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Abstract 
We derive general bounds on the complexity of 

learning in the Statistical Query model and in the 
PAC model with classification noise. We do so by 
considering the problem of boosting the accuracy of 
weak learning algorithms which fall within the Statis- 
tical Query model. This new model was introduced 
by Kearns [12] to provide a general framework for ef- 
ficient PAC learning in the presence of classification 
noise. 

We first show a general scheme for boosting the ac- 
curacy of weak SQ learning algorithms, proving that 
weak SQ learning is equivalent to strong SQ learn- 
ing. The boosting is efficient and is used to show 
our main result of the first general upper bounds 
on the complexity of strong SQ learning. Specifi- 
cally, we derive simultaneous upper bounds with re- 
spect to 6 on the number of queries, O(log2:), the 
Vapnik-Chervonenkis dimension of the query space, 
O(1og log log +), and the inverse of the minimum tol- 
erance, O(+ log 3 ) .  In addition, we show that these 
general upper bounds are nearly optimal by describing 
a class of learning problems for which we simultane- 
ously lower bound the number of queries by R(1og f )  
and the inverse of the minimum tolerance by a(:). 

We further apply our boosting results in the SQ 
model to learning in the PAC model with classification 
noise. Since nearly all PAC learning algorithms can be 
cast in the SQ model, we can apply our boosting tech- 
niques to convert these PAC algorithms into highly 
efficient SQ algorithms. By simulating these efficient 
SQ algorithms in the PAC model with classification 
noise, we show that nearly all PAC algorithms can be 
converted into highly efficient PAC algorithms which 
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tolerate classification noise. We give an upper bound 
on the sample complexity of these noise-tolerant PAC 
algorithms which is nearly optimal with respect to the 
noise rate. We also give upper bounds on space com- 
plexity and hypothesis size and show that these two 
measures are in fact independent of the noise rate. 
We note that the running times of these noise-tolerant 
PAC algorithms are efficient. 

This sequence of simulations also demonstrates that 
it is possible to boost the accuracy of nearly all PAC 
algorithmseven in the presence of noise. This provides 
a partial answer to an open problem of Schapire [15] 
and the first theoretical evidence for an empirical re- 
sult of Drucker, Schapire and Simard [4]. 

1 Introduction 
We derive general bounds on the complexity of 

learning in the Statistical Query model and in the PAC 
model with classification noise. We do so by consider- 
ing the problem of improving the accuracy of learning 
algorithms, and in particular we study the problem of 
“boosting” the accuracy of “weak” learning algorithms 
which fall within the recently introduced Statistical 
Query model. We show that it is possible to improve 
the accuracy of weak learning algorithms in the Sta- 
tistical Query model to any arbitrary accuracy, and 
we derive a number of interesting consequences from 
this result. 

Since Valiant’s introduction of the Probably Ap- 
proximately Correct model of learning [18], PAC 
learning has proven to be an interesting and well stud- 
ied model of machine learning. In an instance of PAC 
learning, a learner is given the task of determining a 
close approximation of an unknown (0, 1)-valued tar-  
get funct ion f from labelled examples of that function. 
The learner is given access to an example oracle and 
accuracy and confidence parameters. When polled, 
the oracle draws an example according to a distri- 
bution D and returns the example along with its la- 
bel according to f. The error rate of an hypothesis 
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output by the learner is the probability that an ex- 
ample chosen according to D will be mislabelled by 
the hypothesis. The learner is required to output an 
hypothesis such that, with high confidence, the er- 
ror rate of the hypothesis is less then the accuracy 
parameter. Two standard complexity measures stud- 
ied in the PAC model are sample complexity and t ime 
complexity. Efficient PAC learning algorithms have 
been developed for many function classes [ 11, and PAC 
learning continues to be a popular model of machine 
learning. 

The model of learning stated above is often referred 
to as strong learning since the learner could be re- 
quired to output an arbitrarily accurate hypothesis 
depending on the accuracy parameter. A variant of 
strong learning called weak learning is identical ex- 
cept that there is no accuracy parameter, and the 
output hypothesis need only have error rate slightly 
less than 1/2 ( i . e .  slightly better than random guess- 
ing). A fundamental and surprising result first shown 
by Schapire [15, 161 and later improved upon by 
Freund [6, 71 states that any algorithm which effi- 
ciently weakly learns can be transformed into an al- 
gorithm which efficiently strongly learns. These re- 
sults have important consequences for PAC learning, 
including providing upper bounds on the time and 
sample complexities of strong learning. 

One criticism of the PAC model is that the data 
presented to the learner is assumed to be noise-free. 
In fact, most of the standard PAC learning algorithms 
would fail if even a small number of the labelled ex- 
amples given to the learning algorithm were “noisy”. 
A popular noise model for both theoretical and ex- 
perimental research is the classification noise model 
introduced by Angluin and Laird [2, 131. In this 
model, each example received by the learner is mis- 
labelled randomly and independently with some fixed 
probability. While a limited number of efficient PAC 
algorithms have been developed which can tolerate 
classification noise [2, 9, 141, no general framework 
for efficient learning’ in the presence of classification 
noise was known until Kearns introduced the Statisti- 
cal Query model [12]. 

In the SQ model, the labelled example oracle of the 
standard PAC model is replaced by a statistics ora- 
cle. An SQ algorithm queries this new oracle for the 
values of various statistics on the distribution of la- 
belled examples, and the oracle returns the requested 
statistics to within some specified tolerance. Upon 
gathering a sufficient number of statistics, the SQ al- 
gorithm returns an hypothesis of the desired accuracy. 
Since calls to the statistics oracle can be simulated 

Angluin and Laird [2] introduced a general framework for 
learning in the presence of classification noise. However, their 
methods do not yield computationally efficient algorithms in 
most cases. 

with high probability by drawing a sufficiently large 
sample from the example oracle, one can view this 
new oracle as an intermediary which effectively limits 
the way in which a learning algorithm can make use 
of labelled examples. Two standard complexity mea- 
sures of SQ algorithms are the maximum number of 
statistics required (query complexity) and the mini- 
mum tolerance required. The time and sample com- 
plexities of the simulation of an SQ algorithm in the 
PAC model are directly affected by these measures; 
therefore we would like to determine these measures 
as accurately as possible. 

