particular consistent member at this trial is

proving the claim.
The following theorem gives a bound on the expected number of
mistakes made by WMR if the weak independence condition holds.

THEOREM 6.1. Let & be any sequence of instances with binary labels. Let
m be the number of mistakes made by WMR on the sequence & when
applied to some pool of probabilistic prediction algorithms.

Then under the weak independence condition we have

E(In(w,ni/Wgo))
1—-4 '

Proof. By the weak independence condition

E(m) <

E(‘ﬂv(”——p'“‘ 1 (xill’ p(l))’ ey (XU), p(j)))= |},lil_p(,/)|.

Thus E(|2"—p[)=E(|]y"" —p"|). Thus E(m)=E(X;_, (2" —p"|)=
EXI_, |y =p"). The desired bound follows immediately from

Lemma 5.3. |

If the predictions of the algorithms of the pool and the labels are all
chosen deterministically, then the weights are also deterministic; the bound
of Theorem 6.1 becomes

In(wi /Wi )

1-p

This bound is identical to the bound on the total loss proven for WMC
{Theorem 5.2). The comparison made at the end of Section 5 with the
bound of WMG also applies here. The bound for WMR, like the bound for
WMC, is better than the bound for WMG by nearly a factor of 2 for
close to 1. In the case of WMC this improvement was obtained by allowing
predictions from the interval [0, 1]; here predictions are binary (as for
WMG) and the improvement comes from the randomization. Recently,

E(m) <
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Vovk [Vov90b, Vov90a] has shown that with a different rule for
computing the randomized prediction one can obtain the somewhat better
expected mistake bound

In(w,/Wen)
2In(2/(1+ B))

exactly a factor of 2 better than our deterministic bound. The bound
obtained here and Vovk’s bound for his algorithm approach each other as
f approaches 1.

We also obtain the following corollary, analogous to Corollary 5.1 for
WMG.

Corollary 6.1.  Assume that </ is a pool of n prediction algorithms and
that m; is the total loss of the ith algorithm of the pool on a sequence ¥ of
instances with binary labels. If WMR is applied to pool of of probabilistic
prediction algorithms with equal initial weights, then under the weak inde-
pendence condition the expected number of mistakes is at most

log n+ E(m;) log(1/f)
1-p

on the sequence &, for 1 <i<|.d/|.

Proof. This follows immediately from Theorem 6.1 and the fact that
w2 3 wilgm™ ]l

In the case that the strong independence condition holds, Chernoff
bounds can be used to obtain bounds on the probability that the actual
number of mistakes is much larger than the expected number.

We use a theorem regarding Chernoff bounds applied to super-
martingales that is given in [Lit89a]. Let (X, ./, P) be probability space,
let 4, .., %, be c-algebras contained in </, and let S, .., S, be a sequence
of random variables on this probability space. Then the sequence
(S, %), .., (S,, %, is a supermartingale \f 4, < -.- = 9,, S, is %-measurable
for i=1, .., n E(|S;|) is finite for i=1, .., n, and E(S,; |, |%4)< S, (as.) for
i=1,.,n—1.

THEOREM 6.2 [Lit89a]. Let (X, o/, P) be a probability space and let
G4 <Y< -9 be g-algebras contained in of. Let &,,.., ¢, be a
sequence of random variables on this probability space such that 0 <&, <1
for each i, and let ¢, ..., ¢, be G-measurable random variables with 0 <¢; < 1
fori=1,.. 1t Let

§= 3 (t—c)
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and let So=0. Let p=(1/1)2;_,c; Let o be a $-measurable random
variable. Then if the sequence ((So, %), .., (S,, %)) is a supermartingale,
then the following statement holds at almost every point in X for which

O<u<L IfOSasp then
P(SIZ1!|{4)<e<12r;‘(3m'

We obtain the following bound.

THEOREM 6.3. Let ¥ be any sequence of instances with binary labels and
let 7 be some pool of prediction algorithms. Suppose that WMR, applied to
&, is run on this sequence. Let m be a random variable giving the number
of mistakes made. Suppose that the strong independence condition holds. If &
containts t instances, and if b and a are functions of (x'"), p''), .., (x"), p')
such that E(m|(xV, pV), .., (x", p'"))< b (a.s.) and O<a< 1, then

Pm>(1+a)b|(xD, pM), ., (x, p0)) e 7 (as.).

Proof. Suppose there are ¢ trials. Let &,= |V — p| Thus m=3]_, ¢&;.
Let ¢, = E(Z | (x, p), oo (X, p)) + (1/1)(b — E(m | (x), p("), ..
(x, p'"))). Thus 3/_ c,=bh. Let §;=%7_, ({,—c,) and let S,=0. Let
% =%, denote the o-algebra generated by (x'*, p")), ..., (x), p"'), and for
Jj=1,..,1t let % denote the o-algebra generated by ¢ and /,, .., ;. Note
that S, is % -measurable and since 3" is a function of the instances and
labels it is ¥-measurable. Note also that E(¢;|%) and E(¢,|x‘", p'"), ...,
(x, p')) are two ways of writing the same thing. Under the strong
independence assumption we have for j=1, ..., n—1

EC,— |8 )= [y — pt] — ¢ (a.s.)

