
Gates Accept Concurrent Behavior

Vineet Gupta
Vaughan Pratt∗

Dept. of Computer Science
Stanford University, CA 94305
{vgupta,pratt}@cs.stanford.edu

Abstract

We represent concurrent processes as Boolean propositions or gates, cast in the role of accep-
tors of concurrent behavior. This properly extends other mainstream representations of concur-
rent behavior such as event structures, yet is defined more simply. It admits an intrinsic notion
of duality that permits processes to be viewed as either schedules or automata. Its algebraic
structure is essentially that of linear logic, with its morphisms being consequence-preserving
renamings of propositions, and with its operations forming the core of a natural concurrent
programming language.

1 Introduction

We understand sequential behavior very well today, namely in terms of acceptance of such behavior
by sequential automata, e.g. a pushdown automaton accepting an English sentence. We propose
to understand concurrent behavior via acceptance by concurrent automata of a particularly simple
kind, namely Boolean gates as devices implementing Boolean propositions. Since the notion of a
general Boolean gate, as just any n-ary operation f : 2n → 2, is simpler than the notion of say
a pushdown automaton, we can expect the resulting mathematics of concurrent behavior to be
correspondingly more elegant than that of sequential behavior. It is less obvious what aspects of
concurrent behavior are expressible using gates. We shall show that gates as acceptors properly
subsumes the event structure model [NPW81, Win88a], with the extensions being useful, while
both simplifying it and improving its algebraic structure considerably.

Computational behavior is understood today in terms of formal languages as sets of possibly
infinite strings, referred to in concurrency circles as trace semantics. Choice is expressed by a global
choice of string from the language, made once at the beginning of the computation, while time is
expressed by the linear order of symbol occurrences or events, also a global notion.

Branching time, first raised as an issue by Robin Milner [Mil80], makes choice a local phe-
nomenon by distinguishing late branching a(b + c) from early branching ab + ac for atomic a and
b, an issue that arises for nondeterministic programming languages. This distinction is needed
because the program ab + ac specifies a choice made before learning the outcome of the a, creating

∗This work was supported by ONR under grant number N00014-92-J-1974, and a gift from Mitsubishi. The first
author was also supported by an Accel Partners Fellowship.

1

the possibility of a deadlock that the better-informed former program a(b+c) may be able to avoid.
The resistance that met this notion in its first five years has since evaporated.

Automata respect the branching time distinction, but also draw many other less relevant distinc-
tions, such as how many times a while loop has been unrolled. Thus one seeks a model intermediate
in abstractness between automata and formal languages.

True concurrency makes time a local phenomenon by relaxing the linear ordering of events to
a partial order and so relaxing the requirement that all spatially remote pairs of events have a
well-defined temporal order. In this way true concurrency distinguishes parallel composition a‖b
from the choice ab + ba, even for atomic events a and b, by taking a‖b to mean the performance
of a and b without regard for order rather than in either order, a distinction that normally passes
unnoticed in both everyday conversation and mathematics but not in treating mutual exclusion or
mutex. Trace semantics in contrast obtains the meaning of a‖b by decomposing a and b into their
atomic constituents and identifying a‖b with ab + ba for atoms a and b.

This distinction was understood as an issue earlier than branching time, the earliest proponents
including Petri [Pet62], Greif [Gre75], Mazurkiewicz [Maz77], Grabowski [Gra81], Nielsen, Plotkin,
and Winskel [NPW81], and the second author [Pra82]. Yet the need for this distinction has proved
even more controversial than the need for branching time. Here are our reasons for making this
distinction.

First, the decomposability premise of trace semantics requires the process to be an actual
implemented program as opposed to a mere specification, and furthermore that this implementation
be visible to the verifier. The former assumption prevents reasoning about the behavior of processes
for which only an abstract specification is available, while the latter ignores those vendors who for
either commercial advantage or flexibility of maintenance keep their implementation hidden, in
either case preventing customers from reasoning about their purchase if the above meaning of
a‖b is the only one available. Second, trace semantics assumes global time, contradicted by the
physical reality of relativity and the engineering reality of delays in networks. Third, it assumes
that atomicity is a fixed predicate, when in practice one finds the need to vary granularity, or
refine atomicity as it is called in concurrency circles. In some contexts one regards a=b+c as one
instruction, in others as two fetches, an addition, and a store, in yet others as the movement of
many bits or even of many electrons.

We show in section 5 how the gates-as-acceptors view of concurrent behavior draws the distinc-
tion between true concurrency and mutex.

Besides the general contribution made by the overall gates-as-acceptors framework, we also
make the following specific technical contributions.

• Schedules and automata constitute respectively declarative and imperative programming
styles. We pair these up by representing both as binary relations, with the pairing defined in
a strikingly simple way by converse (transpose) of binary relations. This pairing turns out to be
a duality analogous to vector space duality in that it also pairs up transformations between gates,
with each pair going in opposite directions.

• This duality is the negation operation of the Chu algebra of gates, constituting a previously
studied model of Girard’s linear logic [LS91, Bar91]. We define the remaining primitive operations of
linear logic by the novel use of circuits, giving them a clear operational meaning in terms of behavior
accepted by those circuits. And we further interpret these operations as useful connectives of a
concurrent programming language.

2

• Noting that the representation of early branching and mutex as the respective regular ex-
pressions ab + ac and ab + ba requires mentioning a twice in each case, we shall represent these as
gate-based schedules that mention each event only once. This eliminates the usual dependence on
labeling needed to distinguish these two notions from respectively late branching a(b + c) and true
concurrency a‖b.