Kearns [12] has demonstrated two important prop- 
erties of the SQ model which make it worthy of study. 
First, he has shown that nearly every PAC learning al- 
gorithm can be cast within the SQ model, thus demon- 
strating that the SQ model is quite general and im- 
poses a rather weak restriction on learning algorithms. 
Second, he has shown that calls to the statistics oracle 
can be efficiently simulated (with high probability) by 
a sufficiently large sample drawn from a classification 
noise oracle. An immediate consequence of these two 
properties is that nearly every efficient PAC learning 
algorithm can be transformed into one which tolerates 
arbitrary amounts of classification noise. 

While greatly expanding the class of functions 
known to be learnable in the presence of classifica- 
tion noise, Kearns’ technique does not constitute a 
formal reduction from PAC learning to SQ learning. 
In fact such a reduction cannot exist since, while the 
class of parity functions is known to be PAC learn- 
able [ll], Kearns has shown that this class is provably 
unlearnable in the SQ model. Kearns’ technique for 
converting PAC algorithms to SQ algorithms consists 
of a few general rules, but each PAC algorithm must be 
examined in turn and converted to an SQ algorithm 
individually. Thus, one cannot derive general upper 
bounds on the complexity of SQ learning from upper 
bounds on the complexity of PAC learning, due to the 
dependence on the specific conversion of a PAC algo- 
rithm to an SQ algorithm. A consequence of this fact 
is that general upper bounds on the time and sam- 
ple complexities of PAC learning in the presence of 
classification noise are not directly obtainable either. 

We obtain bounds for SQ learning and PAC learn- 
ing with classification noise by making use of the fol- 
lowing result. We define weak SQ learning in a man- 
ner analogous to weak PAC learning, and we show 
that it is possible to boost the accuracy of weak SQ 
algorithms to obtain strong SQ algorithms. Thus, we 
show that weak SQ learning is equivalent to strong 
SQ learning. We use the technique of “boosting by 
majority” [7] which is nearly optimal in terms of its 
dependence on hypothesis accuracy. 

In the SQ model, as in the PAC model, the 
boosting result allows us to derive upper bounds 
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on many complexity measures of learning. Specifi- 
cally, we derive simultaneous upper bounds with re- 
spect to t on the number of queries, O(log2:), the 
Vapnik-Chervonenkis dimension of the query space, 
O(1og : log log $), and the inverse of the minimum tol- 
erance, O(:logi). In addition, we show that these 
general upper bounds are nearly optimal by describ- 
ing a class of learning problems for which we si- 
multaneously lower bound the number of queries by 
a(& log 3) and the inverse of the minimum toler- 
ance by a(+). Here d is the Vapnik-Chervonenkis di- 
mension of the class to be learned. 

We further apply our boosting result and bounds in 
the SQ model to derive a boosting result and bounds in 
the PAC model with classification noise. Since nearly 
all PAC algorithms can be cast in the SQ model and 
since all SQ algorithms can be simulated in the PAC 
model with classification noise, we effectively demon- 
strate that it is possible to boost the accuracy of nearly 
all PAC algorithms even in the presence of noise. 
This provides a partial answer to an open problem of 
Schapire [15] on whether boosting techniques can be 
used in the presence of noise. It also provides the first 
theoretical evidence for an empirical result obtained 
by Drucker, Schapire and Simard [4] on improving the 
performance of a neural network in the presence of 
noise. 

By creating efficient SQ algorithms and simulat- 
ing them in the PAC model. with classification noise, 
we effectively show that nearly every PAC algorithm 
can be converted into a highly efficient PAC algorithm 
which tolerates classification noise. W? show an upper 
bound (with respect to E and q g )  of O ( h )  on 
the sample complexity of PAC learning in the pres- 
ence of noise which is nearly optimal with respect to 
the noise rate.2 We also give bounds on the space 
complexity and hypothesis size. Our bound on the 
hypothesis size is independent of the noise rate, and 
by using a modest increase in sample size we achieve a 
space complexity that is also independent of the noise 
rate. 

The remainder of this paper is organized as follows. 
In Section 2, we formally define the learning models 
of interest. Section 3 presents an overview of the PAC 
model boosting result of Freund on which our boost- 
ing technique is modelled. In Section 4, we describe 
our boosting results in the SQ model. Sections 5 and 6 
describe the consequences of these results for SQ learn- 
ing and PAC learning in the presence of classification 
noise. We conclude the paper with some extensions 
and open questions in Section 7. 

'When b > I, -we detne 6 ( b )  to mean O(blogc b )  for some 
c > 1 .  We define R and 8 similarly. 

2 Model Definitions 
In this section, we formally define the relevant mod- 

els of machine learning necessary for the exposition 
that follows. We begin by defining the weak and 
strong PAC learning models, followed by the classi- 
fication noise model, and finally the statistical query 
model. 

2.1 The Weak and Strong PAC Learning 
Models 

In an instance of PAC learning, a learner is given 
the task of determining a close approximation of an 
unknown (0, 1)-valued target function from labelled 
examples of that function. The unknown target func- 
tion f is assumed to be an element of a known function 
class F defined over an example space X .  The exam- 
ple space X is typically either the Boolean hypercube 
( 0 , l ) "  or n-dimensional Euclidean space %". We use 
the parameter n to denote the common length of each 
example 3: E X .  

We assume that the examples are distributed ac- 
cording to some unknown probability distribution D 
on X .  The learner is given access to a example oracle 
E X ( f ,  D )  as its source of data. A call to E X ( f ,  D )  
returns a labelled example (z,1) where the example 
z E X is drawn randomly and independently accord- 
ing to the unknown distribution D ,  and the label 
1 = f(z). We often refer to a sequence of labelled 
examples drawn from an example oracle as a sample. 