This is 4-measurable, and thus equals E(,—¢;,|9)=E({,[%4) —¢;<0 (as.)
Thus

E(S,I(Z 1):S_/~ 1+E(‘f/‘_c,‘|{j~1)

<S8 (as.).

Thus if we let x=ab/t and p=b/t the hypotheses of Theorem 6.2 are
satisfied, yielding

P ( Z (é]—' cj) 2ab|(¢> Se*—azu’l}u)’
J

=1

which is one way of writing the desired inequality. |
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We give an application of this theorem in Section 8. There the instances
and labels are deterministically chosen. One use of the theorem for random
instances and labels is in a case where there exists some constant b, such
that P(b<bhy)=1—06 for some small 6. Then P(m>(1+a)b and
h< bl (xV, pM), ., (x*, p')) < e “3 (as.) and thus P(m> (1 +a)b) <
PR E N}

7. PooLs oF FUNCTIONS

In this section we consider the case in which the Weighted Majority
Algorithm is applied to a pool of functions. (All functions are from the
instance domain to {0, 1}.) We can think of such a pool of functions as a
pool of prediction algorithms by interpreting a function fin the pool as the
prediction algorithm that predicts f(x) for any trial with instance x. The
results in this section apply to the case where there exists a function in the
pool that is consistent with the sequence of trials. In this section we
consider only deterministic algorithms for the case when all predictions are
binary; the only master algorithm we work with 1s WM (this section is
independent of Sections 5 and 6). We study what can be achieved by the
Weighted Majority Algorithm if one desires to obtain better mistake
bounds for some functions in a pool of algorithms at the expense of worse
bounds for others. We show that under certain (rather strong) restrictions
on the target class, WM is an optimal (deterministic) algorithm in a strong
sense: given any deterministic on-line prediction algorithm A, there exists
a way to choose initial weights for WM so that for each function in the
target class the mistake bound for WM is at least as small as the mistake
bound for 4. (Note that this is stronger than just saying that the worst case
mistake bound for WM for the target class is no larger than the worst case
bound for A for the target class.)

At the end of this section we turn from finite to infinite target classes,
giving results regarding what sequences of mistake bounds are possible for
arbitrary target classes.

THEOREM 7.1. Let ¢, ..., 9, be a pool of functions with range {0, 1} and
let M, ..., M, be non-negative integers such that 3.7_, 2~ " < 2. If algorithm
WM is applied to the pool with initial weights w,=2~* and with =0, and
if the sequence of trials is consistent with some function ¢, of the pool, then

the algorithm makes at most M, mistakes.

Proof. From Theorem 2.1, we obtain the following upper bound on the
number of mistakes of WM:

log, Y 2" M—log, 2" M<1+M,.

j=1
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Since both M, and the number of mistakes made are integers, this gives the
desired bound. |

We next show that in one special case the Weighted Majority Algorithm
is optimal. We say that a set of {0, 1}-valued functions, ¢,, .., @,, €ach
with domain X, is shattered by X if (¢,(x), ..., ¢,(x)) ranges over all of
{0, 1} as x ranges over X. This notion of shattering has been considered
by Assouad [Ass83]. It is dual to the notion of shattering used to define
the Vapnik-Chervonenkis dimension of a concept class [VC71, BEHW&g&9].
If a pool of functions is shattered by its domain, then there is a lower
bound matching the above upper bound for the number of mistakes made
by any deterministic algorithm.

Note that the applicability of the optimality result that follows is limited.
A simple counting argument shows that for a domain X to shatter a
function class requires the size of the function class to be no greater than
log, | X|.

We first give two lemmas that we need.

LEMMA 7.1. Suppose that r, .., r, are positive real numbers such that the
quotient r jfr; ., is an integer for i=1,.,n—1. Then if 0<s<3 " | r; and
s/ry is an integer, there exists an m<n such that Y7 | r;=s.

Proof. 1f r, =5 then we are done. Otherwise, r; <s. Let j be the largest
integer such that 3/~ r,<s. By hypothesis, j—1 <n, so j<n From the
choice of j we have Y/_, r;=s. It completes the proof of the lemma to
show that it is also the case that 3°/_, r,<s. To see this, note that there
must exist integers / and /" such that 3/_|r,=/r, and s=1r,. Since we
are assuming that /r,</{'r, we must have >/, r,=(/+1)r,<l'r;=5, as
desired. |

LemMa 72, Given ry, .., r;>0, suppose that log,r,,..log,r, are
integers (not necessarily positive} and suppose that | is an integer such that
max, r, <2'<Y/_, r,. Then there exists a set K< !{1,.. )} such that
Zie K rp= 2['

Proof. Let r}, .., rj be a permutation of r, ..., r, such that ri = --- 2 r].
Let k,=log,r.. Then rj/ri,,=2% %+ which is an integer for
i=1, .. j— 1. Similarly, 2//r} is an integer. Thus by Lemma 7.1 there exists
some m such that 37  ri=2" |

i=1

THEOREM 7.2. Let {¢@,, .. @, be any collection of {0, 1}-valued
Sfunctions that is shattered by its domain (the domain can be finite or infinite),
let A be any deterministic on-line learning algorithm, and for i=1, .., n,
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let M, denote the maximum number of mistakes that A makes on any
sequence consistent with @,. Assume that all of these M, are finite. Then