In addition, by tying this framework into the algebra of Chu spaces [Bar79, LS91, Bar91, Pra93]
we implicitly bring to bear on gates-as-acceptors the by-now-considerable machinery of both Chu-
ology and linear logic, with the expectation moreover of seeing many further developments in this
very interesting and (we conjecture) extremely rich new field.

2 Processes as Gates

2.1 Dynamic Acceptance

We propose to understand processes in terms of Boolean gates or propositions as acceptors of the
behavior of their inputs. We define a gate P = (A,X) to consist of a set A of inputs each monitoring
one event, and a set X ⊆ 2A of subsets of A called states, constituting the satisfying assignments
of the proposition. A subset of A denotes the assignment of the value 1 or true to its members
and 0 or false to its nonmembers, and the satisfying assignments are those that make the output
1. (This definition remains sound for infinite A and X, required for infinite behaviors.)

By analogy with formal languages we might view each satisfying assignment as an accepted
state, making X ⊆ 2A the analog of L ⊆ Σ∗. This static view is the wrong analogy however,
since it contains no notion of dynamics: while there is global choice (the gate either accepts this
assignment or that), there is no notion of time, global or otherwise.

Instead we interpret acceptance dynamically, regarding the inputs as toggling independently,
asynchronously, and monotonically, namely from 0 to 1 (and hence toggling at most once), with the
total such activity being accepted when the output remains constantly at 1 throughout. Intuitively
this toggling activity constitutes a behavior. We associate each input with a distinct event, and
identify the unique 0-1 transition of that input with the occurrence of its associated event.

We may depict X ⊆ 2A naturally as the Hasse diagram for 2A ordered by inclusion, with the
elements of X shown in black and the rest white, as illustrated by the two-event examples of Figure
1.

•11
��b @@a
◦
@@a

◦
��b◦

(a) a ∧ b

•11
��b @@a
•10
@@a

•01
��b◦

(b) a ∨ b

•11=z
��b @@a
◦
@@a

•01=y
��b•00=x

(c) a → b

•11
��b @@a
•10
@@a

•01
��b•00

(d) 1

◦
��b @@a
◦
@@a

◦
��b◦

(e) 0

•11
��b @@a
◦
@@a

◦
��b•00

(f) a ≡ b

Figure 1. Six 2-input gates

3

We interpret these gates as representing the following processes. The conjunction a∧b describes
a process that starts with both inputs at 1, and which goes nowhere. The disjunction a ∨ b starts
in a nondeterministically chosen state 10 or 01 and the zero input then toggles. The implication
a → b toggles first a then b and hence is sequential. The constantly true gate 1[a, b] (our notation
for indicating variables present yet not otherwise named in the proposition) permits a and b to
toggle independently, denoting their pure noninteracting concurrence. The constant 0[a, b] is the
inconsistent gate, which does not behave at all and cannot be observed. The equivalence a ≡ b
synchronizes its inputs. (Calibrate by comparing how you would have defined synchronization in
your favorite model of concurrent behavior, bearing in mind that the model here has a delightful
algebra.)

2.2 Behaviors accepted by gates

The restriction to monotone inputs limits behaviors to upward movement in the automaton, with
respect to the orientation of Figure 1, putting us in the world of event-structure-like models, where
the natural notion of behavior is an ascending path in the A-cube. Natural, that is, for events that
happen sequentially. In the “true concurrency” hierarchy, a path or trace going up one event at
a time is called interleaving semantics, while one going up several events at a time is called step
semantics [DDNM88] (this term motivated by Petri net terminology [Rei85, p.20] and the form
of concurrency implicit in SCCS [Mil83]), both being weaker [GG89] than partial order semantics
[Gre75, Gra81, Pra82]. According to [Pra91, GJ92], a “truly concurrent” trajectory is a homotopy
class of paths, meaning a broad but hole-free path, where a hole denotes mutual exclusion at the
hole and hence implies a choice of which side of the hole to go round, i.e. which order the mutexed
processes should go in.

However it is unreasonable in practice to insist that a particular behavior of a process contain
no choices, since at any given level of granularity of behavior one may prefer to gloss over choices
that are unimportant at that level. In the absence of any obvious structure that a run should
always have, we define a behavior Y of a gate (A,X) to be a subset Y ⊆ X. Dually we define a
property (or consequence) Y of (A,X) to be a superset X ⊆ Y ⊆ 2A of X.

(A,X) is uniquely determined by the set of all its behaviors, namely as their disjunction (union
of all such Y ’s), as well as by the set of all its properties, namely as their conjunction (intersection
of all such Y ’s).

For X ⊆ Y we write (A,X) |= (A, Y), calling (A,X) a behavior or model of (A, Y) and
conversely (A, Y) a property or consequence of (A,X). Ordinarily |= is a relation from structures
to propositions, but gates as acceptors straddle this traditional boundary and are at home in either
role, with |= then being a transitive relation. Thus in figure 1 we have the chain (e) |= (a) |= (f) |=
(c) |= (d).

2.3 Dual views of a gate

A schedule of events is an intrinsically declarative program, while a state automaton is of course
imperative. Figure 1 depicted gates as automata. Here we give a method of depicting a gate as the
schedule dual to that automaton.

The idea is to work with the A×X membership relation defining X ⊆ 2A, as an ordinary binary
relation that we can transpose to form the dual gate (X, A), whose automaton we shall then regard

4

as the schedule view of (A,X). The black points of the Hasse diagram will then denote the real
events, those constituting A, and the dimensions of the diagram denote the states of X.

Applying this to Figure 1, we first obtain their binary relations as follows, with row a above
row b.

