Multiparty Communication Complexity

Danny Dolev
Computer Science Department
Hebrew University
and
IBM Research
Almaden Research Center
650 Harry Road
San José, California 95120

Abstract

A given Boolean function has its input dis-
tributed among many parties. The aim is to
determine which parties to talk to and what
information to exchange with each of them in
order to evaluate the function while minimiz-
ing the total communication. This paper shows
that it is possible to obtain the Boolean an-
swer deterministically with only a polynomial
increase in communication with respect to the
information lower bound given by the nonde-
terministic communication complexity of the
function.

1 Introduction

The question of multi-party communication
complexity is motivated by two basic earlier
models. The two-party communication model
assumes that each of two processors has a part
of the input, and the aim is to compute a
function on the input minimizing the amount
of communication. In the decision tree model,
the input is distributed among many memory
locations, and the aim is to compute a function
on the input while minimizing the number
of memory locations examined. The multi-
party communication model extends these two
basic models by assuming that the input is
distributed among many processors; here the
goal is to minimize both communication and
number of processors accessed.
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Two-party communication has been exten-
sively studied in the last decade. The basic em-
phasis was inspired by VLSI complexity, and
this lead to the study of two-party communi-
cation. The main issues studied were the rel-
ative power of determinism, nondeterminism
and randomization. Yao[14] introduced the
tool of minimum fooling set (or crossing se-
quence) as a measure for the amount of infor-
mation that needs to be exchanged for a given
input partitioned among the two parties. The
same technique was widely used in [2,4, 6,7, 9].
The essence of this technique amounts to iden-
tifying what information to exchange in order
to minimize the amount of communication.

The decision tree model has been studied
in several contexts [3, 8, 11, 12}. An area
that inspired rvesearch in this direction is
the study of graph properties (see [10] for
example). The main focus in these studies is
how to minimize the fractiou of the input that
must be examined in order to verify a given
property. Here again we are interested in the
relative power of determinism, nondeterminism
and randomization. The basic issue is how
to decide what input locations to examine.
Similar reduction ideas appear in the proof of
Theorem 1 in [1].

In the multi-party communication model, when
a large amount of information is distributed
among a large number of processors, it is cru-
cial to decide both which processors to commu-
nicate with and what information to exchange
with each one. We can neither talk to all par-
ties as in the two-party model, nor obtain all



the information known to each party when we
talk to it as in the decision tree model. A natu-
ral measure for the least amount of information
required is the information that a nondeter-
ministic algorithm needs to exchange in order
to decide the value of the function. In this pa-
per we show that when computing a Boolean
function, this information can be obtained de-
terministically with limited overhead. More
precisely, we prove that the deterministic and
the nondeterministic communication complex-
ity of multi-party boolean function evaluation
are polynomially related.

Tight bounds relate the deterministic and the
nondeterministic communication complexity in
the two-party model. Let Cy be the nondeter-
ministic communication complexity of the lan-
guage defined by a boolean function f(z1,22),
and Cp that of its complement. Aho, Ullman
and Yannakakis [2] showed that the determin-
istic complexity of f is at most O(CoC1); Hal-
stenberg and Reischuk [6] improved this bound
to CoCi(1 + o(1)). A matching lower bound
was obtained by Halstenberg and Reischuk [6],
improving an earlier result of Melhorn and
Schmidt [7]. Fiirer [5] obtained similar lower
bounds for the randomized case. Further re-
strictions on the communication exchange such
as bounding the number of rounds have been
studied by Papadimitriou and Sipser [9], Duris,
Galil and Schnitger [4] and others.

Quadratic bounds relating deterministic and
nondeterministic complexities have also been
obtained for decision trees. Let k; and ko be
the nondeterministic complexity (the number
of memory locations examined) of a boolean
function of n variables f(zy,...,2,) and its
complement. Blum and Impagliazzo [3] showed
that the deterministic decision tree complexity
of f is at most kok;. Related results for
randomized decision frees can be found in Saks
and Wigderson [12] and Nisan [8].

Our work was motivated by the striking simi-
larity of the results in these two models, which
give quadratic CoCy and kok; bounds, respec-
tively. The methods used to obtain the bounds
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in these two models, however, are very dif-
ferent. Since in distributed computing, the
natural model is one that combines both, one
should wonder whether a similar relation holds
for multi-party communication. Our result
gives a bound on the number of bits exchanged
by a deterministic algorithm for a boolean
function f of the order of (koCo)(k1C1) 2, up
to logarithmic factors, where k1 and Cy are the
number of processors accessed and the num-
ber of bits exchanged in a nondeterministic al-
gorithm for f, and ko and Cy are the analo-
gous parameters for the complementary func-
tion 1 — f.

