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SHRINKAGE OF DE MORGAN FORMULAE
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Abstract

It is shown that a random restriction leaving only a fraction € of the input
variables unassigned reduces the expected de Morgan formula size of the induced

function by at least a factor of ol €63, (A de Morgan formula is a formula
over the basis {A,V,}.)
This improves a long-standing result of ¢!-5 by Subbotovskaya and a recent

improvement to 25 158 by Nisan and Impagliazzo.

The new exponent yields an increased lower bound of Q(nz:i’é”(l)) for the
de Morgan formula size of a function defined by Andreev. This is the largest lower
bound known for a function in NP.
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Abstract

It is shown that a random restriction leaving only a fraction € of the input
variables unassigned reduces the expected de Morgan formula size of the induced
function by at least a factor of e"‘::jé ~ €163, (A de Morgan formula is a formula
over the basis {A,V,-}.) V

This improves a long-standing result of €!'> by Subbotovskaya and a recent

improvement to 157 o~ 158 by Nisan and Impagliazzo.

The new exponent yields an increased lower bound of Q(nz'—?é”(‘)) for the

de Morgan formula size of a function defined by Andreev. This is the largest lower
bound known for a function in NP.

1 Introduction

In [6], Subbatovskaya introduced the random restriction method and used it to
derive an (n!?®) lower bound on the de Morgan formula size of the parity function.
Khrapchenko [3],[4] (see also [2],[7],[8]) then used a different method to improve the
lower bound for the parity function to a tight Q(n?) bound. Quite a few years
then passed before Andreev [1] observed that the random restriction method used by
Subbatovskaya could be used to derive an Q(n?5-°()) lower bound on the de Morgan
formula size of a rather natural function in P. The function he used could be easily
shown to have formulae of size O(n?).

The following basic observation is used in Subbotovskaya’s proof that a random
restriction leaving only a fraction e of the variables of a function unassigned reduces
the expected formula size of the induced function by a factor of at least €!°. If a
leaf in a de Morgan formula is set once to 0 and once to 1, then under one of these
assignments the size of the formula decreases by at least one and under the other by
at least two, giving a total of at least 3 and an average of at least 1.5.

*This research was partially supported by the ESPRIT II BRA Programme of the EC under contract
# 3075 (ALCOM).
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Any formula in which all the leaves are arranged in pairs, or twigs as we shall call them,
and in which the gates in the lowest two levels alternate, shows that the preceding
argument in its present form cannot be strengthened.

Nisan and Impagliazzo recently found a neat way of improving Subbotovskaya’s result.
They argue that even if some formula is in a form in which only small savings can
be expected, subsequent reductions are likely to transform its structure into one in
which greater savings are expected. In order to capture this property they assign to
every formula a weight that takes into account not only its size but also the likelihood
of further size reductions in the subsequent random assignments. A formula with a
greater potential for savings will get a smaller weight, reflecting the fact that if this
formula is obtained progress has been made, even if only a small reduction of size was
obtained.

A constant v will be called a shrinkage ezponent if a reduction by a factor of at least
€” in the formula size is expected when a random restriction that leaves only a fraction
e of the inputs unassigned is applied.

In the sequel we follow Nisan’s and Impagliazzo’s approach. We use however a different
weight function which we consider to be more natural. The new weight function enables
us to improve upon Nisan’s and Impagliazzo’s shrinkage exponent.

Nisan and Impagliazzo define the neighbour tree of a leaf in a formula as the other
subtree of this leaf’s parent. A leaf is called a victim if it is contained in a neighbour
tree that contains at least two leaves. They then define the weight of a function to
be its formula size minus a small credit for every victim. Our weight function simply
adds a penalty for every twig contained in the formula.

The main result of this note is Theorem 2.1 that improves an analogous result in
Nisan’s and Impagliazzo’s work. The improved shrinkage exponent and the improved
lower bound for Andreev’s function then follow using the standard arguments that can
be found in Nisan’s and Impagliazzo’s paper [5], Andreev’s paper [1] or Dunne’s book
[2]. For a description of Andreev’s function the reader is also referred to these sources.
In proving Theorem 2.1 we use a top-down approach which conceptually simplifies the
proof. This is another difference between our work and that of Nisan and Impagliazzo.
We feel that our approach is more likely to produce further improvements.

2 An improved shrinkage exponent

A de Morgan formula is a binary tree in which each leaf is labeled by a literal from
the set {1,...,2,%7,...,%n} and each internal node functions as either an AND (A)
or an OR (V) gate. The size of a formula T is defined to be the number of leaves in it
and it is denoted by L(T'). A twig is subtree with just two leaves. The number of twigs
contained in a formula T is denoted by 7(T'). The weight of a formula T is defined to
be w(T) = L(T) + a - 7(T) where a is a parameter. We will take @ = /3 — 1.