1
1

(a)

011
101

(b)

100
110

(c)

0101
0011

(d)

2× 0

(e)

01
01

(f)

Figure 2. Fig 1. as binary relations

Now Figures 2 (a), (e), and (f) have repeated rows, whence their transposition is not the relation
of any proposition, since X must be a set of states, not a multiset. We refer to as T0 a proposition
having no repeated rows, by analogy with topology, regarding A as the points of a topological space
and the elements of X as its open sets. The T0 propositions are equivalently those having among
its properties no equivalences a ≡ b save vacuous properties of the form a ≡ a. These are the
propositions whose duals exist as propositions, whose automata we can therefore draw.

It will be seen from this construction that time in a schedule flows downwards. As a reminder
of this, and to indicate that this diagram is intended as a schedule rather than an automaton,
we attach a downward arrow to the upper left of each schedule, and if there is any ambiguity, an
upward arrow to the lower right of each automaton, as in Figure 9.

The automata of the T0 propositions of Figure 1 are as in Figure 3.

?
◦

�� @@•a
@@

•b
��◦
◦

(b)

?
◦
•b
•a
◦

(c)

?

◦
◦

�� @@•a
@@

•b
��◦
◦

(d)

Figure 3. Schedule view of Figure 1

In addition to obtaining a dual Hasse diagram in this way, we also obtain a dual Boolean
proposition, having states instead of events for its variables.

2.4 Causal structure

In all the pictures above, the structure of the gate is given by a boolean algebra 2A or 2X . It is
natural to ask if we can represent this by a simpler picture. We could just have a poset corresponding
to 2A, but we shall show that this is not enough. We do need almost the entire boolean algebra
structure to represent the gate. For A infinite, such a Boolean algebra must be further specified to
be complete (has arbitrary meets and joins) and atomic (every nonzero element dominates some
atom), standardly called a CABA. We refer to the CABA that X is embedded in as equipping X
with its causal structure, thereby turning X from a mere set of states to a state space.

5

The “almost” is prompted by the following theorem, valid for all cardinalities of A, that for
finite A permits a savings of up to an exponential in depicting gates as two-toned Hasse diagrams
as in Figure 1 (without the bit-string labels). Lattice theoretically this is a basic theorem about
unique embedding of profinite distributive lattices [Joh82, p.250] in CABA’s; here we give the
construction in more elementary terms for greater accessibility.

Theorem 1 Let X ⊆ B generate1 the CABA B, and let L ⊆ B be any subcomplete lattice2 of B
such that X ⊆ L. Then B is the unique extension of L to a CABA generated by X.

That is, given just the Hasse diagram of such a lattice L, with X ⊆ L indicated, we can deduce
not only the full n-cube from whence it came but where L must embed in it, i.e. what bit-strings
to label both the real (X) and imaginary (L−X) states of L with.

Proof: The idea is to identify certain elements of L, which we then put in 1-1 correspondence
with the atoms of B. We take A to be the set of sup-irreducible elements of L, definable as those
elements not expressible as the sup (the arbitrary, i.e. possibly infinite or empty, join) of the
set of elements strictly below them. We embed L in the CABA 2A via f : L → 2A defined by
f(y) = A∩ ↓ y where ↓ y = {x ∈ L | x ≤ y}. This function can be seen to preserve all joins and
meets of L and to be injective (argue along the lines of [MMT87, pg 83, thm 2.55]).

In order to show that A is the smallest set such that L embeds in 2A, suppose L embeds in 2A′
by

the embedding g : L → 2A′
. Then for each sup-irreducible x ∈ L, let ax ∈ g(x)−

⋃
y<x g(y). Such an

ax exists as x is sup-irreducible. Now for any two sup-irreducibles, if ax = ay then ax ∈ (x∧y) < x,
which would contradict the definition of ax. Thus there are as many elements in A′ as in A. So 2A

is the smallest CABA containing L. However X generates B, and X ⊆ L, so B is also the smallest.
Thus 2A is isomorphic to B. We can now construct an isomorphism between 2A and B such that
L is embedded similarly in both, by mapping each x ∈ A to the ax constructed earlier.

For example Figure 1(c) can be redrawn as a chain (a distributive lattice) with a reduction from
22 = 4 elements to 2 + 1 = 3 elements, more generally from 2n to n + 1. The theorem applies only
to T0 gates, so it does not apply to Figure 1(a,e,f). It is evident that X generates 2A iff (A,X) is
T0.

In drawing the state spaces of T0 gates we therefore need draw only the lattice of those subsets
of A generated by the accepted states under arbitrary (including empty) union and intersection.
We call this the partial distributive lattice or PDLat presentation of a state space, where the lattice
of subsets is the underlying lattice, and the accepted states are its points. This saves drawing the
white state of Figure 1(c) for example.

One might ask whether we can recover the CABA B given even less than the PDLat structure
on X. The partial order on X induced by its embedding in B does not suffice, the simplest
counterexample for which is the pair of Boolean algebras in Figure 4(a-b), having the same poset
X, namely X = ∅ (we do not insist on 0 6= 1 for Boolean algebras). Figure 4(c-d) gives a more
informative counterexample (we have arbitrarily chosen to draw schedules, but the idea holds
equally for automata).

If however we record not just partial order information but all properties of the form a = b ∨ c
and a = b ∧ c for a, b, c ∈ A, then we can distinguish (d) from (c) as satisfying a ∨ b = c. But

1That is, B has no proper sub-CABA containing X
2That is, a “sub-(complete lattice)” of B, meaning a subset of B closed under arbitrary (including empty and

infinite) meets and joins of B.

