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Abstract

The work is motivated by deadlock resolution and
resource allocation problems, occurring in distributed
server-client architectures. We consider a very general
setting which includes, as special cases, distributed band-
width management in communication networks, as well as
variations of classical problems in distributed computing
and communication networking such as deadlock resolu-
tion and “dining philosophers”.

In the current paper, we exhibit first local solutions
with globally-optimum performance guarantees. An ap-
plication of our method is distributed bandwidth man-
agement in communication networks. In this setting,
deadlock resolution (and maximum fractional indepen-
dent set) corresponds to admission control maximizing
network throughput. Job scheduling (and minimum frac-
tional coloring) corresponds to route selection that mini-
mizes load.

1 Introduction

1.1 Informal problem statement

Motivation. The work is motivated by deadlock
resolution and resource allocation problems, in dis-
tributed server-client architectures.  We consider
a very general setting, which includes, as special
cases, distributed bandwidth management in com-
munication networks, as well as deadlock resolution
[BT87, BBG&3, BC89, AM86, AKP9I1], and “dining
philosophers” [AS90, ACS94].

*Johns Hopkins University, Baltimore, MD 21218, and MIT
Lab. for Computer Science. E-mail: baruch@blaze.cs.jhu.edu.
Supported by Air Force Contract TNDGAFOSR-86-0078,
ARPA/Army contract DABT63-93-C-0038, ARO contract
DAALO03-86-K-0171, NSF contract 9114440-CCR, DARPA
contract N00014-J-92-1799, and a special grant from IBM.

tDepartment of Computer Science, Tel-Aviv University. E-
mail: azar@math.tau.ac.il. This research was partially sup-
ported by the Alon Fellowship and the Israel Science Founda-
tion administered by the Israel Academy of Sciences.

Yossi Azar!

The goal of this paper is to develop local algo-
rithms with globally-optimum performance guaran-
tees. The problems considered are related to “frac-
tional” versions of maximum independent set and
minimum coloring in hyper-graphs. While integer
versions of these problem appear to be hard to ap-
proximate, [BGLRI3, FGL 191, AS92, ALM*92], the
versions, that happen to be the ones that matter
in practice, do not fall into this class. Thus, there
is no excuse for substituting “local maximality” for
“global maximum”, since the gap between the two
often grows linearly in the size of the problem. This
is in fact the disadvantage of existing techniques in
the field of distributed computing, such as algorithms
for mazimal independent sets, A + 1 coloring, and
dining philosophers [Lub86b, Lub86a, Lin87, GPS87,
AGLP89, AS90].

This paper in fact achieves globally-optimum so-
lutions by local asynchronous algorithms. To the
best of our knowledge, this is the first example of
a local (poly-logarithmic time) distributed algorithm
for which no non-trivial (constant time) “checker” is
known, i.e. we do not see immediate way to verify
correctness by considering the immediate vicinities of
individual nodes.

Essence of the problem. The nature of the prob-
lem can be illustrated on the classical example of
philosophers dining at a round table, with only one
fork on the table in between each two nearby philoso-
phers. Each philosopher needs two forks in order to
eat.

If each philosopher grabs the left fork, then, in fact,
we reach a situation of “deadlock”, since no philoso-
pher can eat with only one fork. While philoso-
phers cannot all simultaneously eat, the “maximum-
throughput” resolution of such a deadlock would re-
quire, say, every other philosopher to drop its fork
which allows half of the philosophers to eat.

In more general version of this problem, different
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philosophers may need different accessories, e.g. some
philosophers prefer knifes to forks. In the arbitrary-
access version of the problem, philosophers are not
so stubborn; i.e. either one of the two forks would
suffice, provided that there also is a knife. Gener-
ally speaking, one may request any monotone boolean
function of the requested resources.

Observe that in the maximum-throughput version,
philosophers do not wait for for each other; we only
want to maximize the number of philosophers that
eat tmmediately, since after that, the food already
becomes cold and thus uneatable.

