
A GENERAL APPROACH TO REMOVING DEGENERACIES �

IOANNIS Z. EMIRISz AND JOHN F. CANNYz

Abstract. We wish to increase the power of an arbitrary algorithm designed for non-degenerate
input, by allowing it to execute on all inputs. We concentrate on in�nitesimal symbolic perturbations
that do not a�ect the output for inputs in general position. Otherwise, if the problem mapping is
continuous, the input and output space topology are at least as coarse as the real euclidean one
and the output space is connected, then our perturbations make the algorithm produce an output
arbitrarily close or identical to the correct one. For a special class of algorithms, which includes several
important algorithms in computational geometry, we describe a deterministic method that requires
no symbolic computation. Ignoring polylogarithmic factors, this method increases only the worst-case
bit complexity by a multiplicative factor which is linear in the dimension of the geometric space. For
general algorithms, a randomized scheme with arbitrarily high probability of success is proposed; the
bit complexity is then bounded by a small-degree polynomial in the original worst-case complexity.
In addition to being simpler than previous ones, these are the �rst e�cient perturbation methods.

Key words. Input degeneracy, ill-conditioned problems, symbolic perturbation, in�nitesimals,
randomization, determinants, roots of polynomials, algorithmic complexity

AMS subject classi�cations. 68Q10, 68Q20, 68Q25, 68U05

1. Introduction. Quite often algorithms are designed under the assumption of
input non-degeneracy. Although they can have many speci�c forms, most degeneracies
in geometric or algebraic algorithms reduce to a division by zero, or to a sign deter-
mination for a value which is zero. In this article we describe e�cient methods for
systematically removing such degeneracies using symbolic in�nitesimal perturbations.
Our methods apply to every algorithm that can be implemented on a real RAM.

This work is in
uenced by the treatment of the problem in [12] and, in a more
general context, [21]. The main contribution of this article is to introduce the �rst
general and e�cient perturbations from the viewpoint of worst-case complexity. Pre-
vious methods incurred an extra computational cost that was exponential in some
parameter of the input size.

The principal domains of applicability are geometric and algebraic algorithms
over an in�nite ordered �eld. Take, for instance, a Convex Hull algorithm in arbitrary
dimension over the reals. It is typically described under the hypothesis of general
position which excludes several possible instances, such as more than k points lying
on the same (k�1)-dimensional hyperplane, in m-dimensional euclidean space, m � k.
For an algebraic algorithm, consider Gaussian Elimination without pivoting that works
under the hypothesis that the pivot never vanishes. Our perturbation scheme accepts
a program written under this hypothesis and outputs a slightly longer program that
works for all inputs.

The perturbations introduced change the original input instance into a non-
degenerate one which is arbitrarily close, in the usual euclidean metric, to the original
input. For algorithms that branch only on the sign of determinants, which includes
several important geometric algorithms, we propose a deterministic method. It in-
creases the worst-case algebraic complexity of the algorithm by a multiplicative factor

� Supported by a David and Lucile Packard Foundation Fellowship and by NSF Presidential Young
Investigator Grant IRI-8958577.

z Computer Science Division, University of California at Berkeley, Berkeley, CA 94720.

1



2 I. Z. EMIRIS AND J. F. CANNY

of O(log d) and its worst-case bit complexity by a factor of O(d1+�), where d is the
dimension of the geometric space of the input objects and � is an arbitrarily small pos-
itive constant accounting for the polylogarithmic factor. In addition to its e�ciency,
this scheme is easy to implement, which makes it attractive for practical use [14]. The
perturbation, although de�ned in terms of a symbolic in�nitesimal variable, does not
require any symbolic computation.

For general algorithms, we propose a randomized scheme that incurs a factor of
O(D1+�) on the algebraic complexity, where D is the highest total degree in the input
variables of any polynomial in the program. Under the bit model, the worst-case
running time of the new program is asymptotically bounded by �3+�, where � is the
original bit complexity of the original one; in both cases � denotes an arbitrarily small
positive constant.

All claims about the e�ciency of our approach are based on worst-case complexi-
ties. Yet there exist other measures, such as output size, under which the perturbations
cause a much more signi�cant increase in running time. For a degenerate input the
output may be of constant size while, under the perturbation, the given algorithm
cannot do signi�cantly better than what its worst-case performance predicts.

The next section de�nes the computational model, formalizes the use of in�nitesi-
mals as well as the notion of degeneracy, and speci�es the problem at hand. Section 3
is a comparative study of previous work on handling degeneracies. Sections 4 and 5 de-
scribe the perturbations for algorithms that branch on determinants and on arbitrary
rational functions respectively; each section includes an application. We conclude with
a summary and a discussion of directions for further work.

2. Preliminaries.

2.1. Model of computation. Our results hold for any in�nite ordered �eld,
yet we present them in terms of the reals R. We choose the real-arithmetic Random
Access Machine (RAM) as our model; it is described in [18] and is a more powerful
version of the simple RAM de�ned in [1].

An input of size N consists of a �nite real vector x = (x1; : : : ; xN) and a particular
input instance is a = (a1; : : : ; aN) 2 R

N . The real RAM can perform real arithmetic
exactly with respect to the four basic operations in f+;�; �; =g and can branch on
the sign of a rational function in the input variables, evaluated at the particular input
instance. The machine can also write to and read from a memory that can store an
arbitrary number of exact real values. The chosen model abstracts certain issues that
may arise in practice, such as real number representation and exactness of arithmetic
operations.

The set of instructions that implements a given algorithm on the real RAM forms
a program; no program can alter itself. The subset of instructions executed on some
input instance, forms an execution path. For a speci�c program on the real RAM and
a given input, the output is unique and is expressed by a �nite real vector, possibly
describing other structures such as graphs.

In Section 5 we shall require an extension of the model, namely that there exists
an explicit �nite integer bound D on the total degree in x of any polynomial computed
in the course of the program. The concept of this bound appears in the Machine of [2]
and in the algebraic decision tree of [18].