6

◦
◦

(a)
◦

(b)

•c

◦
�� @@•a
@@

•b
��◦
◦

(c)

◦
•c

�� @@•a
@@

•b
��◦
◦

(d)

◦
�� @@◦
@@
◦

�� @@
◦

��•
@@
• •
��◦

(e)

◦
�� @@•
@@
•

�� @@
•

��◦
@@
◦ ◦
��◦

(f)

Figure 4. Incompleteness of Poset Structure

this is still not enough, as Figures 4(e-f) show; these satisfy no nontrivial such equations, yet
are not isomorphic. The full causal structure however does suffice, since with it we can name
every gate: here 4(e) is the symmetric function (a ∨ b ∨ c) ∧ ¬(ab ∨ bc ∨ ca), and dually 2(f) is
¬(abc) ∧ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).

3 Modeling Behavior

3.1 Aspects of concurrency

Recall that a property of a gate is a superset of its state space, equivalently, a Boolean consequence of
the gate viewed as a Boolean proposition. The following succinctly expressed properties correspond
naturally to various aspects of concurrency. This section serves three purposes: to further illustrate
the use of gates in characterizing concurrent behavior; to show how quite a variety of aspects of
behavior all come out of the one uniform notion of Boolean gates as acceptors (in AI this would
be called emergent characterization); and to point up certain aspects absent from most or all other
models of concurrency, in particular the notion of causality formalized here; and to illustrate the
use of event propositions such as a ∧ b ≡ c. Any property expressed using states is taken to be a
property of the dual gate.

Transition: A state x can evolve into a state y just when x → y. These are just inclusions
between states, all of which we regard as legitimate state transitions.

Temporal order: a occurs before b if b → a. Winskel writes this as a ` b, called prime enabling
[Win88b]. If b → a, then every state with b = 1 must also have a = 1, which means that a must
have been set to 1 no later than b.

Enabling: General (nonprime) enabling is a, b ` e; c, d ` e ≡ e → (a ∧ b) ∨ (c ∧ d) (either of (a
with b) or c with d suffices to enable e. This can be extended to three or more pre-events a, b, c ` e
and three or more `’s.

Conflict: a#b is ¬(a ∧ b) (binary or coherent conflict[NPW81]), and means that it is illegal to
set both a and b to 1, i.e. they are in conflict. More generally, #x may be defined as (

∧
a∈x a) ≡ 0

(no state contains all events in x, i.e. no superset of x is a state of X.)

7

Internal choice: x ≡ y∧ z and #(y∨ z) expresses the choice of conflicting states y or z, made in
the state x, so this choice is “internal”. This corresponds to the branching construct of programming
languages, where a choice is made based on the information accumulated in the current state. We
can have a choice between several states, like a case statement in C.

Dilemma: v ∧ w = 0 and #(v ∨ w) expresses no basis for choosing between v and w, since it
means making the choice when no events have occurred, and thus no information is gathered.

Causality: a ∧ b ≡ c asserts that a and b jointly cause c as their immediate effect, as it is
impossible to have done both a and b without doing c also. On the other hand c → a ∧ b is mere
prime enabling, a, b ` c, that is it is OK to wait for a while before doing c. This distinction is
absent from all other models of concurrency we are aware of.

Nondeterminism: a ≡ b∨c and b#c asserts choice of conflicting events b or c. Since the choice is
made at the same time as doing a, any information gathered by doing a could not have been used to
choose, however, the choice was not available before a. So this choice is made by the environment,
and is “external”. This contrasts with b ∨ c → a, which is mere prime enabling a ` b, a ` c.

Synchronization: a ≡ b asserts that a and b must happen simultaneously. A T0 gate has only
identity synchronizations a ≡ a. Conditional synchronization, a → b ≡ c however may hold even
for T0 gates: it holds for causality a ∧ b ≡ c.

Programming a process. We mentioned before that a gate is a conjunction of all its properties.
This gives us a declarative way of programming a given process, namely, we can write small gates
for each of the properties that we want the process to satisfy, and “and” them together to get the
full process. An alternative way of programming a gate is by carving out its automaton. We start
out with an n-dimensional automaton, where n is the number of events in the process. Then we
look at each of the vertices and color them black or hollow according as whether they are desirable
or undesirable. The resulting picture gives the desired automaton for the process.

We give an example for the first method of programming by constructing a gate for the mutex
process, described in detail in the last section. It has four inputs designated σ, τ, a, b and there are
four properties that these must satisfy: σ#τ , a → σ∨b, b → τ∨a, and a ∨ b → σ ∨ τ . The gate
on the left shows how to do this modularly, and the gate on the right shows the full circuit by
substituting the actual circuits for the modules.

σ

r
r

τ rr
a rr
b

rr

σ#τ

b → τ∨a

a → σ∨b

a ∨ b → σ ∨ τ

�	
σ

r
r b

τ
brr

a rr b
b

br
r

.......
.......
.......
.......
..

..
.............
..

...

.......
.......
.......
.......
..

..
.............
..

...

.......
.......
.......
.......
..

..
.............
..

...

.......
.......
.......
.......
..

..
.............
..

... b
.......
.......
.......
..

..
.............
..

...

�	

Figure 5. Circuit for Mutual Exclusion

3.2 Comparison with Event Structures

In his survey paper on concurrency[Mil90], Robin Milner says

The event structures introduced by Nielsen, Plotkin and Winskel [27] provide an im-
portant model in which these different views can be studied in the same framework;. . .