In the standard formulation of “dining philoso-
phers” [AS90, ACS94] problem, philosophers are in
fact ready to wait, and thus, instead of maximiz-
ing the number of philosophers who eat immediately
(“throughput”), we are interested in minimizing time
1t will take to feed all philosophers. In case of the din-
ing at a round table, this would involve two phases of
concurrent eating.

The real motivation, of course, is to deal with gen-
eral resource allocation in general client-server archi-
tectures; i.e., in the above simple example, philoso-
phers correspond to clients, and forks are servers.
In such setting, only local information 1s avail-
able. Clients can only communicate to the accessible
servers the sizes of their jobs being submitted, and
servers communicate back to their client the server’s
load at the time, i.e., the total volume of all the jobs
previously enqueued in the server queue.

Example: distributed bandwidth manage-
ment. An important example to which our model
applies includes distributed bandwidth management
algorithms in high-speed networks, that so far has
only been considered in online centralized setting
[AAF193, AAP93, AAPWY4]. In case in which num-
ber of route selections is polynomial, our methods
yield poly-logarithmically competitive algorithms.

Bandwidth management is modeled by having
server’s resources be bandwidth of a certain commu-
nication link, and clients be connections entering the
network. FEach connection may need simultaneous
access to all links on the communication path from
the sender to receiver. The different variations of the
bandwidth management problem are captured in our
setting as follows.

e admussion control, i.e. decision on whether to ad-
mit an incoming connection, so as to maximize
the total throughput, without exceeding link ca-
pacities [GGKT93, LT94, ABFR93, AAP93], is
captured by the mazrimum-throughput version of
the problem. In particular,

— flow controlissue, i.e. decision on how much
traffic to admit into the network given a
fized path from sender to receiver, is cap-
tured by the full-access version of the prob-
lem.

e route selection issue, i.e. decision on how to
route traffic, so as to minimize maximum link
load, [AAFT93, AKPT93, AAPW94] is captured
in our setting by mazimum time deadlock reso-
lution.

We stress that the “serially-competitive” routing
algorithms, say in [AAF+t93, AAP93] do not work in
the concurrent setting. These algorithms operate by
selecting the shortest weighted path for an incoming
connection, where links weights grow exponentially
with traffic admitted so far into the system. The
coordination between routing decisions is expressed
in that the load introduced by the previous connec-
tion must be incorporated into the routing decision
made by the subsequent connection. While the algo-
rithms works regardless of the order in which connec-
tions come in, their competitiveness is crucially de-
pendent on proper coordination with respect to some
order, making these algorithms infeasible for concur-
rent decision-making.

1.2 Our results versus existing work

Performance evaluation: “concurrent” com-
petitiveness. As in this paper we would like to
consider the problem in distributed concurrent set-
ting, we first need to define the appropriate complex-
ity measures. These definitions, informally outlined
below, and further elaborated in Section 2.1, consti-
tute one of the innovations of this paper.

In maximum-throughput version of the problem,
there are two performance measures: throughput com-
petitiveness, 1.e. how many philosophers do we man-
age to feed compared to offline optimum, as well as
time it takes our distributed algorithm to figure that
out. Time performance of a distributed algorithm is
measured in a standard way by assuming that the
time 1t takes any client to communicate with any of
the servers it is attached to is ezactly (at most) one
time unit in the synchronous (resp., asynchronous)
network.

In minimum-time version of the problem, there
is only one performance criteria - total completion
time, which consists of actual execution time plus
the number of rounds needed to compute the sched-
ule. Even though our results hold for most general
case, to simplify our initial discussion and to develop
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intuition, we will be restricting ourselves to the spe-
cial case in which job run-time is one unit, (as in
[AS90, AKP92]), e.g. run-time equals communica-
tion delay between servers and clients.