27 M<2,

Proof. We first give a rough outline of the proof. An adversary
constructs a sequence of trials for the learning algorithm. The adversary
assigns to each function ¢, in the target class a weight that is equal to 27,
These weights remain fixed, except that after each trial is generated the
adversary sets to zero the weights of those functions that are not consistent
with the trials that have been generated. The adversary picks instances and
labels so that the learner makes a mistake at each trial and so that, no
matter what the learning algorithm does, the sum of the weights of the
consistent functions decreases by approximately a factor of two at each
trial. Eventually, since consistent functions are eliminated at each trial,
there must be a consistent function ¢, whose weight is a substantial
fraction of the sum of the weights of the remaining consistent functions.
If we let s=Y7_,2"*, then the sum of the weights of the remaining
consistent functions will be roughly 52/, where ¢ is the number of trials
that have been generated. The weight of the consistent function ¢, is 27,
Our argument will show that for this j the value of s27//2* is bounded
by some small constant, call it ¢ for now. The learner will have made ¢
mistakes; since ¢; is consistent with all of the trials, we must have r< M,.
Thus we have s/c <2'~ ¥ < 1. When we fill in the details this will give the
bound of the theorem.

We now give the details of the proof. The adversary maintains weights
corresponding to the functions ¢,, .., @, in variables u,, .., u,. Initially
for each i, u;=2"*:. The trials are generated by repeating the following
procedure; each iteration other than the final one generates one trial
Let r denote the number of the trial to be generated during the current
iteration. For the first iteration r=1 and it is incremented by 1 at each
iteration. At the beginning of the rth iteration, the adversary sets
k,=|log, X" ,u;]. Thus 2%<¥7"  u;<2¥*' (Note that k, is not
necessarily positive.) If max;u,>2%~" then the adversary stops without
generating any further trials; a total of r—1 trials have been generated.
Otherwise, we apply Lemma 7.2, with the r; in the lemma corresponding to
the current values of the u,. (In iterations after the first, some of the u, will
be zero; in that case we apply the lemma to the subsequence consisting of
the u, that are non-zero.) Since max, #; <2~ '<¥"_, u,, this lemma tells
us that there exists some K< {l,..,n} such that ¥, ,u,=2%""' The
adversary chooses an instance x for the current trial such that ¢,(x) =0 for
ie K and ¢,(x)=1 if i¢ K. This is possible because the target class is
shattered by the domain. It chooses the label p so that it is not equal to
the prediction of algorithm A. (We will argue later that there will be at

643108 2-6
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least one function in the target class consistent with all pairs of instances
and labels chosen by the adversary.) Thus the learner makes a mistake at
each trial. In preparation for the next iteration, the adversary sets u, to 0
if ¢,(x)# p, for each i

The adversary continues to generate trials by repeating this strategy until
it terminates as described. In a moment, we argue that it does indeed
terminate. First note that at the rth iteration, X7, u,>2% 1If the
strategy does not terminate at the beginning of this iteration, then for the
set K determined during this iteration, >, . u;=2%""'. Thus we also have
Siexuiz 2% =1 Hence when the adversary updates the u, at the end of the
iteration, it will decrease -3.7_, u, by at least 2"~ '. Furthermore, the new
value of Y7, u; is at least 2%~ !, The strategy must terminate since at least
one non-zero u; is set to zero during each iteration.

For r>1, the argument of the previous paragraph teils us that at the
beginning of the rth iteration, Y7_, u,>2%-'"'. Since at that time
2kt %57 u, we have k,+ 1>k, _,— 1. Therefore, k, > k,_, — 1. Hence
k,zk,—(r—1). This holds even if termination occurs at the beginning
of iteration r. If a total of ¢ trials are generated, then termination occurs
at the beginning of the (74 1)st iteration, at which time we have
max, u; > 2k -1 x k-t )

We now show how to choose a target function ¢;. Choose j such that at
the beginning of iteration f+ 1 we have u;=max, u;. Since ;>0 it is still
at its initial value. Substituting the definitions of u; and &, into the
inequality at the end of the previous paragraph, we obtain

- M, > 2Llogz T2 M- (+1 )'

From this we get

r+1 —Mj>|\log2 Y 2M'J.

i=1

Since u; is non-zero at termination, the function ¢; must have been
consistent with all of the labels and therefore could be the target function.
Since the learner has made ¢ mistakes, we must have r< M j» SO

Llog2 y 2“”‘—|< 1.

i=1
Thus

log, Y 2 M<«l,

i=1
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SO

Y 27 Mi<2,

i=1
as desired. |

Suppose that for some set of integers M,, .., M, we want to construct
a learning algorithm that makes no more than M, mistakes if the target
function turns out to be ¢, for i=1,..,n. When the domain shatters
the target class {@,, .., ¢,}, the following corollary tells us that if any
algorithm can accomplish this, then there is a way to choose the initial
weights for WM that does so.

CorOLLARY 7.1. Let {¢, .., ¢,} be a collection of functions with range
{0, 1} that is shattered by the domain X. Suppose that A is an on-line
learning algorithm and that M, .., M, are positive integers such that A
makes at most M, mistakes when given a sequence of trials consistent with
@, for i=1, ..., n. Suppose Algorithm WM is applied to the pool ¢, ..., @,
with initial weights w,= 27" and with §=0. If there exists an i in the range
1, ..., n such that the sequence of trials is consistent with ¢,, then WM makes
at most M, mistakes.