8

This section shows that gates as acceptors subsume the most general case of Winskel’s event
structures. As we have shown above, conflict and enabling of events can be expressed in a gate.
Since these are the only two concepts required in the definition of an event structure [Win88b], we
can show that event structures can be modeled by gates, for what amount to trivial reasons.

An event structure is a set of events E, with a conflict relation # and an enabling relation `,
defined in [Win88a]. A configuration is any subset of events which could have occurred in the event
structure, so it must be conflict free, and every event must be caused by some previous events in
the set according to the enabling relation. Given an event structure E = (E,#,`), let F(E) be
its set of configurations. We form the gate G = (E,S), where S = F(E). Clearly these two are
equivalent, and this leads us to the following theorem.

Theorem 2 For every event structure that is formed from its family of configurations, there is a
gate which has the same properties.

If the event structure is labeled, we can define a labeling function on the gate by λ : E → Act,
thus making this embedding respect labeling.

The domains that can arise as a family of configurations of an event structure have been
characterized in [Dro89] as an algebraic complete partial order with some additional properties.
It seems that the restrictions on these domains are placed to match their expressive power to that
of Petri nets, and especially to outlaw causality. Gates however place no such restrictions, thus
strictly subsuming event structures and allowing us to represent causality as well.

4 Algebraic Aspects of Gates

4.1 Chu Spaces

The simple notion of Boolean proposition is customarily algebraicized via Boolean algebras. This
is however the wrong algebra for gates as acceptors. We instead treat gates as Chu spaces3, a
uniform generalization of sets and Boolean algebras, along with various semilattice and distributive
lattice structures in between these two extremes, as well as their associated Stone duality, to be
treated in detail in a forthcoming paper. As we have seen, propositions may also be understood
as either binary relations or partial distributive lattices. In each of these perspectives their associ-
ated transformations are understood as respectively consequence-preserving renamings of Boolean
propositions, “continuous functions” of binary relations (thinking of their rows as points of a topo-
logical space and their columns as its open sets), and homomorphisms of PDLat’s. The category
Chu(V, k) of Chu spaces and their associated transforms, with dualizing object k, was first defined
in Po-Hsiang Chu’s master’s thesis, which appeared as an appendix to his advisor Michael Barr’s
monograph on *-autonomous categories [Bar79]. Here and in [Pra93] we follow Lafont and Stre-
icher [LS91] in focusing on Chu’s construction for V = Set. In the present paper we further take
k = {0, 1}.

Numeric quantities are not the only mathematical objects on which one can perform arithmetic.
One may also add and multiply vector spaces, groups, etc. Chu spaces are no exception, and indeed

3Note that gates are extensional, but Chu spaces, being binary relations, are not required to be. Here we assume
extensionality.

9

possess a very attractive algebra [Pra93], whose primitive operations can be taken to be sum P +Q
and its unit 0, tensor product P ⊗Q and its unit >, and dualization or perp P⊥. To this one may
add Girard’s “exponential” !P to complete the language to exactly that of linear logic [Gir87].

The present section treats this algebra from our gates perspective, in particular showing that
all these operations and constants except P⊥ can be defined using ordinary Boolean circuits, in
a way that should make their meaning at least as clear, to those used to deciphering circuits, as
any symbolic definition. The next section shows how these operations can be used in a concurrent
programming language, providing motivation for them independent of their use in linear logic,
whose proof theoretic motivation remains largely obscure to those not in the inner sanctum of
proof theory.

As usual, certain composites of the primitive operations have a sufficiently natural meaning to
warrant their own notation, which can be introduced in one paragraph and ignored thereafter, as
here. The De Morgan dual of sum is product P ×Q = (P⊥ + Q⊥)⊥, with unit 1 = 0⊥, while that
of tensor product is Girard’s par, P ⊕Q = (P⊥ ⊗Q⊥)⊥ (Girard writes P ...

.............

............................... Q, the subject of some
controversy), with unit ⊥ = >⊥. Linear implication P−◦Q is P⊥ ⊕ Q, satisfying (P ⊗ Q)−◦R ∼=
A−◦(Q−◦R), while “intuitionistic” implication P⇒Q is !P−◦Q, satisfying (P×Q)⇒R ∼= P⇒(Q⇒R)
(the need for isomorphism P ∼= Q in place of identity P = Q will be explained shortly).

As we have described elsewhere [Pra93], at the syntactic level this algebra of Chu spaces looks
just like the Peirce-Schröder-Tarski-Jónsson calculus of binary relations [Pei33, JT52], to within
choice of symbology, with P × Q written PQ (intersection of relations) and P ⊗ Q as P ;Q for
relational composition, etc. The calculi start to differ a little at the equational level: the Peirce
calculus’ version of tensor product is not commutative (calling for two implications or residuals
P/Q and P\Q in place of P−◦Q), intersection of relations as its direct product distributes over
their union as its sum, sum and product are idempotent, and equations are actual identities rather
than mere isomorphisms. Otherwise however these two equational logics look quite similar.

The difference is greatest at the semantic level. Union P + Q in the Peirce calculus takes two
m × n relations and yields an m × n relation, whereas in the Chu calculus the sum of an A × X
relation and a B × Y relation is an (A + B) × (X × Y) relation. Likewise relational composition
in the Peirce calculus takes an m× n relation and an n× p relation and returns an m× p relation,
whereas for Chu, tensor product takes an A × X relation and a B × Y relation and returns an
(A×B)×Z relation where Z may be regarded as the set of all bilinear forms on A×B (cf. Halmos:
“The tensor product U ⊗V of two finite-dimensional vector spaces U and V is the dual of the vector
space of all bilinear forms on U ⊕ V [Hal74, p.40]).