The learning algorithm will draw a sample from 
E X ( f ,  D )  and eventually output an hypothesis h from 
some hypothesis class 'H defined over X .  For any hy- 
pothesis h ,  the error rate of h is defined to be the dis- 
tribution weight of those examples in X where h and 
f differ. By using the notation Pro[P(z)] to denote 
the distribution weight of examples in X which satisfy 
the predicate P, we may define error(h) = PrD[h(z) # 
f(z)]. We often think of 'H as a class of representa- 
tions of functions in 3, and as such we define s i ze( f )  
to be the size of the smallest representation in 31 of 
the target function f .  

The learner's goal is to output, with probability at 
least 1 - 6, an hypothesis h whose error rate is at 
most E ,  for the given error parameter E and confidence 
parameter 6. A learning algorithm is said to be ef- 
ficient if its running time is polynomial in 1 / ~ ,  1 / 6 ,  
n and sire( f ) .  We formally define PAC learning as 
follows (adapted from Kearns [12]): 

Definition 1 (Strong PAC learning) 
Let 3 and 'H be function classes defined over X .  The 
class 3 is said t o  be efficiently learnable b y  'H if 
there exists a learning algorithm A and a polynomial 
p ( . , . , . , . )  such that for  any f E 3, for  any distribu- 
tion D on X ,  for any error parameter E ,  0 < E 5 1 ,  

284 



and f o r  any confidence parameter 6, 0 < 6 5 1, the 
following holds: if A i s  given inputs E and 6, and ac- 
cess t o  an example oracle E X ( f ,  D) ,  then A halts in  
i ime bounded by p(l/~, 1/6, n ,  s i t e ( f ) )  and outputs an 
hypothesis h E ‘H that with probability at least 1 - 6 
satisfies error(h)  5 E. 

As stated, this is often referred to as strong learn- 
ing since the learner could be required to output an 
arbitrarily accurate hypothesis depending on the in- 
put parameter E. A variant of strong learning called 
weak learning is identical except that there is no er- 
ror parameter E ,  and the output hypothesis need only 
have error rate slightly less than 1/2 ( i . e .  error(h)  5 
f - y = 4 - p(n,stze(f)) for some polynomial p ) .  Since 
random guessing would produce an error rate of 1/2, 
one can view the output of a weak learning algorithm 
as an hypothesis whose error rate is slightly better 
than random guessing. We refer to the output of a 
weak learning algorithm as a weak hypothesis and the 
output of a strong learning algorithm as a strong hy- 
pothesis. 

2.2 The Classification Noise Model 
One criticism of the PAC model is that the data 

presented to the learner is required to be noise-free. 
A popular model of noise for both experimental and 
theoretical purposes was introduced by Angluin and 
Laird [2, 131. In the classification noise model, the la- 
belled example oracle E X (  f ,  D )  is replaced by a noisy 
example oracle EX9(f, D).  Each time the noisy ex- 
ample oracle is called, an example x E X is drawn 
according to D. The oracle then outputs (2, f ( x ) )  
with probability 1 - 77 and ( x , - f ( x ) )  with probabil- 
ity 7, randomly and independently for each example 
drawn. Classification noise is intended to model the 
simplest type of “white noise” which can affect the 
labels. Despite the noise in the labelled examples, 
the learner’s goal remains to output an hypothesis h ,  
which with probability at least 1 - 6, has error rate 
error(h)  = PrD[h(z) # f(x)] at most E .  

While the learner does not typically know the exact 
value of the noise rate 77, the learner is given an upper 
bound 776 on the noise rate, 0 5 77 5 q b  < 1/2, and 
the learner is said to be efficient if its running time is 
polynomial in the usual PAC learning parameters as 
well as 1 1-29b’ 

2.3 The Statistical Query Model 
While a limited number of PAC algorithms have 

been developed which can tolerate arbitrary amounts 
of classification noise (up to the information-theoretic 
limit of 1/2) [2, 9, 141, no general framework for effi- 
cient learning in the presence of classification noise 
was known until Kearns introduced the Statistical 

Query model [12]. In the SQ model, the example or- 
acle E X ( f , D )  from the standard PAC model is re- 
placed by a statistics oracle STAT( f ,  0). An SQ al- 
gorithm queries the STAToracle for the values of var- 
ious statistics on the distribution of labelled exam- 
ples ( e .g .  “What is the probability that a randomly 
chosen labelled example (x,l) has variable ti = 0 
and 1 = l?”) ,  and the STAT oracle returns the re- 
quested statistics to within some specified tolerance. 
Formally, a statistical query is of the form [x, TI. Here 
x is a mapping from labelled examples to (0 , l )  ( i . e .  
x : X x ( 0 , l )  +. ( 0 , l ) )  corresponding to an indica- 
tor function for those labelled examples about which 
statistics are to be gathered, while T is a tolerance 
parameter. A call to STAT(f, D)[x,T] returns an 
estimate Px of Px = PrD[X(x, f (x))]  which satisfies 

We note that a call to STAT( f ,  D )  can easily be 
simulated (with probability at least 1 - 6) by drawing 
a sufficiently large sample from E X (  f ,  0) and out- 
putting the fraction of labelled examples which satisfy 
x(z ,  f ( x ) )  as our estimate Px. The size of the sam- 
ple required will be polynomial in 1 / ~  and log1/6, 
and the simulation time will also be dependent on the 
time required to evaluate x .  We formally define effi- 
cient learning in the Statistical Query model as follows 
(adapted from Kearns [12]): 

Definition 2 (Strong SQ Learning) 
Let 3 and 1-1 be function classes defined over X .  The 
class 3 is said to  be e f ic ient ly  learnable via statistical 
queries by 1-1 if there exists a learning algorithm A and 
polynomials p ( . ,  ., .), q( . ,  .), and T ( . ,  ., .) such that f o r  
any f E 3, f o r  any distribution D on X ,  and for  any 
error parameter E ,  0 < E 5 1 ,  the following holds: 
if A is given input E and access to  a statist ics oracle 
STAT( f ,  D) ,  then (1) for  every query [x, T] made by 
A ,  x can be evaluated in t ime bounded by q(n,  s i z e ( f ) )  
and 1 / ~  is  bounded b y  T ( ~ / E ,  n, s i z e ( f ) ) ,  and (2) A 
halts in  t ime bounded b y  p (  l / ~ ,  n ,  size( f ) )  and outputs 
an hypothesis h E 1-1 that satisfies error(h)  5 E .  

lPx - PxI 5 7-. 