As in [AKP92], the efficiency is measured by the
competitive ratio in total running time of the dis-
tributed algorithm, including both the time to dis-
tributively construct and execute the schedule. In
contrast, offline algorithm does not waste any time
to distributively construct the schedule.

Unlike in online centralized version of the some-
what simpler problem, where, as pointed out by
[SWW91], we can always achieve a factor of 2 in com-
pletion time by essentially reducing the problem to an
offline problem, this option does not exist in the dis-
tributed version of the problems considered in this

paper.

Related work Centralized algorithms approximat-
ing the maximum fractional independent set and
maximum fractional coloring, can be easily obtained
by linear programming or incorporating the tech-
niques in [PST91]. Our problem can be viewed as
dual of positive linear programs considered by Luby
and Nisan [LN93] who also provided a parallel ap-
proximation algorithm, which, however, lacks the de-
sired locality properties.

The deadlock resolution and job scheduling prob-
lems are analogous to fractional versions of maxi-
mum independent set and coloring problems in hyper-
graphs. Combining techniques in [RT85, Rag86] with
methods in [PST91] yields centralized approxima-
tions.

Online centralized scheduling and load balancing
algorithms were considered various of papers such
as [SWW91, ANR92, ABK92, BFKV92, AAFT93,
PSW94].

Unfortunately, there exist no “competitive” dis-
tributed deadlock resolution strategies, in the sense
that all known techniques for distributed symme-
try breaking and deadlock resolution [CM83, BT87,
BBG83, BC89, AM86, AKP91, AS90, ACS94], even
though ensure eventual progress, have competitive ra-
tio that may grow linearly in the number of processors
involved.

Results and techniques of this paper. In con-
trast, in this work, we provide first competitive dis-
tributed solutions, that have logarithmic or poly-
logarithmic overhead.

e mazimum-throughput: our algorithm in Section
2 computes the schedule in O(logn) time in ei-

ther synchronous or asynchronous setting, and
achieves O(logn) throughput-competitiveness.

o minimum-time: our algorithm in Section 3 com-
putes the schedule in O(log®’n) time in ei-
ther synchronous or asynchronous setting, and
achieves O(logn) time-competitiveness.

We comment that the asynchronous version of our
algorithm poses another attractive feature, which is
1s wait-freedom: undetectable failure of one client will
not slow scheduling for another client provided that
the servers are reliable.

In the new algorithms, we build on techniques used
in context of online resource allocation [AAFT93,
AKP193, AAP93, AAPW94] as well as on techniques
used in field of distributed computing. Our algorithm
is similar to the Luby-Nisan algorithm [LN93].

Structure of this extended abstract.
Maximum-throughput problem is handled in Section
2 and Minimum-time (load) problem is handled in
Section 3. We prove the minimum-time fractional
algorithm in Section 4. In the in the final version
we show how to achieve the integer solution via ran-
domization and rounding techniques, and provide the

proofs for the max-throughput case.

2 Maximum-throughput

In this section, we deal with maximum-throughput
deadlock resolution. We start with the simplest “full
access” case, in which job requests access to a specific
set of resources (that may may depend on the job).
We then generalize it to more general case, in which
choice is possible.

2.1 Full-access maximum-throughput
problem

Generally speaking, we have a collection of clients
(“philosophers”) X', with a job of demand d°, associ-
ated with each client s € X'. Also, we have a collec-
tion of servers (“resources” or “forks”) E, each server
e € F having a capacity c¢(e). During its execution a
job s € X needs access to subset P(s) C F of servers
consuming d° resources from each of these servers.
The essence of full-access deadlock resolution is to
find an approximately “maximum” weighted subset
I C X of clients (philosophers), that can be con-
currently scheduled without exceeding capacity con-
straints at the servers. Formally, we need to maxi-
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mize the “throughput” Z d?, subject to the “capac-
seET
ity constraints” Z d* < c(e), for all servere.
s€Z|eeP(s)
Let n =

p = max, c(e)/min.c(e).

max{| X[, |F|,p}  where

The fractional version of the problem. Instead
of making an “integer decision” about admitting jobs
(yes or no) it is much easier to make a “fractional deci-
sion” i.e., determine values 0 < p® < 1 indicating the
fraction of each job s € X to be executed. We define
f* = d’p® which is the absolute size of the fraction
of the job s. The capacity constraints for this Version
of the problem are modified as Zsel'leEP )f < ¢

where the goal is maximize “fractional t roughput”
Z f?. This is the version of the problem for which

SEX
our algorithms will be designed.