We have already defined the operation P⊥, as converse of a Chu space (in its relational form).
In this section we shall define the remaining three primitive operations and two constants of Chu
algebra in terms of circuits.

The units for sum and tensor product, namely 0 and >, and the exponential !P , are all defined
by circuits whose output is constantly 1 and hence whose inputs are ignored. Zero has no inputs,
the tensor unit > has one input, and !P has for its inputs those of P . (This definition of !P satisfies
the Girard axioms but also satisfies !!P ∼=!P , leaving open the possibility of a less constrained
alternative Chu interpretation for !P .)

The sum P+Q is implemented as a circuit with components P and Q, by forming the conjunction
of the outputs of P and Q, with the set of inputs of P + Q then being the disjoint union A + B of
those of P and Q. This construction is illustrated in Figure 6, for which |A| = 3 and |B| = 2.

10

P + Q

P

Q

�	
P ⊗Q

q
q

Q

q
qQq

q Q

�	
P

P

�� �	

Figure 6. Circuit for Sum Figure 7. Circuit for Tensor Product

The gate thus implemented can be seen to partition its inputs into two disjoint blocks, one
judged by P , the other by Q, with the gate as a whole registering its approval just when all its
components approve of their respective blocks.

Tensor product P ⊗ Q is the only operation requiring some work, and is where the circuit
approach to defining operations really helps. As one might guess from the fact that the tensor
unit has output 1, tensor product is a form of conjunction. But whereas sum is a noninteracting
conjunction, tensor product behaves like a generic logical inference, in which the constraints in the
components can entail new constraints involving the variables of both components.

Now as with sum, tensor product assumes no a priori relationship between the inputs of its
arguments, which are therefore made disjoint. Nevertheless a connection is established between the
two sets of inputs, namely by taking the set of inputs of P ⊗Q to be the cartesian product A×B
of those of P and Q instead of their sum. Visualizing this product as a rectangular array of inputs,
we define bilinearity to be the condition that each column of this rectangle (what one obtains by
fixing a particular b ∈ B of Q’s inputs) independently satisfies P while each row satisfies Q. This is
realized by using |B| distinct copies of P to monitor each column of A×B, and likewise |A| copies
of Q to monitor rows, as illustrated in Figure 7 for the case where the rectangle the 3× 2.

4.2 Maps

We have mentioned isomorphisms of Chu spaces without defining them. More generally there exists
a natural notion of morphism for Chu spaces, without which one could not distinguish Chu spaces
from other families of subsets such as hypergraphs, which transform quite differently. With it, the
class of Chu spaces becomes the category of such.

For the most general definition of morphism for Chu spaces, valid in any symmetric closed
category V and defining the category Chu(V,⊥) for an arbitrary choice of ⊥ as an object of V ,
see Chu’s appendix to Barr’s monograph [Bar79]. But the restriction to V = Set, as assumed by
Lafont and Streicher [LS91], appears to be good enough for ordinary applications, an intuition that
we have substantiated with the theorem that the category of all n-ary relational structures and their
homomorphisms fully and concretely embeds in Chu(Set, 2n) [Pra93, §5]. (Thus Chu(Set, 2), the
subject of this paper, fully extends the category of unary relations, where “full” means that the
(necessarily faithful) embedding functor is full, i.e. the embedded objects transform in the “same”
way.)

A Chu transform4 from (A,X) to (B, Y) is defined to consist of a pair of functions f : A → B
and g : Y → X satisfying a ∈ g(y) ↔ f(a) ∈ y for all a ∈ A and y ∈ Y . In the framework
of gates such a transform can be expressed as an attachment of the inputs of P to the inputs of

4This definition works for extensional Chu spaces only, but can be generalized to all Chu spaces.

11

Q, specified by f in the evident way, having the property that every input accepted by Q is also
accepted by P (the above equation). g constitutes an explicit function from inputs accepted by X
to the corresponding ones accepted by P , and is completely determined by f here. (Thinking of
accepted inputs as corresponding to open sets of a topological space whose points are the inputs,
this is exactly the definition of continuous function: the inverse of f , here essentially g, must send
every open set of X to some open set of P .)

A renaming is a function f : A → B from the set A of variables of P to the variables of Q; for
example there are four renamings from a∨b to c⊕d, namely c∨d, d∨c, c∨c, and d∨d. A renaming
from P to Q is consequence-preserving when P so renamed is a consequence of Q, equivalent to
requiring that the renaming take consequences of P to consequences of Q. Only the first two of
the above four renamings are consequence-preserving.

Theorem 3 The states of P ⊗ Q are in 1-1 correspondence with the Chu transforms from P to
Q⊥.

Corollary P−◦Q, defined as (P ⊗Q⊥)⊥, is the Chu space of all Chu transforms from P to Q.

A PDLat homomorphism f : P → Q is a complete lattice homomorphism between their under-
lying lattices, which takes the points of P to the points of Q.

Theorem 4 For T0 propositions, extensional T0 Chu spaces, and extensional PDLat’s, the respec-
tive categories defined by Chu transforms, consequence preserving renamings and PDLat homomor-
phisms are equivalent.

5 Process Algebra

We now assign operational interpretations to the Chu algebra operations, supplemented with an
additional choice operation PtQ that does not fit naturally into Chu algebra. We also take this
opportunity to mention a circuit implementation of product.

The concurrence of two gates P and Q is their sum P +Q. Any behavior accepted by P +Q is a
concurrent non-communicating execution of a behavior accepted by P and a behavior accepted by
Q. From its circuit, it is clear that the inputs to P and Q can be varied independently, representing
concurrent execution.