Since calls to the statistics oracle STAT( f ,  D) can 
be simulated (with high probability) by a sample 
drawn from the example oracle E X (  f ,  D ) ,  we can 
view the Statistical Query model as simply restrict- 
ing the way in which learning algorithms can use la- 
belled examples. Kearns has shown that this restric- 
tion is rather weak in that nearly every PAC algorithm 
can be cast in the SQ model. An important prop- 
erty of this model is that calls to the statistics ora- 
cle STAT( f ,  D )  can also be efficiently simulated (with 
high probability) by a sample drawn from a noisy ex- 
ample oracle E X 9 (  f ,  D) .3  The size of the sample 

3The statistics oracle can actually be simulated by a variety  
of “faulty” example oracles [3]. 
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required is polynomial in 1 / ~ ,  1 / (1-  2qa) and log 1/6. 
While an efficient simulation of an SQ algorithm can 
be obtained by drawing a separate sample for each call 
to  the statistics oracle, better bounds on the sample 
complexity of the simulation are obtained by drawing 
one large sample and estimating each statistical query 
using that single sample. If we let Q be the func- 
tion space from which the learning algorithm selects 
its queries (the query space), then the size of the sin- 
gle sample required in this case is independent of the 
query complexity, but depends on the VC-dimension 
of Q (a standard complexity measure for a space of 
functions). Kearns has shown the following theorem 
on the sample size required for this simulation: 

Theorem 1 (Kearns) Let T and H be function 
classes defined over X .  Suppose that 3 is efficiently 
leamable via statistical queries by H using a leaming 
algorithm A .  Then 3 is efficiently learnable in the 
classification noise model by 31. I f A  uses query space 
Q of VC dimension q and TO is  a lower bound on the 
tolerance of every query made b y  A, then the number 
of calls t o  EX"(  f, D) required t o  learn with noise is 

Given that nearly every PAC algorithm can be con- 
verted to an SQ algorithm, an immediate consequence 
of this theorem is that nearly every PAC algorithm 
can be transformed into one which tolerates classifi- 
cation noise. The sample and time complexities of 
the noisetolerant versions depend on TO and Q, which 
themselves are a function of the ad hoc conversion of 
the PAC algorithms to SQ algorithms. Thus, one can- 
not show general upper bounds on the sample and 
time complexities of these noise-tolerant versions of 
converted PAC algorithms. 

We define weak SQ learning identically to strong 
SQ learning except that there is no error parameter c. 
In this case the output hypothesis need only have er- 
ror rate slightly less than 1/2, i .e.  error(h)  < ; - y = 
4 - p(n,s:ze(,l) for some polynomial p. By showing 
that weak SQ learning algorithms can be "boosted" to 
strong SQ learning algorithms, we are able to bound 
the tolerance TO of strong SQ algorithms and limit the 
query space Q as well. We are then able to show an up- 
per bound on the sample and time complexities of the 
noise-tolerant versions of converted PAC algorithms. 
These results are given in Sections 4, 5 and 6. 

3 Boosting in the PAC model 
Schapire and Freund use similar strategies for 

boosting weak learning algorithms into strong learn- 
ing algorithms. They both create a strong hypothe- 
sis by combining many hypotheses obtained from the 

weak learning algorithm. The boosting mechanisms 
derive their power by presenting the different calls to 
the weak learning algorithm with modified versions 
of the original distribution over labelled examples. 
Freund [6,7] has developed two similar schemes (which 
we call Scheme 1 and Scheme 2) for boosting a weak 
learning algorithm into a strong learning algorithm. 
One is more efficient with respect to E while the other 
is more efficient with respect to y. Freund constructs 
a hybrid scheme more efficient than either Scheme 1 
or Scheme 2 by combining these two methods in order 
to capitalize on the advantages of each. We first de- 
scribe the two schemes separately and then show how 
to combine them. 

Scheme 1 uses the weak learning algorithm to cre- 
ate a set of k.1 = & In f weak hypotheses and outputs 
the majority vote of these hypotheses as the strong hy- 
pothesis. The weak hypotheses are created by asking 
the weak learner to learn on various modified distri- 
butions. The distribution used to generate a given 
weak hypothesis is based on the performance of the 
previously generated weak hypotheses. Specifically, to 
create the (i+ l)at hypothesis, instead of the given ex- 
ample oracle E X ( f ,  D), the weak learner is provided 
a filtered example oracle E X ( f ,  Di+l) defined as fol- 
lows: 

1. Draw a labelled example (2, f (z ) )  from E X ( f ,  D ) .  
2. Compute h l ( z )  ,..., h, (z ) .  
3. Set r to be the number of hypotheses which agree 

4. Flip a biased coin with Pr(HEAD) = a:. 
5. If HEAD, then output example (2, f(z)), otherwise 

with f on z. 

go to step 1. 

Figure 1: Filtered Example Oracle E X ( f ,  D,+l) 

When k weak hypotheses are to be generated, the set 
of probabilities {a:} are fixed according to the follow- 
ing binomial distribution: 

Freund shows that the majority vote of h l ,  . . . , hkl 
will have error rate no more than c on D if each h; 
has error rate no more than 3 - y on D;. 