To transfer the fractional solution to an integer one
we view p(s) as values which are proportional to the
probability that the jobs s is executed (not aborted).
(The formalisms are elaborate in the final version.)
For this transformation to work, we need to make a
(quite realistic) assumption (at least, in case of vir-
tual circuit routing), that capacity of each resource
exceeds size of each job by a logarithmic factor, i.e.

gréllglc(e) = Q(logn) ~rsnea)§(d (1)
We comment that the general “integer” prob-
lem, without making an assumption of such type, is
provably un-approximable [BGLR93, FGLt91, AS92,
ALM*92], unless P = NP. Indeed, the mazimum-
throughput (minimum-time) problems, are in fact,
generalization of mazimum independent set (mini-
mum coloring, resp.) problem on hyper-graphs.

2.2 Max-throughput full-access algo-
rithm

The algorithm executed by each job s (see Figure 1)
works as follows. It starts by calling Procedure INIT,
which initializes the assignment to some small of its
demand d*. Then, inside the inner loop, this fraction
is successively doubled, using procedure Pump, until
either total assignment reaches the value of demand
d®, or the local “weight variable“ weight} exceeds 1.
The latter weight variable is updated by procedure
UPDATE.

The procedures used by the main algorithm in Fig-
ure 1 are described in Figure 2.

Procedure INIT defines the “bottleneck capacity”
cp as the minimum server capacity in P, and then

Call Procedure INIT(P = P(s),A =1)
repeat
Call Remote Procedure Pump*(P = P(s),e = 1),
Call Local Procedure UPDATE’(P = P(s), ¥(h)
where (k) = ((3n)*" —1)/n),
until f5 > d° or Zwez’ght; > 1
eeP

Figure 1: Full-access Maximim-thruput algorithm w.r.t.
client s. Uses procedures in Figure 2.

Define Remote Procedure PUMP®( P, ¢)
Afp —efp
fp=fp+Afp
Ve € P(s)
send message ADD_LOADH(Af) to e
await CURRENT_LOAD%(h) from e
hp. —h
Define Local Procedure UPDATE®(P, ¥)
weighty — Z\If(h;,e)

eeP
Define Procedure INIT(P, A)

cp — min.cp c(e)
fo—1/n min{d*, A -cp)}
weighty — 0

Figure 2: Procedures used for Deadlock Resolution Algo-
rithms.

sets the initial assignment to be 1/n? fraction of the
minimum between demand and the bottleneck capac-
ity.

Procedure UPDATE computes the non-linear func-
tion of the loads at the servers used by this job.
Specifically, this is the sum, over all the servers, of
V(hp ), where W(h) = ((3n)%" — 1)/n. Estimates

P, which are the load on the servers with respect
to this source, are determined according to the mes-
sages CURRENT_LOAD R (h) received from servers. We
should note that the weight is a measure for the usage
of the whole subset (e.g. [SM90]), rather than for a
specific server. We may stop increasing the load on
set well before any single server over-utilized.

Procedure PUMP®(P, €) is used to increase the as-
signment of job by e factor; in this case we choose
€ = 1. The need for the graduate growth in the as-
signment value is to prevent the effect of extreme
changes for the load on any server. This proce-
dure is also in charge of communicating the new load
ADD_LoaDB(AS) to e. Tt will subsequently wait for
the reply CURRENT_LoADL(h) from e, contains the
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current load on ¢, and update load estimate h} , ac-
cordingly.