P ×Q

q qq qq q qq q q q
≡ ≡ ≡ P

�	
≡
≡
Q

��..

P tQ
q q Q

........
........
........
......

...
..............

...b
qqq P

........
........
........
......

...
..............

...b
�	

�	
........
........
........
......

...
..............

...

Figure 8. Circuits for product and choice.

The operation P × Q may be defined in terms of P⊥ and P + Q as (P⊥ + Q⊥)⊥, making × the
De Morgan dual of +. This operation turns out to be circuit-definable as in Figure 8, whose ≡
modules output 1 when their inputs are all equal.

12

The flow or orthocurrence [Pra86, CCMP91] of two gates is P ⊗Q. The behaviors accepted are
the interaction of two behaviors accepted by P and Q. For example, if three trains are running in
the same direction on the same track, and pass two stations, there are six events, one for each train
crossing each station. Each train will see the two stations pass in a certain order, and similarly
each station will see the trains pass in a certain order. So a behavior for the whole scenario is one
in which each of these local constraints are met. The bilinear nature of P ⊗Q is expressed here by
having one station-checker Q on each train and one train-checker P on each station and ensuring
that all are satisfied.

The choice of P and Q, denoted by P t Q, is the gate which accepts any behavior which is
either a behavior in P or a behavior in Q, such that events from both P and Q are not executed
in the same behavior. The above circuit for choice implements this by making sure that no events
in Q occur if P has started execution and vice versa.

6 Branching Time and True Concurrency

We now apply this notion of gate transformation to show how the relationships between early and
late branching, and between true concurrency and mutex, can be handled in our framework. In
more conventional frameworks this relationship cannot be treated in full without the assistance of
labels to indicate which events are repeated instances of the one event. Early branching ab + ac in
its usual representations, including the regular expression ab + ac itself, contains a repetition of a,
while representations of mutex ab + ba typically repeat both a and b.

Elsewhere [Pra91] we have used homotopy to give a label-free method of distinguishing true

concurrency from mutex by representing the former as the usual product automaton
•

�� @@•
@@

•
��•

filled in as a solid square, and the latter as the same but with the interior hollow. In both cases
this relies on the geometry of the situation to give the information that had we labeled the edges,
parallel edges would have received the same label.

Here we do not have higher-dimensional cells to represent this information. Instead we use
silent transitions, of the kind introduced by Milner [Mil80], for both early branching and mutual
exclusion.

Branching Time. Late branching a(b + c) is easily represented as the conjunction of b → a,
c → a, and b#c (b ∧ c = 0), that is, a precedes both b and c which cannot both happen.

To change this to early branching ab + ac we adjoin to the late branching formula the further
conditions b → σ, c → τ , σ#τ (making b#c redundant), and a → σ∨τ (the choice of σ or τ must
be made before a is done), where σ and τ are silent transitions, whose only purpose is to commit
to a choice, preceding respectively b and c.

Late and early branching may be depicted as per the respective schedules of Figure 9, or by
their corresponding automaton, shown below. (Without Theorem 2 the schedule for early branching
would have 256 events instead of just 17.)

The relationship between the late branching schedule and the early one is that of subspace: the
former is a subspace of the latter, namely the circled elements in the schedule for the latter, on the
right. For automata we have the dual relationship: the late branching automaton is a quotient of

13

the early branching automaton, namely the dimensions σ and τ , shown dotted, are projected out,
thereby identifying states t, u, v, and w, x.

The timing of this branching is only early relative to the process at hand, in that when combined
with other processes the choice of σ or τ (and hence of b or c) need only be made prior to a, not at
the beginning of the containing process. This can however be turned into absolute early branching
by requiring that every disjunction of silent choices such as σ ∨ τ precede every nonsilent action,
forcing all choices to be made before any real activity commences. However there is a slicker way:
simply require σ∨τ = 1. This rules out states in which neither σ nor τ have happened, thus forcing
the containing process, however large, to start in a state that has already made this choice.

?
◦

tuv•a
wx◦
��
y

@@z
•b
@@

•c
��◦

?
◦e
t◦

��u @@v
◦

��w @@
◦

�� @@x
◦

��
y

@@
• ae

�� @@
◦

�� @@z
•σ
@@

◦
@@��

◦
@@��

•τ
��◦

@@
◦e
@@��

◦
��•b e

@@
• ce

��◦e

6

◦
�� @@•y
@@b

•z
��c•wx

a•tuv
6

◦
�� @@◦............. @@

◦
��

..........•y
@@b

◦.............
..........

•z
��c•w

a
..........
◦.............
..........
•x............. a•uσ

◦ •v............. τ•t

Figure 9. Schedules and automata for branching

The opposite of this is to insist on the choice being made in parallel with a, easily accomplished by
strengthening a → σ∨τ to a ≡ σ∨τ . This is of course inconsistent with requiring σ∨τ = 1, in that
it immediately entails a = 1. We leave as an exercise to calculate the diagrams for these variations
on the basic theme.

?
◦

tuv◦
��w @@x
•a
@@

•b
��◦

yz
◦

?
◦e
t◦

��u @@v
◦

��w @@
◦

�� @@x
◦

��
y

@@
◦e

�� @@
◦

�� @@z
•σ
@@

• ae
@@��

• be
@@��

•τ
��◦

@@
◦e
@@��

◦
��◦

@@
◦

��◦e

6

•yz

��b @@a
•w
@@a

•x
��b•tuv

6

◦.......... ��
.............•z

��b
.............
◦..........
.............
◦.......... ��
.............