Proof. From Theorem 7.2 we have ¥7_, 2" <2, Thus we obtain the

i=1

desired mistake bound from Theorem 7.1. ]

We also can obtain interesting results for infinite pools, using Algorithm
WMI,.

THEOREM 7.3. Let M, , M,, M,,.. be an infinite sequence of non-
negative integers. Assume that the values M, are given by a computable
function of i. Then we have (a)=(b)= (c)=(d), where (a), (b), (c), and
(d) are the following statements:

a o 2¥M' is finite and its value can be computed to arbitrary
i=1 V
precist'on.

(b) There exists ceR such that for all domains X and computably
indexed collections of total recursive functions ¢,, @5, @5, .. on X there
exists an on-line prediction algorithm A such that for all positive integers |,
Jor all sequences of trials consistent with ¢, the algorithm A makes at most
M, + ¢ mistakes.

(c) For all domains X and computably indexed collections of total
recursive functions @, ¢, ¢, ... on X there exist ce R, j> 0, and an on-line
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prediction algorithm A such that for all integers (2 j, for all sequences of
trials consistent with @, the algorithm A makes at most M; + ¢ mistakes.

(d) 37,2 M s finite.
It is interesting to state the contrapositive of the last implication: If
“, 27" diverges, then there exists a domain X and a computably

indexed collection of total recursive functions ¢,, ¢, ¢5, .. such that for

all ceR and j>0, and for all on-line prediction algorithms A there exists
an integer /> j for which there is a sequence of trials consistent with ¢, on
which the algorithm 4 makes greater than M, + ¢ mistakes. Since this holds

for all positive j, in fact there exist infinitely many such i.

Proof. Statement (¢) is weaker than (b). Thus to prove the theorem it
suffices to demonstrate that (a) implies (b) and that (c) implies (d). To see
that (a) implies (b} we construct an on-line prediction algorithm A using
WMI,. We apply WMI, to the pool ¢, ¢,, .. with initial weights 2 =,
We can construct the function W needed by WMI, by using our ability to
compute the sum of the initial weights to arbitrary precision. This, coupled
with our ability to compute initial partial sums of the weights lets us
compute upper bounds on ¥ ;2 ™ that approach 0 as i goes to infinity.
We set the parameter f of WMI, to zero. Then if ¢, is consistent with a
sequence of trials, then Theorem 4.1 gives a bound of log, W(1)+ M, + 1.
We can thus take ¢ =log, W(1)+ 1.

(c) implies (d): We choose the domain X to consist of all finite strings
of O’s and 1’s. We choose the collection of functions ¢, ¢,, .. to be the
functions defined by ¢,(x)=1 if the string x is of length at least i, and if
the ith bit of x is 1; otherwise ¢,{x)=0. Choose ¢ and j appropriately to
obtain the mistake bounds promised by the hypothesis (¢). Note that for
any n>j, the collection ¢, .., ¢, is shattered by the domain. Thus for
the algorithm A to have the given mistake bounds we must have

1,27 M9 <2, by Theorem 7.2. Thus the partial sums of 37_ 2 * are
increasing and bounded above, so the series converges to a finite sum as
desired. J}

The algorithm that we use for parts (b) and (c) is thus a version of
WMI,. As indicated in the preceding proof, we can take the constant ¢ of
part (b) to be log, W(1) + 1. The value of W(1) is some computable upper
bound on ¥, 2. By making this upper bound sufficiently precise, we
can take ¢ to be log, 372, 27 + 2. (Here the additive constant 2 could be
replaced by any constant greater than 1.) If we are to choose a constant ¢
that will work regardless of the target class, then the proof indicates
that we must have Y7_ 2 -+ <2 for all n. Thus we must have

2,27 MraL) that is, c>log, Y7, 2 —1. This theorem lets us
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rederive some of the results of Barzdin and Freivalds [BF72, BF74], given
in the following corollary.

CoroLLARY 7.2 [BF72, BF74]). For any algorithm A and function f, let
M(A, f) denote the maximum number of mistakes made by A on any
sequence of trials consistent with f. Given any domain X,

(a) for every computably indexed collection of total recursive functions
@, @,,.. on X there exists an on-line prediction algorithm A such that
M(A, @,) is finite and M(A, ¢;)=log, i+ log, log i+ o(log log i), for i > 1.

{(b) There exists a computably indexed collection of total recursive
Junctions @, @,, ... on X such that for every on-line prediction algorithm A
there exist infinitely many i such that M(A, ¢,)> log, i+ log, log i.

Proof. Part (a) follows immediately from Theorem 7.3 and the fact that
Y-, (1/(iIn i(Inln i)*)) converges. Part (b) follows from Theorem 7.3 and
the fact that X2, (1/(ilni)) diverges. (See the statement of the contra-
positive of the final implication of the theorem that appears immediately

following the theorem.) |J

We also obtain the following result given in slightly weaker form in
[BF74]. (Their lower bound is log, » — 3.)

THEOREM 7.4. There exist a domain X and a computably indexed class of
total recursive functions @, @,, ... such that for any n>1 and any on-line
prediction algorithm A there exists a sequence of trials consistent with some
Sunction from {@,, .., @,} on which A makes at least | log, n_| mistakes.