The algorithm executed by each server (see Figure
3) is straightforward: simply keep track of its load,
and after the load is being changed by some job, the
server reports back the new load.

Specifically, let L. be the current load on server e
normalized by its capacity c(e). Whenever a server
receives a message ADD_LOADR(AS) from job s, it
means that that this job increased its demand by Af,
and thus the server’s load is increased by A f (normal-
ized by the ¢(e)) and the reply CURRENT_LOAD p(L¢)
is sent back, carrying the normalized load on that
server.

for message ADD_LOAD:(Af) from s:
Le — Lo+ Af/c(e)
send CURRENT_LOADS(L.) to s

Figure 3: Algorithm execution by each server e.

Theorem 2.1 The algorithm in Figure 1 achieves
O(log n) throughput-competitiveness, and converges in
O(log n) distributed time, either in synchronous or asyn-
chronous distributed computation model.

Proof: Omitted. |

2.3 Maximum-throughput arbitrary

access problem

In a different version of the problem, job s € X
may request access to only one of the resources in
Y(s). This versions of the problem will be referred to
as “OR” version, in contrast to previously discussed
“AND” version in which access to all resources is re-
quired.

More generally, a client s, instead of requesting ac-
cess to a single set P, requests access to at least one of
sets of a a collection P(s) = {Pyi(s), Pa(s) ... Pr(s)}.
Fach set P € P(s) consists of a number of servers,
P ={e}(s),2(s), ... el(s)}.

This captures an arbitrary monotone boolean func-
tion (written as a DNF formula), e.g., if client s needs
either resource e; or both resources es, e3, this corre-
sponds to setting Pi(s) = {e1} and Pa(s) = {e2, es}.

As for the full-access problem, we can define the
fractional version of the problem. Here instead of
one variable f* for each job s we have many variables
{f2|P € P(s)}, for the different feasible subsets each
job s. Here each job may split faction of its demand
among the possible feasible subsets.

If we want to select of a given collection of com-
munication paths in order to minimize the load, this
can be captured by presenting the function as sum of
minterms, each minterm representing another com-
munication path.

2.4 Max-throughput arbitrary access
algorithm

The algorithm, presented in Figure 4, 1s just as before,
with the difference that the job maintains a list of “ac-
tive” feasible subsets, with a single feasible subset P
being active if its weight is still less than 1, and in-
creases its assignment only on active feasible subsets.
All the procedures and the server algorithm remain
as before, 1.e. as in Figures 3 and 2, respectively.

for all P € P(s), in parallel
Call Procedure INIT(P,A = 1)
repeat
for all P € P(s) s.t. weightp < 1
Call Remote Procedure PUMP*(P, e = 1)
Call Local Procedure UPDATE®( P, U(h))

until Z f5 > d° or VP € P(s), weights > 1
PeP(s)

Figure 4: Deadlock Resolution Algorithm for the general
case w.r.t. client s that needs access to one the sets of
servers P € P(s). Uses procedures in Figure 2.

Theorem 2.2 The algorithm in Figure 4 achieves
O(log n) throughput-competitiveness, and converges in
O(log n) distributed time, either in synchronous or asyn-
chronous distributed computation model.

3 Minimum time/load

3.1 Problem statement

The input for the Minimum-time deadlock resolution
is the same as for the the arbitrary access throughput
problem. However, the goal is to schedule allthe jobs
in non-conflicting way. More specifically we need to
find a feasible subset P(s) € P(s) and a time, (color)
T(s) such that the capacity constraints are satisfied
at each step 1.e.