One pitfall of this scheme is that the simulation of 
EX( f ,  D,+l) may need to draw many examples from 
E X ( f , D )  before one is output to the weak learner. 
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Let ti be the probability that an example drawn ran- 
domly from E X ( f ,  D )  passes through the probabilis- 
tic filter which defines E X ( f ,  Di+l). Freund observes 
that if ti < c1c2, then the majority vote of h l ,  . . . , hi is 
already a strong hypothesis. The boosting algorithm 
can estimate t i ,  and if it is below the cutoff, can output 
the majority vote of the hypotheses created thus far. 
The boosting algorithm’s time and sample complexity 
dependence on y is e( l/y2) while its dependence on E 

is G ( ~ / E ~ ) .  
Scheme 2 is very similar to Scheme 1. The weak 

learner is again called many times to  provide weak hy- 
potheses on filtered distributions. This method uses 
k2 = 2k1 = In weak hypotheses, while the filtered 
oracle remains the same. The main difference is the 
observation that if ti < m, then we may simply 
use a “fair coin” in place of hi+l and still be guar- 
anteed that the final majority of k2 hypotheses has 
error rate less than E . ~  The boosting algorithm tests 
to see if t i  is below this new threshold. If so, a “fair 
coin” is used as the ( i +  l)’* weak hypothesis, and the 
algorithm proceeds to find a weak hypothesis on the 
next distribution. The boosting algorithm’s time and 
sample complexity dependence on E is O( l / ~ )  while its 
dependence on 7 is b ( l / y 3 ) .  

The improvement on the two boosting schemes is 
realized by using each in the “boosting range” for 
which it is most efficient. The first method is more 
efficient in l/7 while the second is more efficient in 
1 / ~ .  We therefore use the first to boost from !j - y to 
a constant and use the second to boost from that con- 
stant to E .  We define A i  to be a learning algorithm 
which uses the first boosting scheme and makes calls to 
the weak learning algorithm A+-r.  The strong learn- 
ing algorithm A ,  uses the second boosting scheme and 
makes calls to A +  as its “weak learner”. The strong 
hypothesis output by such a hybrid algorithm is a 
depth two circuit with a majority gate at the top level. 
The inputs to the top level are “fair coin” hypotheses 
and majority gates whose inputs are weak hypothe- 
ses for various distributions. The hybrid’s time and 
sample complexity dependence on E is 0 ( 1 / ~ )  while 
its dependence on 7 is Q(l/-r2). 

4 Boosting in the SQ model 
Boosting requires the learner to interact with mod- 

ified distributions over labelled examples. Specifically, 
the boosting methods of the previous section are based 
on the observation that the majority vote of h l ,  . . . , hr 
has error rate less than E on D if each constituent hj 
has error rate less than !j - 7 on Dj. In the PAC 
model, the learner interacts with the distribution over 

‘A “fair coin” hypothesis ignores its input I and outputs the 
outcome of a fair coin flip. 

labelled examples through calls to an example oracle. 
Therefore, boosting in the PAC model is accomplished 
by constructing E X ( f ,  Dj)  from the original example 
oracle E X ( f , D ) .  In the SQ model, the learner in- 
teracts with the distribution over labelled examples 
through calls to a statistics oracle. Therefore, boost- 
ing in the SQ model is accomplished by construct- 
ing STAT(f, Dj ) from the original statistics oracle 
STAT(f,  D). 

In the sections that follow, we first show how to 
boost a weak SQ algorithm using either Scheme 1 or 
Scheme 2 .  We then show how to  boost a weak SQ algo- 
rithm using the hybrid method. Although it is possible 
to boost in the SQ model using Schapire’s method, we 
do not describe these results in the SQ model since 
they are somewhat weaker than those presented here. 

4.1 Scheme 1 via Statistical Queries 
We can use Scheme 1 to create a strong SQ learner 

by simply answering statistical queries made with re- 
spect to modified distributions. Therefore, we must 
be able to simulate queries to STAT(f ,  D j )  by making 
queries to STAT(f ,  D).  We first show how to specify 
the exact value of a query with respect to Dj in terms 
of queries with respect to D and then determine the 
accuracy with which we need to make these queries 
with respect to D in order to obtain the correct accu- 
racy with respect to Dj. 

The modified distributions required for boosting are 
embodied in the five step description of the filtered ex- 
ample oracle given in Figure 1.  Note that steps 2 and 3 
partition the instance space into i + 1 regions corre- 
sponding to those examples which are correctly classi- 
fied by the same number of hypo these^.^ Let Xf c X 
be the set of examples which are correctly classified by 
exactly r of the i hypotheses. We define an induced 
distribution Dz on a set 2 with respect to distribution 
D as follows: For any Y C_ 2 ,  DZ[Y]  = D [ Y ] / D [ Z ] .  
By construction, for any given X i  region, the filtered 
example oracle uniformly scales the probability with 
which examples from that region are drawn. There- 
fore, the induced distribution on X i  with respect to 
Di+l is the same as the induced distribution on X i  
with respect to D. (This fact will be used to obtain 
Equation 2 from Equation 1 below.) 

A query by the weak learner to STAT( f ,D i+t )  is 
a call for an estimate of Prg,+, [ ~ ( z ,  f(z))] as given 
in Equation 1. Note that the denominator of Equa- 
tion 3 is the probability that a random example drawn 
from EX(f, D )  passes through the filter which defines 
E X ( f ,  D,+l). Recall that Freund calls this probabil- 
ity t i .  

’For ease of presentation, throughout this paper we assume 
that the hypothesis class ‘H is composed of deterministic hy- 
potheses. In Section 7 we describe the generalizations used to 
accommodate probabilistic hypotheses. 
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Ignoring tolerances for the moment, the proba- 
bilities in Equation 3 may be stated as queries to 
STAT(f ,  0) as follows: 

S T A T ( f ,  Di+l ) [ x ( z ,  f(z))l 

Note that the condition x E Xj, while possibly not 
a small Boolean formula, is polynomially evaluatable 
given hl , . . . , hi, thus satisfying the efficiency condi- 
tion given in the definition of SQ learning. We next 
determine the accuracy with which we must ask these 
queries to STAT(f ,  0) so that the final result is within 
the desired tolerance r. 