Every formula T' computes in a natural way a function, denoted by f(T). For a
function f we denote by L(f) the minimal size of a formula computing f and by




w(f) the minimal weight of a formula computing f. If f is a function, we denote by
fr—0, fz=1 the functions obtained from f by assigning to z the value 0 or 1 respectively.

For a function f, we define o.-(f) = w(f) — W(fz=c) for ¢ = 0,1, 0.(f) =
0z=0(f)+02=1(f) and o(f) = X.e5 0z(f), where the summation is over all the variables
on which f depends.

Theorem 2.1 For any function f with w(f) > 1 we have

a_(i)_ > 2y where ¥

_3+2x 5-3
w(f) ~ '

T 24+a 2

An immediate corollary is

Corollary 2.2 For any function f = f(z1,...,2a) with w(f) > 1 we have

Blo(f)] < (1-T) w(h)

where E denotes ezpectation and f' is the random function fri=c obtained by choosing
ie{1,2,...,n} and c € {0,1} with equal probabilities.

Using induction, some analysis and the fact that for any function f we have

w(f)/(1+ %) < L(f) < w(f), we get

Coroll‘é;i'y 2.3 If f = f(z1,---,2%n) and f' is obtained by randomly choosing n —m
variables out of z1,...,2, and randomly assigning them values, then

Bl <o (2) L)

where ¢ is a fized constant and v = 52 = i:g@ ~ 1.63397.

This improves the analogous result in [5] with y = 2—138@ ~ 1.557.

Using the last corollary in the standard way, the Q(n?%°")) lower bound on the
formula size of the Andreev function, derived by Andreev in [1] (see also [2]) and later

improved by Nisan and Impagliazzo in [5] to Q(n?%") can now be further improved to
Q(n233) :

Corollary 2.4 The formula size of the Andreev function satisfies

T—

L(4,) = Q(n% M),

3 Preliminaries

Before proceeding it is useful to extend the definition of formula and allow leaves to be
labeled by constants. (Note that, although we have not said so explicitly, we already

consider a tree with one leaf, labeled by a constant, to be a formula with zero size and
weight.)



The size of a formula containing constant leaves is defined to be the number of non-
constant leaves in it. The weight of such a formula is obtained by adding the constant
a for every twig, even if its two leaves, or one of them, are labeled by constants.

We first show that this extension does not change the weights that were assigned to
functions.

Lemma 3.1 For any formula T computing @ non-constant function, there ezisis a
formula T' with no constant leaves that computes the same function and for which

w(T') < w(T).

Proof : Let £ be a leaf in T labeled by a constant c. Let m be the parent of £ and
let S be the neighbour tree of £.

If the function computed at m is constant, then remove £ and S from T making m a
leaf labeled by the appropriate constant. This action did not increase the number of
twigs (at most one new twig, involving m, was formed, but at least one twig was also
removed) and clearly did not increase the number of non-constant leaves in T'. The
weight therefore could have only decreased and the new tree still computes the same
function.

If the function computed at m is not constant, then it is equal to the function computed
by S. We can therefore replace the subtree of £,m and S in T by S alone. Again the
function computed did not change and its weight did not increase.

By repeating the above process we eventually end up with a formula with the required
properties.
0

The following lemma is now trivial.

Lemma 3.2 Let T be a formula and let f' be a function computed by T when k of its
non-constant leaves are assigned constant values. Then, w(f') < w(T) — k.

This lemma will be used in the next section to show that if f depends on z4,...,Zk
and f' = fr,=c1,zn=cn then w(f') < ‘-"(f) — k.
It is interesting to note at this stage that Lemmas 3.1 and 3.2 are not valid for the

weight function of Nisan and Impagliazzo. These properties make our weight function
easier to work with.

Next note that if f = fi V f2 (or f = fi A f2) where w(f) = w(f) +w(fz) and fije=c
and fo.=. are not both literals then o.—c(f) = 0s=(f1) + 0:=<(f2), i.e., the savings
behave super-additively. The hard cases in the proof of Theorem 3.1 will be those in
which f; and f; reduce to literals under certain assignments. We therefore need some
understanding of the circumstances under which this can happen.

Let f be a function. We write z = y where z and y are literals if fo—; =y, or in other
words if f = zy V Zg for some function g. As an example note that if f,—o = y then
this is expressed by writing Z => y. The collection of all the relations z = y valid for
the function f will be called the solo siructure of f. The next lemma classifies the
possible solo structures that functions can have.