Proof. We choose the domain and target class as in the proof of the
implication (c¢)=>(d) of Theorem 7.3. Thus if M, is a mistake bound for the
given algorithm for sequences consistent with ¢, we have ¥7_, 2 " Mi<2
Let M =max,.(, _, M, Then n2=* <2. Thus M>log, n—1. Since M is

5

an integer, this implies that M >| log, n |, as desired. |

8. ANOMALIES

We continue to consider pools of functions, now without the require-
ment of shattering imposed in part of the previous section. In this section
we consider the case where there is no function in the pool that is
consistent with all of the trials. With respect to a given function, we define
the number of anomalies in a sequence of trials to be the number of trials
that are inconsistent with that function. Given a pool of functions F, we say
that a sequence has n anomalies if # is the minimum number of anomalies
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of the sequence with respect to any function in F. In this case we cannot
necessarily say that particular trials are anomalous; for example, there may
be two functions in F minimizing the number of anomalies, and they may
be consistent with different trials. As in the previous section, we assume
that all functions in the pool are {0, 1}-valued. In this section we consider
the randomized algorithm WMR as well as WM. We assume that the
instances and labels are chosen deterministically.

Note that there are two types of situations in which anomalies arise: one
in which the sequence of trials is in fact consistent with some target
function, but not with any function in the pool, and the other in which the
same instance appears in the sequence with different labels at different
appearances. The latter may occur if there are errors in the instances or
the labels, or if there is insufficient information reported in each instance
to uniquely determine the appropriate label. Our upper bounds apply in
both types of situations. Our lower bounds are for the second type of
situation.

We give a lower bound that shows that the rate at which the mistake
bound for the deterministic version of WM grows with the number of
anomalies can be made (by appropriate choice of f#) arbitrarily close to the
best possible for deterministic prediction algorithms. We also show that the
rate at which the expected mistake bound for WMR grows can be made
arbitrarily close to the best possible rate of growth for randomized algo-
rithms. Given some class of functions F, let §, be the collection of all
sequences of trials . that have at most # anomalies. We define opt(F, 5)
to be the minimum over all deterministic algorithms A of the maximum
over all sequences % €S, of the number of mistakes made by 4 on &.
Thus the value opt(F, n) is the best found for the class F that can be
obtained (deterministically) in the presence of n anomalies. We define
optranptF> n) to be the minimum over all algorithms (including
randomized algorithms) 4 of the maximum over all sequences ¥ €S,
of the expected number of mistakes made by 4 on &. The randomization
used by A is assumed to be independent of the choice of the sequence.

THEOREM B.1. For all target classes F and all n =0, if |F|>1 then
opt(F, n) = opt(F, 0)+2x.

Proof. Let k=opt(F,0). Since |F|>1, k> 1. Saying that opt(F, n)=>
k + 25 is equivalent to saying that for any deterministic learning algorithm
A, there exist a function fe F and a sequence of trials having at most n
anomalies with respect to f, such that 4 makes at least £+ 21 mistakes
when presented with that sequence of trials. Given an algorithm A, we
show how an adversary can choose a function and a sequence of instances
such that 4 makes at least k& + 2» mistakes.
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We use the notion of a mistake tree used in [Lit88, Lit89b7]. A mistake
tree for a pool of functions F over a domain X is a binary tree each of
whose nodes is a non-empty subset of F and each of whose internal nodes
is labeled with a point of X. Its root is F. Given any internal node F’
labeled x, the left child of that node, if present, must be the subset of F’
consisting of all functions in F’ that are 0 at x. {The left child can be
present only if this subset is non-empty.} The right child, if present, must
be the set of functions in F' that are 1 at x. (Again, this subset must be
non-empty for the right child to be present.) A complete k-mistake tree is
a mistake tree that is a complete binary tree of height k. (We define the
height of a tree to be the length in edges of the longest path from the root
to a leaf) It is shown in [Lit88, Lit89b] that for any pool of functions F
there exists a complete opt(F, O)-mistake tree.

The adversary’s strategy is divided into two stages. For the first stage,
the adversary keeps track of a current mistake tree. Initially this is a
complete k-mistake tree for F. If k =1, the adversary proceeds immediately
to the second stage. Otherwise, the first instance chosen by the adversary
is the label of the root of the tree. Whatever the algorithm predicts, the
adversary tells the algorithm that its prediction is wrong. This response of
the adversary eliminates some functions as possible target functions. One of
the two subtrees of the root of the adversary’s current mistake tree is a
complete k& — 1 mistake tree for the remaining candidate functions. The
adversary sets its current mistake tree to that subtree. It chooses the next
instance to be the label of the root of the new current tree. The adversary
continues in this manner, forcing the algorithm to be wrong at each
instance. After j mistakes, the adversary’s current tree is a complete k —j
mistake tree for the remaining candidate target functions. As long as j <k,
the root of the current tree has two children corresponding to non-empty
subclasses of F; thus the adversary can choose a point (the label of the
root) at which it can force the algorithm to make a mistake. The adversary
continues with the first stage until X — 1 mistakes have been made.