Communication complexity in distributed com-
puting has mainly focused on the number of
messages or bits required to compute a spe-
cific function in a system. The complexity usu-
ally arises from either symmetry breaking or
asynchronous behavior. The only study that
is somewhat close to ours was done by Tiwari
[13]. Tiwari studies mainly a chain of proces-
sors computing a function f(z1,22), where the
inputs are at both ends of the chain. The diffi-
culties in obtaining his result are knowing what
information to distribute (as in the two-party
model) and how that information should be
propagated along the chain. However, in his
model the added complexity of deciding what
processors to query does not arise.

In order to concentrate on the combined
complexity of deciding what processors to
query and what information to exchange with
them, we assume the following model. The
input is distributed among n parties, and a
single coordinator can communicate directly
with each one of them. One can easily show
that allowing direct communication among the
parties will not significantly affect the bounds
that we obtain.

2 Definitions

Suppose a coordinator wishes to evaluate a
boolean function f(21,...,%,). The input
vector @ = (Z1,...,2n) is distributed among



n parties, with z; known to party 7, where z;
is chosen from a set I';.

We shall assume the existence of a nondeter-
ministic algorithm A; that accepts the lan-
guage defined by f (when the value of f is
1). The communication behavior of the non-
deterministic algorithm can be described by a
communication vector s = (sq,...,s,), where
8 is a self-delimiting binary communication se-
quence between the coordinator and party i,
for every i. Fach possible run of the nonde-
terministic algorithm A has a corresponding
communication vector s = (815-..,8,). Let
Ai(si) be the set of all z; for which s; is a
valid communication sequence under A be-
tween the coordinator and party i, when this
party holds input z;, from the point of view
of party 7. In particular, if s; is the empty se-
quence, then A;(s;) = I;; if s; is non-empty,
then we say that party 7 is accessed in s. A
communication sequence s = (sy,. ., 8,) s a
I-certificate if the algorithm accepts the input
when the communication with the n parties is
given by s, under the protocol j. We say that
a l-certificate s = (sy,...,s,) covers an input
vector & = (Z1,...,x,) at party i if o; € Ai(si).
Furthermore, s contains = if s covers x at each
party ¢.

We characterize the communication complex-
ity of My with two parameters. The first
parameter (4 is the maximum over all 1-
certificates s of 3~ length(s;); thus Cy is the
maximum number of bits exchanged when A
accepts. The second'parameter k1 is the max-
imum over all 1-certificates s of the number of
parties accessed in s; thus kq is the maximum
number of parties accessed when A accepts.

We also assume the existence of a nondetermin-
istic algorithm Ay that accepts the language
defined by the complementary function 1 — f,
and define O-certificates, Cp, ko and the appro-
priate terminology analogously.

We say that a 1-certificate s and a O-certificate
t are incompatible at party ¢ if Ai(s;)NA (L) =
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0. Notice that every O-certificate must be in-
compatible with every 1-certificate somewhere,
because otherwise we could construct an input
vector on which f takes both values 0 and 1.

3 A Deterministic Algorithm

The algorithm of Blum and Impagliazzo [3]
for the decision tree model works by repeat-
edly exposing parties accessed under given 0-
certificates; each 0-certificate chosen covers the
input at parties exposed earlier. By incompat-
ibility, for every 1-certificate s that covers the
input at the parties already exposed, each 0-
certificate chosen exposes a new party with a
non-empty communication under s. Thus by
the time ky 0-certificates have been chosen, ev-
ery l-certificate that could contain the input
has been exposed, and the value of f can be
easily verified. The total number of parties ex-
posed is at most kgk;.

A straightforward adaptation of this approach
does not work in our model. The reason
is that it is too expensive to obtain all the
information stored at each party exposed. To
overcome this difficulty, we choose a set of
parties to expose. Each party (in its turn)
evaluates those 1-certificates that were not
discarded yet with respect to its input. It
communicates enough information, via a 0-
certificate that covers its input, to discard
a fraction of the possible 1-certificates left.
To keep the amount of information “wasted”
bounded, it does not communicate when it
implies discarding only a very small fraction.
Only when this is no longer possible, so that
no exposed party has a valuable contribution,
do we choose a new 0-certificate that exposes
more parties. By the time k; 0-certificates have
been chosen, the number of 1-certificates left
has been halved. This is an adaptation of the
two-party deterministic algorithms.

Theorem 3.1 There is a deterministic al-
gorithm for f that runs in Cy + ki[log ko]
phases, talks to koky parties in cach phase,



and communicates (Cy + ky[log ko] )(k1)(Co +
ko[log(koky)]) bits per party per phase.