Since Equation 4 is the ratio of two quantities, we 
first show a sufficient tolerance with which one can 
estimate two quantities in order to determine an ac- 
curate estimate of their ratio. 

Claim 1 Let 0 5 a ,  b ,  c, r 5 1 where a = b / c .  If b 
and i. are estimates of b and c ,  respectively, each with 
additive error no more than rc /3 ,  then la - bIi.1 5 r .  

The claim follows immediately from the simple verifi- 
cation of the following two inequalities: 

w < a + r  c - s c f 3  - and Z 2 a - r  

We now have that it is sufficient to estimate both 
the numerator and denominator of Equation 4 each 
with tolerance r t i / 3  in order to simulate a call to 
STAT(f ,Di+l )  with tolerance r. Both the numera- 
tor and denominator are of the form: X i  p i z i .  When xi  lp;l 5 1, one can easily show that to  estimate this 
sum to within some additive error, it is sufficient to es- 
timate each ~i to within this same additive error. Since 
the known at probabilities are binomially distributed, 
their sum is 1. Therefore, to estimate the numerator 
and denominator of Equation 4 each to within r t ; / 3 ,  it 
is sufficient to estimate each of the individual queries 

to within this same tolerance. It is therefore sufficient 
to estimate each call to S T A T ( f , D )  with tolerance 
r t i / 3  in order to simulate a call to STAT(f ,Di+l )  
with tolerance r. 

If t ;  is very small, then we must make estimates 
with very small tolerances. We would therefore like to 
have some good lower bound on t i  when we are simu- 
lating calls to STAT(f ,  Di+l) .  We obtain such a lower 
bound by employing the bailout condition of Freund 
which either lower bounds ti or aborts the search for 
hi+l. 

If t i  < q c ’ ,  then the majority vote of the hy- 
potheses generated thus far is a strong hypothesis. 
We therefore estimate t i ,  and if it is less than the 
cutoff, we return the majority vote of the hypotheses 
found so far. Otherwise ti is lower bounded by Q(c’), 
and the required tolerances for estimating queries to 
STAT(f ,  D )  are lower bounded by R(rc’ ) ,  where T is 
the tolerance requested by the call to STAT( f ,  Di+l) .  
If we let 70  = ro(n ,s i re( f ) )  be the minimum query 
tolerance requested by a weak learner, then the min- 
imum query tolerance required by our simulation is 
bounded by Q ( r 0 c ’ ) .  

We next examine the number of queries required 
for boosting as a function of the number of queries 
required by an individual weak learner. Let N = 
N ( n ,  s i r e ( f ) )  be the maximum number of queries 
made by a weak learner. By Equation 4, we note that 
the number of queries to STAT(f ,  0) required to sim- 
ulate a query to STAT(f ,  Di+l )  is proportional to i. 
We therefore need O(Nk1’) = O ( N +  log’ +) queries 
to simulate all of the queries requested by all kl of the 
weak learners. 

4.2 Scheme 2 via Statistical Queries 
The SQ simulation of Scheme 2 is very similar to the 

simulation of Scheme 1. Since the bailout condition of 
Scheme 2 introduces “coin flip” hypotheses in addition 
to the usual weak hypotheses, we first rederive the 
probability of x(x , f (x) )  being true with respect to 
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Di+l in terms of probabilities with respect to D. 
After i hypotheses have been generated we let w be 

the number of these which are actual weak hypotheses 
and U = i - w be the number of these which are “coin 
flip” hypotheses. If we evaluate all i hypotheses on 
an example 2 ,  we say that z E if exactly r of the 
i hypotheses agree with f .  We say that x E XF if 
exactly r of the w weak hypotheses agree with f. Note 
that PrD[z E 23 = Cy=, Py . PrD[z E XF’r] where 
we define Py to be the probability that exactly 1 of U 

fair coin flips are HEADS and PrD[e E X,“i_,] = 0 if 
r - 1 < 0. In Equations 5 and 6, we formulate the 
probability of x(z, f(z)) being satisfied with respect 
to D;+1 in terms of probabilities with respect to D. 
Note that the denominators of these equations again 
correspond to the probability t i .  

The bailout condition in this scheme implies that 
if we must produce a weak hypothesis, then we 
have an Q ( E ~ /  log +) bound on the denominator t i .  

Since the Py (and crf) coefficients are binomially dis- 
tributed and therefore sum to 1, we may make queries 
to STAT( f ,  D )  with additive error Q ( r ~ y /  log ;) to 
achieve additive error r on the simulation of queries 
to STAT(f ,Di+l ) .  If we let TO = r o ( n , s i z e ( f ) )  be 
the minimum query tolerance requested by a weak 
learner, then the minimum query tolerance required 
by our simulation is bounded by Q(ro~y/  log 4). The 
number of queries required in this boosting scheme is 
O ( N k 2 ’ )  = O(N+ log’ +) where N is the maximum 
number of queries made by a weak learner. 

4.3 Hybrid SQ boosting 
We obtain a more efficient boosting scheme in the 

SQ model by combining the two previously described 
methods. As was done in the PAC model, we use 
Scheme 1 to  boost from f - y to f and Scheme 2 to 
boost from f to E .  We can therefore boost from weak 
to strong learning in the SQ model as stated in the 
following theorem. 

Theorem 2 Given a weak SQ learning algorithm 
which makes a2 most  N = N ( n , s i z e ( f ) )  queries each 

of tolerance at least 70 = r o ( n , s i z e ( f ) )  and outputs 
an hypothesis with error no more than - y, we can 
construct a strong SQ learning algorithm which makes 
O ( N $  log’ +) queries each of tolerance Q ( ~ o E /  log :). 

Note that by using this hybrid boosting scheme, the 
minimum query tolerance of the constructed strong 
SQ learning algorithm has no dependence on y. 