Lemma 3.3 If f has a non-empty solo structure then it has of one of the following
forms :

1. {z=y,y=>2,T=>7,§=>T}and f=2yVITy. -
2. {z=>y,T=> 2} and f =zyV Zz.

(3

Az =>y,y=>z} and f =zyVZTYyg.
4. {z=>9,9=>7} and f =2y VIFV Tyg.
5. {z1=>9Y,...,2x >y} forsomek>1and f=(z1V...Vzr)yV Z1...%xg.
In cases (8) and (4) the function g does not depend on z or y, in case (3) g #1, in

case (4) g # 0, and in case (5) the function g does not depend on z,,...,z; and if
k=1 theng #0.

Proof : Let z = y be in the solo structure of f. If z = y is the only relation in
the solo structure of f then f is of the form (5) with k = 1. Suppose therefore that
z' = v/ is also in the solo structure of f.

If ' = z then y = vy’ and therefore 2’ = y' is not a new relation. If z’ = ¥ then either
v’ = ¥ in which case f is of the form (1), or ¥ = 2z in which case f is of the form (2).
The case z => y and T =y is impossible since then f = y.

izl = y,}l__.then f=2zyVZg=yy Vyh and fr=1,y=1 = y,_, =1 and therefore y’ = z. It
follows that f = zy V Z¥g and therefore f is either of the form (1) if g = 1 or of the
form (3) otherwise.

If 2’ = 7 then similarly we get that Y =7 and f is either of the form (1) or (4).

If ' # z,T,y,7 then by assigning z — 1,2’ — 1 simultaneously we get that y = /.
The function is therefore of the form (5) with k& > 2.
a

As an example note that zy is of the form (3) with g =0,z @y =2yVyz =2zyVZT
is of the form (1) and z Vy =Zy VT 7V Ty is of the form (4) with g = 1.

<)

4 The Proof

Proof (of Theorem 3.1) :

The proof is by induction on the weight of f. As the basis of the induction we verify
the theorem directly for all functions with size at most 4. These turn out to be exactly
the functions with weight at most 4 + 2a ~ 5.46 or equivalently with weight less than
5+ a ~ 5.73. The details may be found in Table 4.1. As can be seen from the table,

the values of a and 7y were chosen to satisfy 2y = 6—;‘:—;’- = lg%.

Suppose now that L(f) > 4 (and therefore w(f) > 5.7) and that the theorem holds for
all the non-trivial functions with less weight than f. (A function is said to be trivial
if it is a constant or a literal.) By definition, there exist two functions f;, f; such that
f=hAVfior f=fiAf, and w(f) = w(fi) + w(f2). Without loss of generality we
will assume that f = f; V f,, the other case being dual.



2]

weight size function  o(f)/w(f)
24+ a
3+ a
3+ a

zVy Side — 2y

2
3 zVyz 1%%:27
3 zVyVz =50y
4+a 4 zVyzw 1;’—‘t+§>27
4+a 4 zVy(zVw) 2> 2y
44+a 4 =zVyVzaw lﬁ'{f%)%r
44+a 4 zVyVzVw 3‘%>27
44+2a 4 zyVzw 182 oy
4+2a 4
4

4+2_0_r
44 2a

44+2a

zyV Tz e by

Table 4.1: Saving factors for all functions with L(f) < 4.

If one of f; or f; is trivial then the required inequality for f follows from the induction
hypothesis and from Lemma 4.1 below.

Lemma 4.1 If f = zV g then o(f)/w(f) = 27.

Proof : Let k be the number of different assignments under which g reduces to a
literal. Note that since w(f) =1+ w(g), the function g is independent of z.

If k < 4 then using the induction hypothesis for g we get that

o(zVyg) 2 1+w(f)+o(g) -4
> 14+ w(f) +27(w(f) - 1) — 4a
2 (1+27)w(f) - (4a+27-1)
> 27-w(f)
since w(f) > 5.7> (4a+ 2y —-1) ~5.2.

If k> 5 then
o(zVg) 2 1+w(f)+5w(f)-2-a)
6w(f) — (9 + 5a)
2 27-w(f)
since w(f) > 5.7 > (9 + 5a)/(6 — 27) ~ 4.T.

Thus, the proof of the lemma is complete.

a

Otherwise, both f; and f; are non-trivial and the required inequality for f follows
from the induction hypothesis and from Lemma 3.2 below.

6



Lemma 4.2 If f = fi V f then o(f)/w(f) 2 27.

Proof: Since w(f) = w(f1)+w(f2), it is enough to prove that o(f) > o(f1)+ o(f2).
Let k be the number of different assignments under which both f; and f, simplify
to literals based on different variables. It is clear that o(f) > o(f1) + o(f2) — ka.
This inequality does not take into account extra savings that arise in cases where

W(fr=c) < W(fijz=c) + w(foz=c). We will show that these extra savings total to more
than ka.