Under the algebraic model, the worst-case complexity of an algorithm equals the
maximum number of arithmetic operations, branching and memory access instructions



REMOVING DEGENERACIES 3

executed on any input. More realistically, we may wish to consider the e�ect of the
operands' bit size on the speed of arithmetic operations. Under the bit model there is
a cost function on each instruction of the program and the worst-case complexity of
an algorithm equals the maximum sum of the costs of all instructions on the execution
path corresponding to any input. In both models, the time to access the memory is
assumed constant and therefore does not a�ect the total asymptotic running time.
Branches also take constant time, provided that each number carries an extra bit
indicating whether it equals zero or not. Without this extra bit the branching cost
would be linear in the size of the operand but this would not a�ect the results in this
article.

The cost of arithmetic operations depends on the particular operation executed
as well as the bit size of the operands. For integers of size b, addition and subtraction
have cost O(b), while the cost of multiplication and division, due to an algorithm by
Sch�onhage and Strassen is O(b log b log log b), [1]. For rationals, the Greatest Com-
mon Divisor (GCD) is factored out at every arithmetic operation, and �nding it takes
O(b log2 b log log b) time, [1]. Let M(b) = O(b log2 b log log b) bound the bit complex-
ity of any operation on two rational numbers, each represented by a pair of O(b)-bit
integers. We de�ne the bit size of a rational number to be the maximum bit size of
the numerator and denominator.

Given an input instance, our perturbations de�ne a new instance in terms of a
symbolic variable that is never evaluated, which implies that instead of real numbers
the program may have to manipulate polynomials in this variable. Formally, this can
be thought of as producing a new program with the same control 
ow in which every
arithmetic and branching instruction is substituted by a black box that implements
the appropriate operation on univariate polynomials. Of course, the algebraic as well
as the bit cost associated with each instruction changes.

2.2. In�nitesimals. Our approach in removing degeneracies is to add to the
input values arbitrarily small quantities. To this e�ect we make use of in�nitesimals.
The process of extending the �eld of reals by an in�nitesimal is a classical technique,
formalized in [3], and used by the second author in [4].

Definition 2.1. We call � in�nitesimal with respect to R if the extension R(�) is
ordered so that � is positive but smaller than any positive element of R. Clearly, the
sign of any polynomial in � is the sign of the non-zero term of lowest degree.

Alternatively, it is enough for � to belong to the reals and take a su�ciently small
positive value so that it avoids the roots of a �nite set of polynomials; we shall see
that this is the set of all polynomials appearing at a branch in the real RAM program.
The smallest positive root in any of these zero sets is larger than some positive real �0,
hence it su�ces that � = �0. This idea may be seen as a special case of the \Transfer
Principle" [20].

An immediate consequence is that symbolic perturbations of the input by �-
polynomials are equivalent to de�ning a new real instance by setting � equal to �0.
Then the execution path on perturbed input is that of some real input which implies
that the algorithm halts on perturbed input provided that it does for all real inputs.

2.3. Degeneracy. Before formalizing the notion of degeneracy, we examine it
with respect to some concrete problems. For the Matrix Inversion problem an in-
trinsically degenerate input is a singular matrix, for which the output is unde�ned.
An input degeneracy may depend not only on the particular problem but also on the



4 I. Z. EMIRIS AND J. F. CANNY

algorithm. An algorithm-induced degeneracy for the Gaussian Elimination algorithm
without pivoting arises at a matrix with a singular principal minor.

Yap in [21] uses the Convex Hull problem in the plane to distinguish between in-
trinsic and algorithm-induced degeneracies. Assume that in the output space topology
polytopes of distinct combinatorial structure lie in disjoint components. Then three
collinear points constitute an intrinsic degeneracy because the mapping of point sets
to convex hulls is not continuous. On the other hand, two covertical points have noth-
ing special with respect to the mapping of point sets to their convex hull. They may,
however, constitute a degeneracy with respect to a particular algorithm that solves
the problem by using a vertical sweep-line or relies on some vertical partitioning of
the plane.

We formalize the discussion by considering both input and output spaces as real
topological subspaces of �nite dimension.

Definition 2.2. A problem mapping associates with almost every input instance
exactly one (exact) solution.

Definition 2.3. The input instances on which the problem mapping is not
de�ned or not continuous form the set of intrinsic degeneracies for this problem.

An algorithm and, equivalently, the respective real RAM program that compute a
problem mapping typically impose certain restrictions on the input instances. Hence
the need to consider the mapping de�ned by a speci�c algorithm.

Definition 2.4. An algorithm mapping is de�ned by a particular real RAM
program and is a restriction of the problem mapping to exclude at least all intrinsic
degeneracies.

In what follows no distinction is made between an algorithm and the real RAM
program that implements it.

Definition 2.5. The input space of an algorithm mapping is a real space of
�nite dimension. In the context of the computational model, de�ned in Section 2.1,
the dimension equals N . The output space of an algorithm mapping is a topological
space, equal to the union of the disjoint �nite-dimensional real topological spaces
associated with the distinct execution paths of the real RAM program. These output
subspaces will be called leaf subspaces.

This terminology re
ects the fact that branching causes the program to have a
tree structure. The problem and algorithm output spaces can be either connected
or disconnected. Usually, a disconnected output space can be made connected by
identifying points in di�erent leaf subspaces. Then the overall space inherits the
topology of the leaf subspaces with no open sets intersecting two leaf subspaces.

This is possible in the example of the Convex Hull problem mapping, where poly-
topes which are identical as point sets but lie in di�erent subspaces can be identi�ed,
thus producing a connected output space. Yet, the problem mapping remains dis-
continuous. There exist other topologies that will make this space connected and the
problem mapping continuous. One example is the metric topology where the distance
of two polytopes is measured by the volume of their symmetric di�erence.