5 General Bounds on Learning in the 
Statistical Query Model 

In the same way that the sample complexity of 
boosting in the PAC model yields general upper 
bounds on the sample complexity of strong PAC learn- 
ing algorithms, the query and tolerance complexities 
of boosting in the SQ model yield general bounds on 
the query and tolerance complexities of strong SQ 
learning algorithms. 

We can convert any strong SQ learning algorithm 
into a weak SQ learning algorithm by “hardwiring” 
the accuracy parameter E to a constant. We may then 
use the boosting technique to arrive at a strong SQ 
learning algorithm with nearly optimal dependence 
on E. 

Theorem 3 If concept class 3 is strongly SQ learn- 
able then 3 i s  strongly SQ learnable with O ( N  log’ +) 
queries each of tolerance R(roE/log+). Here N and 
TO are the number of queries and minimum tolerance, 
respectively, of the original strong SQ algorithm run 
with a constant accuracy parameter.  Both  N and TO 
are independent of E .  

Further analysis of the boosting scheme shows that 
the dependence on E of the time complexity, space 
complexit and hypothesis size of strong SQ learning 

Kearns [12] has shown a general lower bound of 
R(d/logd) queries each of tolerance O ( E )  for learn- 
ing any concept class of VC-dimension d in the SQ 
model. Whereas Kearns simultaneously lower bounds 
the number of queries and upper bounds the mini- 
mum tolerance, here we have simultaneously upper 

are O(1og I +), O(1og $) and O(1og +), respectively. 
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bounded the number of queries and lower bounded 
the minimum tolerance in terms of their dependence 
on 6 .  Note that the tolerance we give in Theorem 3 is 
optimal to within a logarithmic factor. While Kearns' 
general lower bound leaves open the possibility that 
there may exist a general upper bound on the query 
complexity which is independent of 6 ,  we show that 
this is not the case by demonstrating a specific learn- 
ing problem which requires Q( & log +) queries of tol- 
erance O(c) in the SQ model. Thus, with respect to 6 ,  

our general upper bound on the query complexity is 
within a log 4 factor of the best possible general upper 
bound. 

Theorem 4 There exists a parameterized family  of 
function classes which require Q(& log f )  queries of 
tolerance O(c) t o  learn in the SQ model. 

Proof (Sketch): Consider the following two-player 
game parameterized by t ,  d and N where t 5 d 5 N .  
The adversary chooses a set6 S C [NI of size d ,  and the 
goal of the player  is to output a set T C [NI such that 
I S A T 1  5 t .  The player is allowed to ask queries of the 
form Q [NI to which the adversary returns IQ n SI. 
For any d 2 4, t 5 d / 4  and N = Q ( d l + a )  for some 
cr > 0, we show that the player requires Q(& log N )  
queries to the adversary, in the worst case. 

We reduce this two-player game to the following 
learning problem. The example space X is the set of 
natural numbers n/, and the function class 3 is the set 
of all indicator functions corresponding to subsets of 
n/ of size d.  By appropriately creating a distribution 
over h/ and setting 6 = l / N 1  the reduction allows us 
to answer each SQ algorithm query by submitting only 
two queries to the adversary, and we need not submit 
any queries to the adversary if the requested toler- 
ance is greater than 46.  Since Q( & log N )  queries of 
the adversary are required, the SQ algorithm must 
ask Q( & log N )  = Q(& log 3) queries of toler- 
ance O(c).  0 

6 General Bounds on PAC Learning 
with Classification Noise 

Given the bounds of the previous section, an anal- 
ysis of the VC-dimension of the query space Q used 
in the boosting scheme, and Theorem 1 of Kearns, 
we obtain upper bounds on the sample complexity of 
PAC learning in the presence of classification noise (for 
classes whose PAC algorithms can be stated in the SQ 
model). 

6We use the standard combinatorial notation [NI = 
{ l , .  .. , N ) .  

Lemma 1 Let Qo and ' I f 0  be the query space and hy- 
pothesis class, respectively, of the weak learning al- 
gorithm. Let Q be the query space-of the two  stage 
boosting scheme. Then V C D (  &) = O ( k d o  + qo) where 
k = O(+log:) is  the number of calls t o  the weak 
learning algorithm in the two  stage boosting scheme, 
do = V C D ( X 0 )  and qo = VCD(Q0). 

Theorem 5 Let 3 and ' I f 0  be function classes defined 
over X .  Suppose that 3 is ef ic ient ly  learnable via 
statistical queries by ' I f 0  using learning algorithm Ao. 
If Ao, run with a fixed constant accuracy, uses query 
space &O of VC-dimension qo and TO = ~ o ( n , s i z e ( f ) )  
is  a lower bound on the tolerance of every query made 
by Ao, then 3 is ef ic ient ly  learnable in the classifi- 
cation noise model, and ignoring lower order factors ,  
the number of calls t o  E X " ( f ,  D )  required is 

One can also show that the dependent: on 6 and $b 
of the space complexity of learning 3 is O(-&), 
while the dependence on c and $b of the hypothesis 
size is O(1og 4). Simon [17] has shown that the sample 
complexity of PAC learning with classification noise is 
Q( &). Therefore our sample complexity bound 
is roughly optimal with respect to $ b .  Note that the 
hypothesis size is independent of the noise rate. Fur- 
thermore, with a polynomial increase in sample size, 
one can simulate each query with a separate sample 
and achieve a reduced space complexity of O(1og :), 
which is also independent of the noise rate. We finally 
note that the time complexity of learning 3 is polyno- 
mially bounded in all relevant learning  parameter^.^ 

7 Discussion 
Throughout this paper, we have assumed that the 

hypothesis classes used by all weak learning algorithms 
are composed solely of deterministic hypotheses. How- 
ever, Goldman, Kearns and Schapire [lo] have shown 
that in many cases, algorithms which are allowed to 
output probabilistic hypotheses are more efficient than 
algorithms which are required to output determinis- 
tic hypotheses. By allowing weak learning algorithms 
to output probabilistic hypotheses, our boosting algo- 
rithm may construct probabilistic x's.  We note that 
the techniques given in this paper can easily be mod- 
ified to allow for probabilistic hypothesis classes and 
probabilistic x's - in addition to taking all proba- 
bilities with respect to the random choice of exam- 
ples, we also take these probabilities with respect to 