At the end of the first stage, there are an instance x and a pair of
functions f; and f, in F both of which are consistent with the first k —1
trials such that f,(x) # f5(x). (The instance x is the label of the root of the
final I-mistake tree of the adversary, and the functions f, and f, can be
chosen from the left and right children of the root.) The adversary now
generates 2y + 1 trials, each with the same instance x. For each trial the
adversary chooses the label to be unequal to the prediction of the algorithm.
Suppose without loss of generality that for the majority of the second-stage
trials the generated labels are consistent with f;. Then at most  of the
trials are inconsistent with f;. Thus we have found a sequence of trials with
at most n anomalies with respect to F on which the algorithm has made
2n + k mistakes, as desired. |
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In the case of # anomalies, our mistake bound for WM is

log | F| + nlog(1/8)
log(2/(1+ B))

(see Corollary 2.2 k =1). As f approaches 1, the coefficient of # approaches
the optimal value of 2. However, at the same time coefficient of log | F|
approaches infinity. Thus some compromise is needed. For =1, we have
the bound

log, |F| +7
log,(4/3)

For some concept classes opt(F, 0)=log, |F|; for others it is strictly less,
and there is an additional gap between the lower bound that we give and
our bound for WM.

We can establish a lower bound for randomized algorithms by essentially
the same argument. The lower bound applies even in the case that the
choice of the instances and labels is made without any dependence on the
predictions of the algorithm, and thus it also applies to the model in which
such dependence is allowed.

THEOREM 8.2. For all target classes F and all n=0, if |F|>1 then
optrann(F, 1) = 3 opt(F, 0) + 1.

Proof. We describe how to adapt the proof of Theorem 8.1. We require
the adversary to compute the sequence of instances and labels ahead
of time, since we do not want the sequence to depend on the random
choices made by the algorithm. We can, however, assume that the
adversary has full knowledge of the algorithm. The adversary proceeds
exactly as above, except that instead of choosing labels as above, it
determines the probability that the algorithm will predict 1 at the current
trial, given the preceding sequence of instances and labels chosen by the
adversary. (The probability is not conditioned on previous responses of the
algorithm.) The adversary chooses the label 0 if and only if this probability
exceeds 3. Thus at each trial the expected number of mistakes is at least 1,
giving a lower bound one-half the size of the lower bound we obtained
for deterministic algorithms. {

Suppose that we run WMR with O < <1 on a pool of size n with equal
initial weights and that there are » anomalies. Let m denote the number
of mistakes made by WMR. Corollary 6.1 gives an upper bound on the
expected number of mistakes of

In#+nln(1/B)

E(m) < -
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In this section we have shown that the best possible value of the coefficient
of n in the upper bound for any algorithm is 1. Its value in the upper
bound for WMR can be made arbitrarily close to 1 by choosing f8
sufficiently close to 1.

It is also interesting to look at the upper bound given by Theorem 6.3 in
this situation. Since the instances and labels are here assumed to be chosen
deterministically, by Theorem 6.3, for 0 <a <1,

P (m S (1+a)lnn n n(l1+a) ln(l/ﬁ)> o @nnrnInUMYI ),
1-4 1-f

By making f close to 1 and a close to 0, the factor (1 +a)In(1/8)/(1 - B)
multiplying # can be made arbitrarily close to 1. A natural assumption is
that the number of anomalies grows in proportion to the number of trials.
In that case, after sufficiently many trial, with f sufficiently close to 1, we
have high confidence that the ratio of the number of mistakes to the
number of anomalies is not much more than 1. (By contrast, in the bound
for the deterministic algorithm WM, the factor multiplying 1 is always
greater than 2.)

9. CONCLUSION

We have investigated various master prediction algorithms that use the
predictions of a pool of algorithms to make their own predictions. Initially
each member of the pool is given a positive weight. The weight of a pool
member represents the “belief” of the master algorithm in the predictions
of the member. These weights are updated depending on how good the
predictions of the corresponding algorithms are. In all our algorithms the
prediction of the master is based on the weighted average of the predictions
of the pool members.

In the most basic master algorithm all predictions of the pool members
and the master as well as the labels of the examples are required to be
binary. For that algorithm the master simply predicts in the same way as
the weighted majority of the pool members do. Various variants of this
basic algorithm have been introduced that allow continuous predictions
and labels in [0, 1]. We have also given a probabilistic variant. Table 9.1
gives a summary.

We have developed upper bounds for the predictive performance of the
master algorithms in terms of the performance of the algorithms in the
pool. We have applied WM in various settings (Corollaries 2.1 to 2.3).
Similar corollaries hold for all variants. The simplest corollary gives a
bound on the performance of the master as a function of the best algorithm



254 LITTLESTONE AND WARMUTH

TABLE 9.1

Summary of Weighted Majority Versions

Master  Predictions of  Predictions of
algorithm pool members master algorithm  Labels Bound Comments

. . In{(w,;, /W,
WM binary binary binary In(winis /Wi )

In(2/(1 + §))
WML binary binary binary (Theorem 3.1)  For shifting target
WMI, binary binary binary (Theorem 4.1)  For infinite pools
. . In(w;i /W)
WMG 0,1 binar, binary —————
o 1] d Y W@+ p)
]n[""mil"/wﬁn)
WMC [0,1] [0.1] [0.1] —l—ﬂ_
In{w. . /w
WMR [0, 1] binary binary L“I"L/;;"—") Randomized predictions

(specialist) in the pool (Corollary 2.1). We have given a version WML of
WM that works well for cases where different pool members are specialists
for various sections of the trial sequence. Probabilistic versions and
versions that allow continuous predictions which also have the capability
of tracking the specialist can easily by developed. The same holds for the
version WMI, of WM that allows the pool to be countably infinite.
Furthermore it would be easy to combine the capabilities of tracking the
specialist and handling infinite pool size into a single algorithm.