Definition 2.6. An input instance is degenerate with respect to some algorithm
if, during its execution, it causes some branch rational function f , whose numerator
and denominator polynomials are not identically zero, either to be unde�ned or to
evaluate to zero while the algorithm produces no solution for the case f = 0. Equiv-
alently, the input instance is in general position or generic if there is no such test
function f .



REMOVING DEGENERACIES 5

Clearly, the domain of an algorithm mapping is precisely the set of all generic
inputs, which excludes all degeneracies, i.e. both intrinsic and induced ones. An
important class of degenerate inputs are those that lead a program to division by
zero. This case is included in the previous de�nition by requiring that the program is
robust enough to have a zero test on the denominator before each division.

Definition 2.7. The set of induced degeneracies includes exactly those degener-
ate inputs that are not intrinsic degeneracies.

The input space can be partitioned into equivalent classes, where each instance
produces the same sign sequence on the branch rational functions reached during
execution. The classes that do not make any branch function f , as speci�ed in De�ni-
tion 2.6, vanish or be unde�ned, partition the domain of the algorithm mapping into
cells of input instances that produce an output instance in the same leaf subspace. The
union of inputs that cause some branch polynomial to vanish contains the degenerate
subset and has positive codimension since it is the �nite union of polynomial zero sets.
Hence the degenerate subset has positive codimension which agrees with the informal
view of degeneracies as special cases or events of zero probability.

2.4. Problem de�nition. Given is an algorithm that solves a problem under
the hypothesis of non-degeneracy. Our aim is, given an arbitrary input instance a =
(a1; : : : ; aN), to de�ne in a systematic way some other instance so that the same
algorithm can always produce a meaningful output. The new instance, denoted a(�) =
(a1(�); : : : ; aN(�)), will be de�ned by adding to each ai a polynomial in some symbolic
positive in�nitesimal �. The discussion in Sections 2.1 and 2.2 implies that a(�) can
be given as input to the same real RAM program.

To provide some intuition on the desired e�ects of perturbations we return �rst to
the Matrix Inversion problem. Given a perturbed singular matrix, (i) the algorithm
should return its inverse and (ii) the perturbed input should be arbitrarily close to
the original one under the standard euclidean metric. Condition (i) will follow from
the correctness of the algorithm on generic inputs once we establish that perturbed
matrices are nonsingular. Restricted to nonsingular matrices, the problem mapping
is continuous. On a perturbed nonsingular matrix (ii) implies that the output is
arbitrarily close to the exact solution; to recover the latter we can simply set the
in�nitesimal to zero in the perturbed output.

For the Convex Hull problem, there is always a solution, its combinatorial nature
however may prohibit the problem mapping from being continuous. Take, for instance,
the volume of the symmetric di�erence between the actual output and the exact convex
hull as the distance between these two polytopes. This volume tends to zero with �
since the induced metric topology is at least as coarse as the euclidean one. Under
this metric the output space is connected and the approximate solution is arbitrarily
close to the exact one.

We now specify the desired properties of a perturbation in terms of the outputs
obtained under di�erent circumstances. Limits are understood with respect to the
topology of the input and output spaces.

Definition 2.8. Given an input instance a, a strongly valid perturbation de�nes
a new instance a(�) which lies in general position, tends to a as � approaches zero and
satis�es the following conditions:

� If a is in general position, the algorithm produces the same output whether
it runs on a or it runs on a(�) and at the end � is set to 0.



6 I. Z. EMIRIS AND J. F. CANNY

� If a is an induced degeneracy, the output space is connected with topology not
�ner than the euclidean one and the problem mapping is continuous, then the
algorithm on a(�) returns an output that either produces the exact solution
by setting � = 0 or tends to the exact solution in the limit as �! 0.

� If a is degenerate and some hypothesis of the previous case fails, then the
algorithm produces a correct solution for a(�).

A more practical de�nition describes requirements for a weaker perturbation in
terms of the input space.

Definition 2.9. Given an input instance a, a valid perturbation de�nes a non-
degenerate instance a(�) which tends to a as � approaches zero, such that when a is
in general position all branches take the same direction on a(�) as on a.

Proposition 2.10. Suppose that the input space and leaf subspace topologies are
at least as coarse as the real euclidean topology. Then any valid perturbation is strongly
valid.

Proof. It su�ces to show that the three conditions of De�nition 2.8 are satis�ed.
For generic inputs all branches take the same direction on a and a(�), hence the two
outputs lie in the same leaf subspace. No �-term can be the most signi�cant in any
polynomial in the output, because this is the output on a generic instance. Therefore
all such terms can be ignored by setting � = 0, thus obtaining the exact solution.

In the second case, since we deal with an induced degeneracy, an exact solution
exists. Whenever the problem mapping is continuous the algorithm mapping is also
continuous in its own domain. Since the input space topology is su�ciently coarse, the
fact that a(�) tends to a and the continuity property imply that the output produced
on perturbed input tends to the exact solution as �! 0. In the more favorable cases,
the exact output is recovered by setting � = 0.

The correctness of the algorithm on generic inputs and the hypothesis that a(�)
is generic imply that the last condition is satis�ed.

In what follows we focus to problems that satisfy the hypothesis of the previ-
ous proposition, hence reducing the validity requirements to those of De�nition 2.9.
Furthermore, we consider perturbations of the following form:

ai(�) = ai + � ci;

for ci 2 Z independent of ai and �. The post-processing necessary to recover the exact
answer is usually a very case-speci�c process. We discuss the case of convex hulls at
the end of Section 4 and also refer the reader to [21], [12] and [8].

3. Other Work. The most naive approach is to handle each special case sepa-
rately, which is tedious for implementors and unattractive for theoreticians. Random
perturbations are frequently alluded to and one such scheme is studied in this article.
Their main feature is that they trade randomness for e�ciency.

Symmetry breaking rules in Linear Programming are the earliest systematic ap-
proaches to the problem. Dantzig presents such a method in [6] which relies on an
in�nitesimal �. Consider a Linear Program reduced to �nding non-negative values for
the m+n variables xj , such that the sum of all slack variables

Pm+n
j>n xj is minimized.