The proof now breaks into three cases according to the value of k.

Case 1. k=0
There is nothing to prove here.

Case 2. 1<k<2
Let z — 1 be one of special assignments. Then f; = zyVZg and f; = zzVZh for some
functions g,h independent of z where the literals z,y, z are all of distinct variables.
Without loss of generality we may assume that z,y, z are variables.

Consider the effect on f of setting yor zto 1 :

f = (zyVzZg) V (2z2V7ZTh)
fem1t = (zVge=1) V (z2VZThy)
fiz1 = (zyVZg.=1) V (2Vh,m)

Since fijy=1 = 2 V gy=1 Wwe have fi—1 = fiy=1 V foy=12=0- U hy=y # z then
foly=1 = £z V Thy—, depends on z and therefore any formula for f;,—; contains at least
one occurrence of z. Lemma 3.1 therefore implies that w(foy=1,=0) < w(fop=1) — 1,
giving us an extra saving of at least 1 when y — 1.

Similarly, if g.—; # y, we get again an extra saving of at least 1 when z — 1.

If both hy—y # 2 and g,=1 # y hold then these two extra savings add up to give an
extra credit of 2 > 2a, which is enough if k < 2.

Suppose now that h -, = z but g,=; # y, the case where hy—; # z but g,—; = y being
similar. We then have f; = (z V y)z V Zgh for some h.

Consider again the effect of setting z to 1

f = (z2yvzg9) V ((zVy)zVzTyh)
fiz1 = (2yVTg:=1) V (zVyVh,m)

Using the same argument as before we get that f.—1 = fij.=14=0r=0 V fojp=1. The
function fi|,=1 = 2y V Tg,=1 depends both on y (as seen with z — 1) and on =z (since
we assumed that g,—; # y). Using Lemma 3.1 we get extra savings of at least 2 from
this case alone. Again this is enough if k < 2.

The last case to consider here is when both h,—; = 2z and g,y = y. We then have

fi=(zV2)yVzzg and f; = (z Vy)z VT Fh, for some g and h. The effect of setting
y or z to 1 is now

f = ((zV2)yvVzzg) V ((zVy)zVTyh)
frmt = zV2Vge V z
fz=l = y \% (zvythl)



We get an extra saving of 1 when y is set to 1, and an additional such saving when z
is set to 1. The total of 2 is again enough for k < 2.

Case 3. k£ > 3.

The functions f; and f; both reduce to literals for at least three different assignments.
According to Lemma 3.3, f; and f; are either both of the form zy V ZF (or one of its
duals), in which case the condition w(f) = w(fi)+w(f2) is clearly violated, or else all k
assignments involve literals z1,. ..,z of different variables. In this case, f; = XyVXg
and f, = Xz V Xh, where X = z; V...V zy, the functions g and h do not depend on
zi1,...,% and y, z are literals of distinct variables, distinct also from the variables of
X. Again, without loss of generality, we may assume that z,,. .., Z, ¥, z are (distinct)
variables.

If hy—, # z then as in the previous case we get an extra saving of at least k when y
is set to 1 since all the appearances of z1,:..,2s in fajy—0 could be taken to be 0. A
similar situation arises if g,—; # ¥.

The only case left to consider is therefore when f; = (X V z)y V XzZg and f; =
(X V y)z V Xyh where g,h are some functions. In this case we prove directly
that w(f)/w(f) = 2v. Note that o-;=1(f) = w(f) —(2+ ) for 1 < i < k,
oos(f) 2 14 (@(f2) ~ 1) = w(fs) and oyer(f) 2 1+ (@(f2) — 1) = w(fy). The firs
relation holds because f reduces to a twig when each one of the z}s is set to 1. The
second relation (and similarly the third) holds because oy (f1) > 1 and because f; is
reduced to a literal when y is set to 1 and therefore oy=1(f2) = w(f2) — 1. Lemma 3.1
implies that ¥, gv=0(f) = L(f) > w(f)/(1 + /2). Putting all this together and using
the fact that k > 3 we get that

1
> — > 2.
o) 2 (4 o olf) —3(2+0) 2 27-u(f)
since .
w(f) > 5.7> :-”(—2—;(&) s 5.6,

This completes the proof of the lemma.
o

The proof of Theorem 2.1 is now complete.
a

5 Possible improvements

A natural extension of our proof method would be to define new weight functions giving
credits or debits for other small trees contained in the formula. Such an approach may
yield an increasing sequence of shrinkage exponents.

The parity function is an example proving that 2 is an upper bound for shrinkage
exponents. The gap between this and our lower bound presents a challenge.
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