We have tried to keep the exposition simple in that each master
algorithm focuses on one setting in which weighted majority techniques are
useful. We have developed a unified proof method for all bounds as well as
given simple direct proofs that sometimes seem unrelated.

Note that each of the master algorithms requires little computation time
beyond that required for simulating the algorithms in the pool (which
might be done in parallel). The number of operations required in each trial
to compute the prediction of the master algorithm and to update the
weights, if necessary, is linear in the size of the pool for all algorithms other
than WMI,, where it is linear in the size of the active subpool plus the time
required to compute W.

As discussed in the Introduction, our techniques can be used to find the
best setting of parameters of a given algorithm and to establish loss bounds
for learning classes of functions. Our methods justify the following
philosophy: For a given application find a large pool of candidate
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prediction algorithms which might work well for the application and
combine their predictions using one of the master algorithms presented.
(The practical size of the pool depends on available computational
resources.) The additional loss of the master over the best pool member
is essentially only logarithmic in the size of the pool and there is only
minimal computational overhead aside from running all pool members in
parallel. One might design schemes for removing algorithms from the pool
if their weight degenerates after a reasonable number of examples have
been processed and schemes for replacing the removed algorithms by new
trial candidates. However, if the trial sequence is non-stationary, in that a
previously bad algorithm may become a specialist at a later point, then
algorithms should be removed only temporarily.

One might also design master algorithms for the case where not all algo-
rithms of the pool are available during the initial trials but the algorithms
of the pool “wake up” and “fall asleep” at various times. Finally, one could
use our master algorithms for designing simple networks of algorithms. In
each node the input predictions are combined into an output prediction by
using one of the master algorithms. The simplest network would be a tree
with the algorithms of the pool at the leaves and WM algorithms at the
internal nodes. In case of a mistake the weights of the subpool of the
children of the root which predicted wrong are updated and recursively,
for all nodes whose weights were updated, the weights of the subpool of
their children that predicted wrong are updated. Does this hierarchical
application have any advantage over a single master that combines all
predictions of the pool?

In all master algorithms presented the parameter § (0 < f < 1) measures
how drastic the update is. (The smaller f§ the more drastic the update.) We
always kept B constant for ali trials. Particularly when there is statistical
noise in the examples, it might be advantageous to slowly increase f§ with
time.

APPENDIX

We first give alternate proofs for Theorems 5.1 and 6.1 which give upper
bounds on the loss of WMG and WMR, respectively. Second, we show
that an algorithm introduced by Maass (described in Section 6) satisfies the
strong independence condition.

The alternate proofs are simple and are very similar to the proof of the
upper bound on the number of mistakes of WM given in Theorem 2.1.
Recall that in that proof g, is the sum of all the current weights w; such
that the ith algorithm predicts O and g, is defined similarly. Thus the ith
algorithm contributes all of its weight either to ¢, or to ¢,. For WMG and
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WMR we allow the prediction x; to be continuous in [0, 1] and if x!/ is
not O or 1, the weight w;, is split between g, and ¢,, leading to the following
more general definition:

”

go=y wi(l—x;) and gi= Y WX,

i=1 i=1

Note that the total weight before the trial is again ¢,+¢q,. Also, if
x;€ {0, 1}, then the above coincides with the previous definition of g, and
¢, which was used for WM.

Alternate proof of Theorem 5.1, the Upper Bound on the Total Loss of
WMG. Recall that WMG may predict 0 if g, =2 ¢, and 1 if ¢, =>q,.

If no mistake occurs in a trial then the weight may only decrease. As in
the proof of Theorem 2.1 we only have to show that if WMG makes a
mistake then the total weight after the update is at most ((1+f)/2)(go+ ¢, )-

Assume that ¢, > ¢, at trial j and WMG’s prediction is 1 even though
the correct prediction is p =0. Then the total after the update is

n "

2wl =(1=B)x)= 3 will —x;+ fx,)=qo+ Bq,.

i=1 i=1

In the other case assume that ¢g,>¢, and WMG's prediction is 0 even
though the correct prediction is p = 1. Then

" n

Yowill = (1=l —x)) =} wi(B(l —x))+x,)=fgo+q,.

i=1 i=1

In both cases the larger of ¢, and ¢, is multiplied by  and thus as in the
proof of Theorem 2.1, it is easy to show that the total after the update is

at most ((1 +f)/2)} g+ q,). 1

Alternate Proof of Theorem 6.1, the Upper Bound on the Expected Total
Loss of WMR. Assume there are ¢ trials. For the jth trial, with sums of
weights ¢, and ¢, as described above, and with label p'”, let s = g4+ g,
and let u"'=¢,, where b is the complement of the label p‘”. Thus
s =w, . Let s"""=wg.. In the jth trial the probability that WMR
makes a mistake is ¥'"/s'". Also, the total weight decreases by (1 — f)u".
We observe that s+ =5 — (1 — B)u') and

s st 1 ul_/)
[ x| dv=(1-p) 5
Jaivnx g st s
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The expected number of mistakes in the ¢ trials is the sum of the
probabilities of making a mistake in each trial, which equals

1

' Ll s 1 1 s 1 ln(s11)/s[r+l|)
A

X X =
v X I—B sl X l—ﬂ ’

u[\/j_

as desired. |J

Next we show that an appropriately constructed version of the algorithm
introduced by Maas (described in Section 6) satisfies the strong inde-
pendence condition. We use the following lemma regarding conditional
expectations (cf. [ Bil86, Exercise 34.41]):

LEMMA A.l. Let & be a random variable such that E(|&|) < oo. Let n be
a {0, 1 }-valued random variable, let 4 be some finite o-algebra, and let o/
be the o-algebra generated by 4 and n. Then

nEMS|9)=Em|4)EMnl)  (as.)