The perturbation consists in adding a power of � to every non-negative constant bi,
where 1 � i � m:

nX
j=1

ai;jxj + xn+i = bi + �i;



REMOVING DEGENERACIES 7

This forces the perturbed constants to be strictly positive and eliminates the degen-
erate case of having bi = 0, for some i in f1; : : : ; mg.

Edelsbrunner and M�ucke systematize in [12] a scheme called Simulation of Simplic-
ity (SoS for short), already presented in [9], [11], [13] and [10]. It applies to algorithms
that accept n input objects, each speci�ed by d parameters, and whose tests are deter-
minants in the nd parameters, just as our deterministic perturbation (1) of the next
section. SoS perturbs every input parameter pi;j into

pi;j(�) = pi;j + �2
i��j

;

where � > d and � is a symbolic in�nitesimal; this is a valid scheme under our de�nition.
The sign of the perturbed determinant is the sign of the smallest-degree term in its
�-expression and can be calculated numerically.

Finding the sign of the perturbed determinant is, on the average, pretty fast. In
the worst case however, the determinant computation takes 
(2d) steps, since it may
have to check that many minors of the perturbed matrix. This bound is obtained by
calculating the number of distinct vectors (v1; : : : ; vd�2), where d denotes the order of
the original matrix. Every vi is a positive integer less than or equal to d and for every
i < j, vi � vj . In [12] every such vector is associated with a distinct minor that may
have to be evaluated. This analysis pertains to � matrices, to be de�ned in the next
section. Matrices of the second kind, the � matrices, require more steps in the worst
case, for the same order. In short, SoS incurs a worst-case exponential overhead in d.

Yap in [21] provides a more general framework, which includes SoS as a special
case, where branching occurs at arbitrary rational functions. His technique is consis-
tent relative to in�nitesimal perturbations [22] and valid; here we examine it as applied
to polynomial tests. Let PP = PP (x1; : : : ; xn) denote the set of all power products of
the form

w =
nY
i=1

xeii ; ei � 0

in the n input variables. A total ordering �A on PP is admissible if, for all w;w0; w00 2
PP ,

1 �A w and w �A w0 ) ww00 �A w0w00:

Let w1; w2; : : : be the ordered list of power products larger than 1, i.e. those with at
least one positive exponent. Then, each polynomial f(x) is associated with the in�nite
list

S(f) = (f; fw1 ; fw2 ; :::)

where fwk
is the partial derivative of f with respect to wk; for example, fx2

2
x3

=

@3f=(@2x2 @x3). The sign of a non-zero polynomial f is the sign of the �rst polynomial
in S(f) whose value at the actual input is not zero, which can always be found after
examining a �nite number of terms.

Yap focuses on sparse n-variate polynomials, with m denoting the maximum de-
gree of any variable. In the case that all variables are of degree m, a polynomial f
has (m + 1)n � 1 � mn non-trivial derivatives. On the average, only a few partial



8 I. Z. EMIRIS AND J. F. CANNY

derivatives will have to be evaluated, but at worst, all of them have to be computed
and the complexity is 
(mn).

Dobrindt, Mehlhorn and Yvinec [8] studied the problem of intersecting an arbi-
trary polytope with a convex one in three dimensions, proposed an e�cient pertur-
bation and discussed post-processing in this context. The interesting feature of their
technique is that it controls the direction of perturbation. In particular, since the
facet structure is given, the polytope vertices are forced to be perturbed outward.

In a slightly di�erent vein, Canny used a structural perturbation in [4] to ensure
that the input semi-algebraic sets are in general position. One immediate application
is to motion-planning algorithms, where these sets describe obstacles or prohibited
space. The perturbation preserves emptiness and number of connected components of
the original sets by using sequences or towers of in�nitesimals.

Perturbation methods have been applied in other cases to eliminate degeneracies
with respect to particular problems, as in [17] for instance.

Lastly, Emiris and Canny in [14] extend the applicability of the deterministic
perturbation introduced in this article to another two geometric branching tests, most
importantly to the InSphere test. They also propose a new variant of the scheme
that eliminates the polynomial factor in the asymptotic bit complexity overhead with
respect to the two tests examined here.

4. Branching on determinants. We �rst restrict attention to algorithms whose
branching depends exclusively on the sign of determinants in the input variables, which
is the case with several geometric algorithms. We concentrate on two speci�c types
of determinants that cover important algorithms, such as those computing Convex
Hulls and Hyperplane Arrangements. Our approach can be applied to other types of
determinants too, as demonstrated in [14].

Assume that the input parameters represent n input objects p1; p2; : : : pn, each
speci�ed by d parameters. Without loss of generality, each pi = (pi;1; pi;2; : : : pi;d), is
a point in Rd. We are interested in the case that the dimension d is arbitrary, whence
the total input size is nd. It is also reasonable to assume that a constant fraction of
the points are distinct, thus establishing a lower bound on the parameters' bit size.
In practice this condition can be guaranteed by using an initial check to eliminate
duplicate points; in most settings the complexity of this phase is dominated by that
of the main algorithm.

We perturb deterministically every parameter pi;j to obtain pi;j(�), where � is an
in�nitesimal symbolic variable.

pi;j(�) = pi;j + � (ij):(1)

Although � is never assigned a real value, we shall show that no symbolic computation
is necessary.

First consider matrix �d+1 whose rows correspond to points pi1 ; pi2 ; : : : ; pid+1 :

�d+1 =

2
66664

1 pi1;1 pi1;2 : : : pi1;d
1 pi2;1 pi2;2 : : : pi2;d
...

...
...