•y.......... �� a•x
a
.............
◦

��
.............
◦..........
.............
◦

��
◦..........
•w.......... ��b•vσ

◦ ◦
��

•u.......... τ• t

Figure 10. Schedules and automata for concurrency

True Concurrency, a‖b, is simply 1[a, b], the constantly true formula with inputs a and b. As with
early branching, we shall represent the mutex ab + ba with the help of silent transitions σ and τ

14

preceding a and b respectively. The conditions are σ#τ (choice), a → b∨σ (if σ is not chosen then
b must precede a), b → a∨τ (conversely for τ), and a∨b → σ∨τ (the choice must be made before
doing either of a or b). The schedules and automata for true concurrency and mutual exclusion are
as per Figure 10.

Again there is an inclusion from left to right sending a, b to themselves, with a matching
projection from the seven states of the exclusive process to the four states of the concurrent one.
And again we have the option of making the choice at any time prior to a ∨ b, or at the beginning
of time, representable for the mutex schedule by retracting the top spike.

What is remarkable is the great similarity of branching time and true concurrency as revealed
by this analysis. On the right they have the same seven states, whereas on the left late branching
identifies w and x while true concurrency instead identifies y and z.

References

[Bar79] M. Barr. ∗-Autonomous categories, LNM 752. Springer-Verlag, 1979.

[Bar91] M. Barr. ∗-Autonomous categories and linear logic. Math Structures in Comp. Sci., 1(2), 1991.

[CCMP91] R.T Casley, R.F. Crew, J. Meseguer, and V.R. Pratt. Temporal structures. Math. Structures in
Comp. Sci., 1(2):179–213, July 1991.

[DDNM88] P. Degano, R. De Nicola, and U. Montanari. A distributed operational semantics for CCS based
on condition/event systems. Acta Informatica, 26(1/2):59–91, October 1988.

[Dro89] M. Droste. Event structures and domains. Theoretical Computer Science, 68:37–47, 1989.

[GG89] R.J. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and refinement of
actions. In A. Kreczmar and G. Mirkowska, editors, Proc. Conf. on Mathematical Foundations of
Computer Science, volume 379 of Lecture Notes in Computer Science, pages 237–248. Springer-
Verlag, 1989.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[GJ92] E. Goubault and T.P. Jensen. Homology of higher dimensional automata. In Proc. of CON-
CUR’92, LNCS 630, pages 254–268, Stonybrook, New York, August 1992. Springer-Verlag.

[Gra81] J. Grabowski. On partial languages. Fundamenta Informaticae, IV.2:427–498, 1981.

[Gre75] I. Greif. Semantics of Communicating Parallel Processes. PhD thesis, Project MAC report
TR-154, MIT, 1975.

[Hal74] P.R. Halmos. Finite-Dimensional Vector Spaces. Springer-Verlag, 1974.

[Joh82] P.T. Johnstone. Stone Spaces. Cambridge University Press, 1982.

[JT52] B. Jónsson and A. Tarski. Boolean algebras with operators. Part II. Amer. J. Math., 74:127–162,
1952.

[LS91] Y. Lafont and T. Streicher. Games semantics for linear logic. In Proc. 6th Annual IEEE Symp.
on Logic in Computer Science, pages 43–49, Amsterdam, July 1991.

[Maz77] A. Mazurkiewicz. Concurrent program schemas and their interpretation. In Proc. Aarhus Work-
shop on Verification of Parallel Programs, 1977.

[Mil80] R. Milner. A Calculus of Communicating Systems, LNCS 92. Springer-Verlag, 1980.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267–310,
1983.

15

[Mil90] R. Milner. Operational and algebraic semantics of concurrent processes. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, chapter 19, pages 1201–1242. Elsevier Science
Publishers B.V. (North-Holland), 1990.

[MMT87] R. McKenzie, G. McNulty, and W. Taylor. Algebras, Lattices, Varieties, Volume I. Wadsworth
& Brooks/Cole, Monterey, CA, 1987.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures, and domains, part I.
Theoretical Computer Science, 13, 1981.

[Pei33] C.S. Peirce. Description of a notation for the logic of relatives, resulting from an amplification
of the conceptions of Boole’s calculus of logic. In Collected Papers of Charles Sanders Peirce.
III. Exact Logic. Harvard University Press, 1933.

[Pet62] C.A. Petri. Fundamentals of a theory of asynchronous information flow. In Proc. IFIP Congress
62, pages 386–390, Munich, 1962. North-Holland, Amsterdam.

[Pra82] V.R. Pratt. On the composition of processes. In Proceedings of the Ninth Annual ACM Sympo-
sium on Principles of Programming Languages, January 1982.

[Pra86] V.R. Pratt. Modeling concurrency with partial orders. Int. J. of Parallel Programming, 15(1):33–
71, February 1986.

[Pra91] V.R. Pratt. Modeling concurrency with geometry. In Proc. 18th Ann. ACM Symposium on
Principles of Programming Languages, pages 311–322, January 1991.

[Pra93] V.R. Pratt. The second calculus of binary relations. In Proceedings of MFCS’93, Gdańsk, Poland,
1993. Springer-Verlag.

[Rei85] W. Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.

[Win88a] G. Winskel. A category of labelled Petri nets and compositional proof system. In Proc. 3rd
Annual Symposium on Logic in Computer Science, Edinburgh, 1988. Computer Society Press.

[Win88b] G. Winskel. An introduction to event structures. In Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency, REX’88, LNCS 354, Noordwijkerhout, June 1988.
Springer-Verlag.

16