Ye,t Z d* < c(e).
s|T(s)=t,e€P(s)

The goal is to minimize the maximum 7. We can de-
fine somewhat relaxed version of the problem in which
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for all P € P(s), in parallel
Call Procedure INIT(P(s), A = A¥)
a=1+~/8 B=log,|L[/(1—7)=0(logn)
stage «— 0
repeat
stage = stage + 1
repeat
for all P € P(s), s.t. weight} < 2°7%9°
Call Procedure Pump®(P, e = g71)
Call Local Procedure UPDATE®(P, U.(h))
where ¥ (h)) = ah/A/c(e)))
until VP € P, weighty > 2°°49°

until Z fp>d or 2579 > A (B+2)
PeP

Figure 5: The load or minimum-time deadlock resolution
for job s. Uses procedures in Figure 2.

we need to choose for each s, P(s) € P(s) where the
goal is to minimize the maximum load which is

L= > d/e(e).

s|e€P(s)

It is clear that the maximum load is a lower bound
for the minimum-time deadlock resolution since we
do not require that all the resources for some job will
be scheduled simultaneously. Nevertheless, if we as-
sume that min. c¢(e) = Q(logn) - maxd® then tech-
niques of [LMRS88] can be used to achieve a random-
ized algorithm for the minimum-time deadlock reso-
lution. This increases the competitive ratio only by a
constant factor. Specifically, a job chooses a random
slot uniformly among the target number of time slots.
The value of this target number is some constant time
the number of slot achieved by the min load algo-
rithm. Furthermore, we can define the fractional ver-
sion of the load problem as for the throughput prob-
lem. Again using randomization one can translate a
solution for the fraction problem to a solution to in-
teger problem by increasing the competitive ratio by
only a constant factor as described in final version.
The above allow us to concentrate from now on on
the fractional load problem since its solution yields a
randomized solution for minimum-time deadlock res-
olution.

3.2 Minimum load algorithm

The algorithm in Figure 5 deals with the fractional
load version problem. The algorithm, for each job,
proceeds in stages, with the goal of each stage stage
being to maximally utilize “active feasible subsets”.
These are defined as feasible subsets of “weight” less

or equal to 2¢%%9¢.  The weight of a feasible sub-
set 1s the sum of the weights of individual servers,
which grow exponentially with the utilization of these
servers.

Throughout a stage, the job will gradually increase
the volume of the jobs sent over the active feasible
subsets, until all active feasible subsets become “sat-
urated” and thus cease being active, or until the as-
signed fraction satisfies the demand.

Specifically, each stage will consist of a number of
phases, each phase increasing the assignment over
each active feasible subset by certain fraction 1/8
with some appropriate initial assignment. Increasing
the assignment on a feasible subset P during a phase
is done by calling the procedure Pump® (P, 371).

We assume that the algorithm is given a value A*
which is larger or equal to the load of the optimal
algorithm (A* can be found by doubling). Here the
function ¥.(h) is define for some constant a > 1 as

W, (h) = a"™ Je(e)

which results in setting

weight p = Z al</N Je(e).

eeP

The values a and § above defines as follows. Let
a = 1+ v/8 for some arbitrary constant 0 < v < 1
and 5 = log, |E|/(1 —v) = O(logn). Also let ¢cp =
mingep c(e). Without loss of generality we normalize
the capacity such that max, c(e) = 1.

Theorem 3.1 The algorithm in Figure 5 (given A*)
achieves O(log3 n) time-competitiveness either in syn-
chronous or asynchronous distributed computation
model.

Comment: In fact, the algorithm O(logn) time-
competitive in centralized model, in which commu-
nication between servers and clients takes negligible
time. Tt converges in O(log® n) phases.

4 Load Analysis

In this Section, we provide the proof of Theorem 3.1.
Since we describe the load version of the problem,
jobs are only scheduled but not executed until the
end of the scheduling phase. Denote by fi(k) the
value of f% at the end of phase k = k; of job i. Clearly
f5(k)is 0 for k = 0 and is a monotone non-decreasing
function of k. The incremental volume of a feasible
subset P at phase k of job i is denoted as Af5 (k).
By definition

Afp(k) = fp(k) = fp(k—1) >0
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To simplify the formulas, we will use Ee(t) =
L.(t)/A* to denote the normalized load of the dis-
tributed algorithm (i.e. load divided by the offline
load), and will use the ™ notation consistently.