...
1 pid+1;1 pid+1;2 : : : pid+1;d

3
77775
:

Testing the sign of this determinant comes up in various contexts. We call it the
Sidedness test because, given a query point pid+1 and the hyperplane spanned by the



REMOVING DEGENERACIES 9

other d points, the sign of the determinant indicates on which side of the hyperplane
the query point lies. The determinant vanishes if and only if the query point lies on
the hyperplane; the positive and negative side of the hyperplane are determined by
the order of the d points de�ning it. This test is sometimes called the Orientation test,
since it may be regarded as deciding the relative orientation of the d+1 points in the
sense of [12]. In fact, the column of ones should be rightmost, but it is a constant-time
operation to obtain the orientation of the points from the sign of det�d+1.

Let us refer to the new matrix that contains the corresponding perturbed param-
eters as the perturbed matrix, denoted by �d+1(�). The modi�ed program that runs
on perturbed input will be computing the sign of its determinant, which is given by
the following expression.

det�d+1(�) = det�d+1 + (�k terms; 1 � k � d� 1) + �d

����������

1 i1 i21 : : : id1
1 i2 i22 : : : id2
...

...
...

...
1 id+1 i2d+1 : : : idd+1

����������
;

where the last term is the determinant of Vd+1, a (d+1)�(d+1) Vandermonde matrix,
with

detVd+1 =
Y

k; l 2 f1; : : : ; dg
k > l

(ik � il):

The second matrix of interest has rows representing input points pi1 ; pi2 ; : : : pid :

�d =

2
66664

pi1;1 pi1;2 : : : pi1;d
pi2;1 pi2;2 : : : pi2;d
...

...
...

pid;1 pid;2 : : : pid;d

3
77775
:

This test decides the orientation of points expressed in their homogeneous coordi-
nates. In a dual setting, such as in [11], the input objects are hyperplanes in (d� 1)-
dimensional space and the test indicates on which side of the �rst hyperplane lies the
intersection of the other d � 1 hyperplanes. Then, the determinant vanishes if and
only if the d hyperplanes have a non-empty intersection; for this reason, this is called
the Transversality test.

The corresponding matrix �d(�) of the perturbed parameters has determinant

det�d(�) = det�d + (�k terms; 1 � k � d� 1) + �d

����������

i1 i21 : : : id1
i2 i22 : : : id2
...

...
...

id i2d : : : idd

����������
;

where the coe�cient of �d is the determinant of another Vandermonde matrix Ud and
can be expressed as follows:

detUd =
dY

k=1

ik detVd =
dY

k=1

ik

dY

k; l = 1

k > l

(ik � il):



10 I. Z. EMIRIS AND J. F. CANNY

Lemma 4.1. Given a real RAM program, there exists a positive real constant �0
such that, for every positive real � < �0, every �d+1(�) and �d(�) matrix occurring at
a branching node of the program is nonsingular and its determinant has constant sign.

Proof. The perturbed determinants are univariate polynomials over the reals. Any
polynomial over an ordered �eld that is not identically zero has an algebraic set of
roots of positive codimension thus, for univariate polynomials, this set is the union of
a �nite number of points.

Neither det�d+1(�) nor det�d(�) are identically zero because the highest-order
term never vanishes, since all indices are distinct and positive. Hence, there exists a
�nite number of roots for each symbolic determinant in �. Letting �0 be the minimum
positive such root over all test determinants in the program proves the lemma.

Theorem 4.2. Perturbation (1) is valid with respect to algorithms that branch
on determinants of ��+1 and ��, for � � d, where d is the dimension of the geometric
space in which the input points lie.

Proof. The perturbed instance is clearly arbitrarily close to the original one since �
tends to zero. This instance is also in general position because both kinds of perturbed
determinants have a well-de�ned sign that is never zero for su�ciently small �, from
the previous lemma. Finally, since the sign of perturbed determinants is the sign of
the lowest order non-vanishing term, when the original determinant is non-zero, it
dominates the �-polynomial. Then all branches take the same direction, for a given
instance, before and after the perturbation.

We now address the question of computing the sign of the perturbed determinant.
One obvious way is to evaluate the terms in the determinant's �-expansion in increas-
ing order of the exponent of �. The process stops at the �rst non-vanishing term and
reports its sign. This is essentially the approach adopted by SoS and Yap's technique.
Our perturbation scheme lends itself to a more e�cient trick which reduces the deter-
minant calculation to a characteristic polynomial computation, which also avoids the
requirement for symbolic manipulation.

det�d+1(�) =
1

�

�������

� pi1;1(�) : : : pi1;d(�)
...

...
...

� pid+1;1(�) : : : pid+1;d(�)

�������
=

=
1

�
det

0
B@

2
64
0 pi1;1 : : : pi1;d
...

...
...

0 pid+1;1 : : : pid+1;d

3
75 + � Vd+1

1
CA =

1

�
det (L + � Vd+1) :

Having implicitly de�ned L, denoting by Ik the k � k unit matrix and relying on the
fact that every Vandermonde matrix is invertible, we have

det�d+1(�) =
1

�
det(�Vd+1) det(�(Vd+1)

�1L� � Id+1) =

=
1

�
(�1)d+1 detVd+1 det(M � � Id+1):(2)

Similarly,

det�d(�) = det(�d + �Ud) = det(�Ud) det(�(Ud)
�1�d � �Id) =

= (�1)d
dY

k=1

ik detVd det(N � � Id):



REMOVING DEGENERACIES 11

Matrices M and N are de�ned implicitly. Notice that we have reduced the computa-
tion of a symbolic determinant to calculating the characteristic polynomial in � of M
or N respectively.

We now prove the e�ciency of this approach. Let MM(k) denote the number of
multiplications and divisions needed to multiply two k�k matrices, which is currently
O(k2:376) [5].

Lemma 4.3. Computing the sign of perturbed determinants det�d+1(�) and det�d(�)
can be done in O(MM (d) logd) arithmetic steps.

Proof. The determinant and the inverse of a d� d Vandermonde matrix takes at
most O(d2) arithmetic steps [23], while computing M or N as a matrix product takes
O(MM(d)) operations. Computing det(M � � Id+1) or det(N � � Id) is a characteris-
tic polynomial computation for which there exists an algorithm by Keller-Gehrig [16]
requiring O(MM (d) logd) operations. This algorithm is purely numeric as it trans-
forms matrix M or N respectively to a new matrix that contains the coe�cients of
the characteristic polynomial in the last column.