'The time complexity of learning 3 is dependent on the exact 
simulationof STAT(f ,D)  by E X 9 ( f , D )  inTheorem1. We give 
a complete discussion of time complexity in the full paper. 
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the “randomness” of the x’s .  In fact, the techniques 
given in this paper can also be modified to allow for 
real-valued x’s. In this case, a query submitted to the 
statistics oracle requests the expected value of x as op- 
posed to  the probability that x = 1. Estimating the 
expectation of real-valued x’s in the presence of noise 
requires new techniques which we describe in the full 
paper. One can show that by using real-valued x’s ,  
the query complexity of boosting in the SQ model can 
be somewhat reduced [8]; however, the complexity of 
the PAC simulation is not significantly improved. 

Ehrenfeucht, e2 al. [5] have shown that the sample 
complexity of PAC learning depends at least linearly 
on l / c ,  and clearly this bound holds for learning in 
the presence of classification noise as well. Laird [13] 
has developed a general technique for learning in the 
presence of classification noise whose sample complex- 
ity depends only linearly on l / c ;  however, this tech- 
nique does not yield computationally efficient algo- 
rithms. The upper bound given in Theorem 5 has 
a roughly quadratic dependence on l / c .  Since the 
tolerance of our boosting scheme has a roughly opti- 
mal dependence on c, one cannot significantly improve 
the sample complexity bound given in Theorem 5 by 
improving the boosting scheme. An interesting open 
question is whether there exists a time-efficient noise- 
tolerant PAC simulation of STAT(f ,  0) whose sample 
complexity dependence on c is o(l/c’). Such a simu- 
lation would immediately yield improved sample com- 
plexity bounds for learning in the presence of classifi- 
cation noise. Conversely, if one can show that such a 
simulation does not exist, then our classification noise 
bounds are roughly the strongest obtainable through 
the use of the Statistical Query model. 

Acknowledgements 
We would like to thank Mike Kearns, Yoav Freund, 

Ron Rivest and Les Valiant for their questions and 
comments. 

References 
[l] Dana Angluin. Computational learning theory: Sur- 

vey and selected bibliography. In Proceedings of the 
Twenty-Fourth Annual ACM Symposium on Theory 
of Computing, pages 351-369, May 1992. 

[2] Dana Angluin and Philip Laird. Learning from noisy 
examples. Machine Learning, 2(4):343-370, 1988. 

[3] Scott E. Decatur. Statistical queries and faulty PAC 
oracles. In Proceedings of the Sixth Annual ACM 
Workshop on Computational Learning Theory. ACM 
Press, 1993. 

[4] Harris Drucker, Robert Schapire, and Patrice Simard. 
Improving performance in neural networks using a 

boosting algorithm. In Advances in Neural Informa- 
tion Proc sin S stems. Morgan Kaufmann, 1992. 

[5] Andrzej Ehrenfeucht, David Haussler, Michael 
Kearns, and Leslie Valiant. A general lower bound on 
the number of examples needed for learning. Infor- 
mation and Computation, 82(3):247-251, September 
1989. 

[6] Yoav Freund. Boosting a weak learning algorithm by 
majority. In Proceedings of the Third Annual Work- 
shop on Computational Learning Theory, pages 202- 
216. Morgan Kaufmann, 1990. 

[7] Yoav Freund. An improved boosting algorithm and its 
implications on learning complexity. In Proceedings of 
the Fifth Annual ACM Workshop on Computational 
Learning Theory, pages 391-398. ACM Press, 1992. 

T g  

[8] Yoav Freund. Personal communication, 1993. 

[9] Sally A. Goldman, Michael J. Kearns, and Robert E. 
Schapire. Exact identification of circuits using fixed 
points of amplification functions. In Proceedings of 
the 31st Symposium on Foundations of Computer Sci- 
ence, pages 193-202. IEEE, October 1990. 

LO] Sally A. Goldman, Michael J. Kearns, and Robert E. 
Schapire. On the sample complexity of weak learning. 
In Proceedings of COLT ’90, pages 217-231. Morgan 
Kaufmann, 1990. 

111 David Helmbold, Robert Sloan, and Manfred K. War- 
muth. Learning integer lattices. SIAM Journal on 
Computing, 21(2):240-266, 1992. 

121 Michael Kearns. Efficient noise-tolerant learning from 
statistical queries. In Proceedings of the Twenty-Fifth 
Annual ACM Symposium on Theory of Computing, 
1993. 

[13] Philip D. Laird. Learning from Good and Bad Data. 
Kluwer international series in engineering and com- 
puter science. Kluwer Academic Publishers, Boston, 
1988. 

[14] Yasubumi Sakakibara. Algorithmic Learning of For- 
mal Languages and Decision Trees. PhD thesis, Tokyo 
Institute of Technology, October 1991. (International 
Institute for Advanced Study of Social Information 
Science, Fujitsu Laboratories Ltd, Research Report 

[15] Robert E. Schapire. The strength of weak learnability. 
Machine Learning, 5(2):197-227, 1990. 

[16] Robert E. Schapire. The Design and Analysis of Ef- 
ficient Learning Algorithms. MIT Press, Cambridge, 
MA, 1992. 

[17] Hans Ulrich Simon. General bounds on the number of 
examples needed for learning probabilistic concepts. 
In Proceedings of the Sixth Annual ACM Workshop on 
Computational Learning Theory. ACM Press, 1993. 

[IS] Leslie G. Valiant. A theory of the learnable. Commu- 
nications of the ACM, 27(11):1134-1142, November 
1984. 

IIAS-RR-91-22E). 

291 


	Northeastern University
	January 01, 1993
	General bounds on statistical query learning and PAC learning with noise via hypothesis boosting
	Javed A. Aslam
	Scott E. Decatur
	Recommended Citation