Proof. For any atom Ue 9 such that P(U) >0 we have

~

E(n¢|%)= =| E(nélo)=| nE(E|o)= :
| Emei@)=] ne=] Eelo)=] nEEI)=af n
where a is the unique value of E(¢|.o7) on the set Uy~ '(1). This equals
a[ E(71%)=abP(U),
U

where b is the unique value of E(n]|%) on the set U. Let ¢ be the unique
value of E(né|%9) on U. Then we obtain ¢P(U)=abP(U). This gives the
desired result for any point in U~y '(1). The result is trivial on the rest
of U, thus proving that equality holds almost surely, as desired. ||

THEOREM A.l.  Assume that all pool members make binary predictions.
Suppose that Algorithm WMR is implemented as follows: The weights
are updated in each trial as described in Section S, using f=0. Since the
pool members’ predictions are binary this amounts to either leaving each
weight unchanged or setting it to zero, depending on whether or not the
corresponding pool member’s prediction matches the label. Each prediction is
made by making the same prediction that a randomly chosen pool member
makes. However, a new pool member is not chosen in every trial. Initially,
and at the beginning of any trial immediately following a mistake, a new
choice is made. Otherwise the most recently chosen pool member is used.
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Suppose that the random choice is made as follows: at each trial j for which
a new pool member must be chosen, the algorithm independently chooses a real
number r' uniformly from [0, 1]. It then chooses the pool member with index
k for whatever k satisfies (X2 w)/s" <r D < (35, wD)/s'P. (The event

i=

=0 has 0 probability—it can choose arbitrarily in that event; we assume
that real numbers are available, and do not discuss approximations necessary
Sor actual implementation of the algorithm.) If this algorithm is run and the
choices of all of the r'/" are independent of each other and of the choices of all
of the instances and labels, then the strong independence condition is satisfied.

Proof. Suppose there are ¢ trials. Let v/’ denote the index of the pool
member chosen in trial j. It suffices to show that for 1 <j<rand 1 <k <n

)
Wi

P(v(jl =k| (x(l)’ p“)), - ()C('), p(t)), }.(]), - AU lJ) — R

We prove this by induction. This clearly holds for the first trial. For other
trials, we have

P(v'j’=k|(x“’, plll)’ oy (x(zJ, p(’)), /1“', .y LV l))
=Py =kand AV V=pl- D (xD, py,
(x, pthy, A0 U1y
+ PO =kand AV 1 £ pU =D (x D) py,

(xD, p(y, A1, AU 1)
We look at these two terms separately:
P(vP =kand AU~ % plU= D (xD, p), . (xD, pt), A0, AU D)

k—1 _(f) k 2]
: W ; : W
P l=l' i <r(J)< z:l. i
st s

and A4~ 1)7&'0(}'71)' (X(]J, p(l)), - (x“’, p(l))’ i(l), - /Jv(jl))_

This is 0 if AY""=p"Y~ 1 and otherwise equals w!{/s"’. For the other
term, we have wherever AV~ =pU~-1

P(v'f’zkand g(f'l)=p<f*1)|(x“), p“)), o (x(rl’ p(IJ)’ Z(”, ey 1(171))
P(v”)zkand ;v(jfl):p(_i»— 1)
|(x(1), p(l)), ey (x(r)’ p“)), i“), vy 1(1'72))
=P(;L(j—l|=p(jfl)|(x(l), p(l)), - (x(tl’ p(tJ)’ }M(l)’ .y /;'(1'72))’
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using Lemma A.l. Since a new random choice is not made when no
mistake is made, this equals

l:P(v(Jél):k and l(j_”—p(j_ 1)
I(x“)’ p(l))’ vy (x(t) (!)) l“) ._,;(1—2))
P(AU" ”=p”””|(x“), p“)), . ( (r), p(')), /"L(“, o AU*Z)).

By the induction hypothesis

P(VU*U k and i(j*ll_p /71)|(X(l) (11)’ . (x('), p(r))’ Z(l), m’;t(jfl))

wy~ D G-1)— o= 1)
Y G-
VD) ifxy ™ V=p

s

0 otherwise.

This equals w!//s¥ 1) Also

P([{U’A l)=p(j— l)| (X(I), p(l))’ . (X('), plr)), )vll), - )'(jfZJ)
(=1 2
wa ) s(!

= > G- - =1
ks.t.x}/"’:pU‘” s §

Thus we get
P(v'j'=k and AV l)=p(jf 1)| (x“), p(”), oy (x“ (ll) i(” oy ;t(jfl))

equals 0 where AV~ D #pY "1 and equals w{/s") where AV~ =pU-D,
Putting the two terms that we started with together yields the desired
result. [
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