A brief discussion of modular arithmetic is in order here because, besides being the
most commonly used method to carry out exact arithmetic on computers, it is also the
most economical for computing the perturbed determinants. Let k denote the total
number of �nite �elds required for a particular computation, which is proportional
to the bit size of the quantity that is to be eventually computed. Suppose that each
�nite �eld Zq is de�ned by a constant-size prime integer q which can be obtained
in constant time from an existing and su�ciently long list of primes. Following the
exposition in [1], the �rst stage consists of mapping each matrix element into its k
residues, the second stage performs the particular computation in k di�erent �nite
�elds and the third stage applies the Chinese Remainder Theorem to �nd the answer
from its k residues. The �rst and third stages have both bit complexity O(M(k) logk)
while that of the second stage depends on the computation performed. The modular
method is applicable to rational inputs with the same asymptotic complexity [7].

Let s be the maximum bit size of any input parameter with s = 
(logn), since
we have assumed that a constant fraction of input points are distinct.

Theorem 4.4. Consider algorithms that branch on the determinants of ��+1 and
��, for � � d, where d is the dimension of the geometric space of the input points.
Perturbation (1) increases the asymptotic running-time complexity of the algorithm
under the algebraic model by O(log d). Under the bit model, the worst-case complexity
is increased by a factor of O(d1+�), where � is an arbitrarily small positive constant
that accounts for the polylogarithmic factors.

Proof. The previous lemma proves the claim on the algebraic complexity since
the original complexity of computing a d� d determinant is �(MM (d)) [15].

In what follows we concentrate without loss of generality to the Sidedness test.
In the original setting, the worst-case bit size of the determinant is �(ds) and using
modular arithmetic requires k = �(ds) distinct �nite �elds. The �rst stage maps
d2 quantities to their respective residues, the second stage computes the determinant
modulo some prime q, while the last stage's complexity is dominated. Hence the
overall worst-case complexity is

�(d2(ds)1+� + dsMM(d));

where � is an arbitrarily small positive constant.



12 I. Z. EMIRIS AND J. F. CANNY

For the perturbed determinant we must compute the coe�cients of the char-
acteristic polynomial of M . Observe from (2) that this is a scalar multiple of the
�-polynomial det �d+1(�), therefore the latter's coe�cient sizes provide upper bounds
on the sizes of the characteristic polynomial coe�cients. Now, each entry of �d+1(�) is
a sum of an original point coordinate and a perturbation quantity, hence its bit size is
the maximum of s and d logn. All coe�cients of det �d+1(�) are sums of determinants
of order at most d that have entries of bit size s + d logn. Thus the coe�cients have
size O(ds+ d2 logn), which also provides an asymptotic upper bound on the number
of �nite �elds. Hence the new bit complexity is

O(d2(ds+ d2 log n)1+� + (ds+ d2 log n)MM(d) logd);

where � is another arbitrarily small positive constant. To complete the proof we apply
the asymptotic lower bound on s.

The section concludes with an application to the Beneath-Beyond Convex Hull
algorithm for general dimension, presented in [10]. The algorithm is incremental and
relies on the hypothesis of general position with respect to the two tests used for
branching: The �rst simply sorts the points along some coordinate assuming that no
two points have the same coordinate. The second is essentially the Sidedness test,
called once the convex hull of a subset of the points is constructed: Given a (d� 1)-
dimensional facet and a query point, decide whether the point lies on the same side
of the facet as the hull or not. Under perturbation (1) this test can be implemented
by at most two Sidedness tests.

The perturbation is transparent with respect to the rest of the algorithm. The two
branching tests can be thought of as subroutines that are given subsets of input points
and return a non-zero sign, in order to avoid degeneracies. The polytope constructed
is simplicial, which means that all faces are simplices. Restricting attention to the
facets, we note that their number is not minimum, because some may be created in
order to subdivide a non-simplex facet into simplices, while others may include input
points in the interior of some facet which have been perturbed into polytope vertices.

Our approach is most favorable in applications where such redundancy is imma-
terial, for instance in computing the volume of the convex hull. In this case, under the
symmetric volume metric, the problem mapping is continuous and the exact answer is
readily obtained by setting � = 0 in the expression of each partial volume that makes
up the overall polytope. These partial volumes are �d+1(�) determinants computed in
the course of the algorithm, so there is no extra cost for calculating the exact volume.

The arti�cial facets may have to be eliminated for other applications through a
post-processing phase. This involves checking every facet against every one of its d
adjacent facets by computing a �d+1 determinant. If it vanishes, then certain (d� 2)-
dimensional faces must be eliminated and, eventually, certain input points may have
to be removed from the vertex set of the convex hull. The algebraic complexity of
this phase is asymptotically equal to the product of dMM(d) and the number of
facets in the approximate output, hence its bit complexity is dominated by that of the
algorithm.

5. Branching on Arbitrary Rational Functions. For the general case where
the branching tests are arbitrary rational functions, we propose a randomized pertur-
bation which is easy to implement and applies to algebraic problems such as Matrix



REMOVING DEGENERACIES 13

Inversion and Linear Programming as well as geometric algorithms whose branching
functions are not covered by those examined above.

Let f be an arbitrary rational function whose sign determines the direction taken
at some branch and express it as p=q, where p; q are polynomials in the input variables,
each of total degree bounded by D; recall that D is the maximum total degree in the
input variables of any polynomial in the real RAM program. Suppose that the input
variable vector x belongs to Rn and let a = (a1; : : : ; an) be a particular input instance,
hence the input size is n.

For a given input, de�ne the perturbed instance a(�) = (a1(�); : : : ; an(�)) as fol-
lows:

ai(�) = ai + � ri(3)

where � is an in�nitesimal symbolic variable and ri is a random integer.