Proof. We assume that the set of 0-
certificates and 1-certificates is minimal, i.e.,
no certificate contains a smaller certificate
(one accessing fewer parties). We shall show
that the number of 1-certificates is at most
2 Cy + ki[logke]. To achieve this, we find
a description for every 1-certificate s whose
length is at most C; + ky[logko]. Note that
Cy bits are sufficient to describe the bits sent
under s; then [logn] bits could be used to
identify each of the k; parties accessed, for a
total of Cy + ki[logn] bits. We reduce the
number of bits used to identify each of the ky
parties to [log ko]. Consider the list of all 0-
certificates in some canonical order (say, the
lexicographic order). For each certificate ¢ in
this list in turn, find a party i at which s is
incompatible with ¢ (assuming s and ¢ are not
already incompatible at some party j found
earlier), use [log ko] bits to describe which of
the ko parties accessed under t is party i, and
then give the bits that party ¢ communicates
under s. When the end of the list is reached, we
have a description with at most C; + k& [log ko]
bits for s. It is not hard to show that the 1-
certificate can in fact be reconstructed from
this description by traversing the list of 0-
certificates.

Our deterministic algorithm for computing
f(@1,..., %) works in Cy + & [log ko] phases.
Each phase discards 1-certificates that do not
ccontain the input vector z = (zy,...,,);
the number of 1-certificates left, the current
1-certificates, is halved at each phase. By
the end of the last phase, either a proof that
f(z1,...,2,) = 1 has been found, or all 1-
certificates have been discarded, and therefore

f(:vi"“vwn):&

During each phase, the coordinator communi-
cates with at most kpk; parties, and obtains at
most & = (k1)(Co + ko[log(koky)]) bits from
them; he also send the « bits for the current
phase and all earlier phases to each party. Thus

the communication is at most a times the num-
ber of phases per party per phase, as stated.
The parties that the coordinator has commu-
nicated with in each phase will be called the ea-
posed parties. At the beginning of the phase,
no parties have been exposed, and there are
some number p of current 1-certificates.

The algorithm iteratively tries to execute step
1, and only executes step 2 if this fails.
If step 2 also fails, then f(zy,...,2,) =
1. Otherwise, the phase ends when the
number of 1-certificates has been halved. This
will happen by the time the number of bits
exchanged in step 1 reaches «, and no later
than by the (k; + 1)th execution of step 2.
Note that at the beginning of the phase step
1is skipped since there are no exposed parties.

1. Each exposed party ¢ in turn looks for
a O-certificate t such that ¢ covers the
input at party i and ¢ is incompatible
at party ¢ with at least p/2a current 1-
certificates per bit needed to describe ¢
at party . The number of bits needed
is length(t;) + [log(kek;)], so ¢ must be
incompatible with at least (length(t;) +
[log(koki1)])p/2a current 1-certificates at
party . It communicates only if such a
certificate has been found, in which case
the set of current 1-certificates is updated
(the 1-certificates incompatible with ¢ at
party 2 are discarded) before the next
exposed party is considered.

2. Otherwise, the coordinator finds the first
0O-certificate ¢ which is incompatible at
non-exposed parties with all current 1-
certificates with the exception of a set of at
most p/2ky 1-certificates, the surviving 1-
certificates, and adds the parties accessed
in 7 to the set of exposed parties (there are
at most kg such parties).

If step 1 fails, and there exists a 0-certificate
t that contains the input vector, then this cer-
tificate must succeed in step 2, because ¢ is in-
compatible with every 1-certificate somewhere,



and the number of 1-certificates that ¢ is incom-
patible with at the exposed parties is at most
those that were not discarded at step 1. That
number is the sum over all exposed 7 of the ex-
pression in step 1, and this is at most p/2k;.
Thus step 2 can only fail if no 0-certificate con-
tains the input vector, in which case the value
of the function is 1. Note that by the time «
bits of description have been used in step 1,
the number of current 1-certificates has been
halved.

The number of surviving 1-certificates after
the first j executions of step 2 is at most
(J — 1)p/2k1, because-the first time step 2 is
executed there are no surviving 1-certificates,
and each subsequent execution of step 2 adds
at most p/2k; surviving 1-certificates. Also,
for each non-surviving 1-certificate s, at least j
parties accessed by s have been exposed, since
each execution of step 2 exposes at least one
more party for each of them. It follows that
no current 1-certificate can be non-surviving
after the (k1 + 1)th execution of step 2, since
it would then have to access k; + 1 parties.
Thus the number of current 1-certificates after
the (k1 + 1)th execution of step 2 equals the
number of surviving 1-certificates, which is at

most p/2. []

4 Conclusion and Open Prob-
lems

In this paper we studied communication com-
plexity in the multi-party model. This model
is a natural distributed or parallel model. The
adaptation of existing results for the two-party
protocols and the decision tree protocols to this
model is not straightforward. The difficulties
we faced in introducing the deterministic al-
gorithm indicates that this task is feasible but
requires further research.

There are some results that can be directly
lifted from previous research, for example, re-
sults about specific instances or non-existence
results. The main open problems are obtain-
ing lower bounds in this model and the study
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of randomization. An intriguing question is
whether a quadratic upper bound exists. The
study of other measures, such as the number
of phases [4, 9], and of more general commu-
nication networks [13], has a special impor-
tance for understanding communication in dis-

tributed systems.
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