Each ri is chosen uniformly over a range that depends on the desired probability
that none of the branching polynomials vanishes. This probability of success can be
�xed to be arbitrarily high. It is parameterized by a real constant c � 1; all claims in
this section hold with probability at least 1� 1=c.

The total number of polynomials appearing at the numerator or denominator of
a branch expression is at most 2 � 3T , where T is the maximum number of branches
on any execution path. Schwartz's lemma [19] requires that the range of the random
values contains at least as many values as the product of c and the total degree of the
polynomial whose roots we wish to avoid. Here, this polynomial is the product of all
branch polynomials, hence its degree is bounded by 2 � 3TD. Therefore, the bit size of
the perturbation quantities is

dlg c+ lgD + (lg 3)T + 1e;

where lg denotes the logarithm of base 2.

It is feasible that for some set of random variables, a(�) will still cause some
branching polynomial to vanish. In this case the perturbation has failed, so the algo-
rithm is restarted and new random variables are picked, independently and uniformly
distributed over the same range. It is not clear that any deterministic scheme could
avoid the zeros of all polynomials without taking time at least exponential in the
number of variables. Intuitively, our method is faster because it randomly selects one
n-dimensional perturbation vector instead of trying out all possible ones.

Lemma 5.1. Let the entries of r = (r1; : : : ; rn) be independently and uniformly
chosen integers of dlg c + lgD + (lg 3)T + 1e bits each, for any c � 1. Then, there
exists with probability at least 1� 1=c, a positive real constant �0 such that, for every
positive real � < �0, every branching rational function f(a + �r) is de�ned, non-zero
and of constant sign.

Proof. Let g(a+�r) be any polynomial appearing at the numerator or denominator
of some branch expression and let G(a+ �r) be the product of all distinct polynomials
g. By hypothesis, none of these polynomials is identically zero, therefore G also is
not identically zero. For a moment, �x � = 1 and consider G(a+ 1r) as a polynomial
in r, whose degree in x and r is the same. Since D bounds the total degree of any
polynomial g, the total degree of G is at most 2 � 3TD. Now we apply a lemma proven
in [19]. The probability that r, chosen uniformly at random with the given size, is a



14 I. Z. EMIRIS AND J. F. CANNY

root of G(a + 1r) is at most 1=c. All claims that follow concern the particular r and
hold with probability at least 1� 1=c.

First observe that none of the polynomials g(a+1r) vanishes at r, hence every g(a+
�r) may be regarded as a polynomial in � that is not identically zero. Consequently, its
zero set is of positive codimension and, more speci�cally, a �nite point set. Consider
the minimum positive root for every g and let �0 be the minimum over all polynomials
g.

Theorem 5.2. Perturbation (3) is valid with arbitrarily high probability, with
respect to any algorithm that branches on rational functions in the input variables.

Proof. The perturbed instance is arbitrarily close to the original one as � tends to
zero. Branches decide on the sign of a perturbed rational expression, which is the sign
of the lowest-order term in the �-polynomial that does not vanish. By the previous
lemma all polynomials have a constant non-zero sign for su�ciently small �, hence
a(�) is in general position. For non-degenerate inputs all query polynomials have a
non-vanishing real part, i.e. a term independent of � which dominates the sign.

What is the tradeo� in e�ciency? The algebraic complexity of the algorithm is
increased by the time required to manipulate the �-polynomials symbolically which
depends on D, since the degree of every polynomial in � is the same as its total degree
in x. The bit complexity is also a�ected by D but not by c which is �xed.

Lemma 5.3. Under perturbation (3) the algebraic time complexity of the branching
instructions and the arithmetic operations is O(D) and O(D log2D) respectively.

Proof. Each operation in f+;�;�; =g involves multiplication of �-polynomials
and a Greatest Common Divisor computation to reduce to lowest terms so that the
degree bound D is observed. The multiplication takes time O(D logD) and the GCD
O(D log2D), [1]. Branching instructions must �nd the lowest non-vanishing term in
the corresponding �-polynomial, which takes O(D) time.

Degree D cannot be bounded in general by a polynomial in the algebraic com-
plexity, which implies that the perturbation may be prohibitively expensive under the
algebraic model. Exponentiating a rational number, for instance, takes roughly a log-
arithmic number of steps in the exponent, while on perturbed input the worst-case
algebraic complexity is at least linear in it, which means the complexity overhead is ex-
ponential in the original complexity. However, we obtain better bounds by considering
bit complexities.

Theorem 5.4. Under the algebraic model, the running-time increases due to
perturbation (3) by a multiplicative factor of O(D1+�), where D is the maximum total
degree in the input variables of any polynomial in the real RAM program and � is an
arbitrarily small positive constant accounting for the polylogarithmic factor. Under the
bit model, the overhead for the worst-case complexity is O(�2+�(n; s)), where �(n; s)
asymptotically bounds the original worst-case bit complexity of the algorithm, s is the
maximum bit size of the input quantities and � is an arbitrarily small positive constant.

Proof. By the previous lemma for every instruction the overhead is O(D log2D).
This establishes the algebraic complexity overhead.

By the de�nition of T there exists an execution path with bit complexity 
(T ),
hence �(n; s) = 
(T ). By the de�nition ofD, there exists a path where a polynomial of
degree D in the input variables is computed. Since the only legal arithmetic operations
lie in f+;�; �; =g, there must exist an earlier operation on this path computing a
polynomial of degree at least D=2, hence computing values of bit size sD=2. The
operation that uses these values as operands has bit cost 
(sD=2) = 
(D). Hence



REMOVING DEGENERACIES 15

�(n; s) = 
(D).
After the perturbation, the same program operates on perturbed quantities; their

starting bit size is multiplied by O(logD+ T ), assuming c is constant. Moreover, the
algebraic complexity has overhead O(D log2D). Hence, the worst-case bit complexity
overhead is

O((logD + T )D log2D):(4)

Recalling the two lower bounds on �(n; s), we have �(n; s)2+� = 
(TD1+�), which
bounds the bit complexity overhead (4), for some appropriate � > 0.

Corollary 5.5. Perturbation (3) does not a�ect the worst-case bit complexity
class of the algorithm. In particular, if the original complexity lies in P or EXPTIME,
then the complexity on perturbed input also lies in P or EXPTIME respectively.

Proof. Immediate from the previous theorem.
Taking up the running example of Gaussian Elimination for the Matrix Inversion

problem, we observe that no checks for zero denominators have to be carried out on
perturbed input. Perturbation thus eliminates the need for interchanging rows. Com-
putation is symbolic, with GCD operations at every step in order to cancel common
terms and thus prohibit the degree in � of the symbolic polynomials from growing
exponentially in the number of examined rows. For nonsingular matrices, the result
is obtained by setting � to zero at the end. For singular instances, this causes some
denominator to vanish, so we take the limit as � goes to zero. For singular matrices
the result is some real matrix that approximates, in a sense, the inverse.

6. Conclusion. We studied algorithms modeled as programs on real Random
Access Machines with inputs from an in�nite ordered �eld and described perturbations
on the input, such that an algorithm designed under the assumption of non-degeneracy
can be applied to all inputs. Our perturbations satisfy the validity condition set out
in Section 2 which guarantees the relevance of the output with respect to the initial
problem.

We de�ned a deterministic method for algorithms with determinant tests and
a randomized one for arbitrary test functions. The �rst applies to algorithms from
computational geometry whose branching tests can be expressed as a determinant of
a � or � matrix. Ignoring polylogarithmic factors in the geometric dimension, the
deterministic scheme does not a�ect the algebraic complexity but incurs an overhead
to the worst case bit complexity that is linear in dimension. The second perturbation,
applicable to most geometric and algebraic algorithms, incurs a worst-case overhead
under the bit model that is bounded by a small-degree polynomial in the original
complexity. Both methods are characterized by their conceptual simplicity and are
signi�cantly faster than previous ones.

Examining branching tests that come up in other geometric algorithms and trying
to improve on e�ciency are natural extensions to this work, partly ful�lled in [14]. It is
also interesting to attempt extending the notion of degeneracy over �nite �elds, where
the lack of order makes our de�nition of degeneracy invalid. Another direction of
generalization is to observe that each leaf subspace is associated with a semi-algebraic
set de�ned by the branch polynomials on the respective execution paths. We may
wish to perturb these sets into general position.

Acknowledgment. We wish to thank K. Mehlhorn for several useful comments.



16 I. Z. EMIRIS AND J. F. CANNY

REFERENCES

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley, Reading, MA, 1974.
[2] L. Blum, M. Shub and S. Smale, On a theory of computation and complexity over the real

numbers: NP-completeness, recursive functions and universal machines, Bull. Amer. Math.
Soc., 21 (1989), pp. 1{46.

[3] J. Bochnak, M. Coste and M. F. Roy, G�eom�etrie Alg�ebrique R�eelle, Ergebnisse der Math-
ematik 3, No. 12, Springer-Verlag, Berlin, 1987.

[4] J. F. Canny, Computing roadmaps of semi-algebraic sets, Proc. 9th Symp. on Applied Algebra,
Algebraic Algorithms and Error-Corr. Codes, Lecture Notes in Computer Science, No. 539,
Springer-Verlag, Berlin, 1991, pp. 94{107.

[5] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J.
Symb. Comput., 9 (1990), pp. 251{280.

[6] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton,
1963.

[7] J. H. Davenport, Y. Siret and E. Tournier, Computer Algebra, Academic Press, London,
1988.

[8] K. Dobrindt, K. Mehlhorn and M. Yvinec, A complete framework for the intersection of a

general polyhedron with a convex one, Proc. 3rd Workshop Algorithms Data Struct., Lecture
Notes in Computer Science, No. 709, Springer-Verlag, Berlin, 1993, pp. 314{324.

[9] H. Edelsbrunner, Edge-skeletons in arrangements with applications, Algorithmica, 1 (1986),
pp. 93{109.

[10] , Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
[11] H. Edelsbrunner and L. J. Guibas, Topologically sweeping an arrangement, Proc. 18th ACM

Symp. on Theory of Computing, 1986, pp. 389{403.
[12] H. Edelsbrunner and E. P. M�ucke, Simulation of simplicity: A technique to cope with

degenerate cases in geometric algorithms, ACM Trans. Graphics, 9 (1990), pp. 67{104.
[13] H. Edelsbrunner and R. Waupotitsch, Computing a ham-sandwich cut in two dimensions,

J. Symb. Comput., 2 (1986), pp. 171{178.
[14] I. Emiris and J. Canny, An e�cient approach to removing geometric degeneracies, Proc. 8th

ACM Symp. on Computational Geometry, 1992, pp. 74{82.
[15] J. von zur Gathen, Algebraic complexity theory, Annual Review of Computer Science, No. 3,

J. Traub ed., Annual Reviews, Palo Alto, 1988, pp. 317{347.
[16] W. Keller-Gehrig, Fast algorithms for the characteristic polynomial, Theor. Comp. Sci., 36

(1985), pp. 309{317.
[17] C. Monma, M. Paterson, S. Suri and F. Yao, Computing euclidean maximum spanning

trees, Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 241{251.
[18] F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York,

1985.
[19] J. T. Schwartz, Fast probabilistic algorithms for veri�cation of polynomial identities, J. ACM,

27 (1980), pp. 701{717.
[20] A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of California

Press, Berkeley, 1948.
[21] C.-K. Yap, Symbolic treatment of geometric degeneracies, J. Symb. Comput., 10 (1990), pp. 349{

370.
[22] , A geometric consistency theorem for a symbolic perturbation scheme, J. Comp. Sys. Sci.,

40 (1990), pp. 2{18.
[23] R. Zippel, Interpolating polynomials from their values, J. Symb. Comput., 9 (1990), pp. 375{

403.