For the purpose of analysis we define a mapping
from the global time ¢ to the index of the phase num-
ber of each server. Let k;(t) be the index of the phase
of job i at time . Also let k%(¢) be the index of the
last phase of job i before time ¢ that feasible subset P
was active and at a later phase (but still before time
t) it was active again.

Denote by t* the time immediately after the in-
cremental volume of job i subscribed to server e of
feasible subset P € P? at phase k. Let

bo(k) = Le(t")

If P is not active at phase k of job i then its height
on each server is the same as in the previous phase
(initially it is 0).

We define the relative load of job i on e due to
feasible subset P at the end of phase & as

Fpo(k) = fo(k)/c(e)

provided that e € P (otherwise it is 0) and similarly
define Af} (k).
The commautied relative load on server e at time ¢t 1s

defined by:

)= D fr.lkp(1))

i, PecFE

We call the load which is not yet committed pending
committed relative load. Clearly at any time the load
on an server is the sum of the committed load and the
pending load. Clearly the the pending load consists of
the union of the incremental demand of the current or
the last positive incremental demand of each feasible
subset. We use the notation of ~for the parameters
of the off-line centralized algorithm. In particular,
f}; is the part of the demand that is assign by the
centralized algorithm to the subset P by job ¢ and
fo = fo/cle)

We first prove the following lemmas

Lemma 4.1 For any 1,
DD Ak =) fp<2di=2) fp
Pk P P

Proof: The equalities follows from the definitions.
We prove the inequality. As long as the job is still
unsatisfied then by definition Y, fo(k) < d;. At
the last phase &’ (i.e when the job becomes satisfied)
the value of each fL(k’ — 1) may increase by a factor

of (14 1/3) for f&(k' —1) > 0. Also the value of
at most n feasible subsets may increase from 0 to at
most d;/(n?). Thus,

Yofb o= D fp)
A+ 1/8)Y fo(k = 1) +n-di/(n?)

IN

IN

The algorithm maintain the following

Definition 4.2 The Main Induction Hypothesis at
time ¢ (or up to time t) denote by MIH(t) is as fol-

lows: for any job i, any feasible subsets P, P/ € P? in
and k < ki (¢)

Z aﬁ;”)e(k)/c(e) <4 Z azﬂ(t)/c(e).

eeP ee P/
Lemma 4.3 MIH(t) implies ) p ale® < |F|/(1—
~) and thus £.(t) < 3 = O(log n)

Proof: If )~ . at® < |E|/(1 — ) then clearly

Ce(t) < log,(|E/(1—7)) =8
MIH(t) with Lemma 4.1 imply that for any ¢

STONT ARk S dre® /e(e)

P k<ki(t) eeP
< 83N kW /e(e)
P

or

IV Y Y aOag,®)

P k<ki(t)ecl
< vy Y a Wi,
P eeP

Note that since ¢ = 1 + /8 we have that V& >
0: (1 —=a") < (y/8)x. Applying the inequality for
x = f}'gye and using the inequality above yield:

Z Z Z(aﬁg,e_aﬁia,e(m—Af}»,e(k))

P k<ki(t)ecl

= Z Z Zaﬁﬁa,e(l_a—Af}»,e(k))

P k<ki(t)eeP

< I YAl
P k<ki(t)ecl
S PyzzazefiP,e

P ecFE
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Summing over all currently active jobs, we get:

Z Z Z(aﬁ;},e(k)_aﬁﬁa,e(k)—Af}»,e(k))

0P k<ki(t)e€E

< AN d 0,

i,P ecE

Exchanging the order of summation yields

S S (e b8k b))

e€Pi,Ple€E k<kL(t)

< A3 d 0 S i,

ecE i,Ple€E

Observe that the fact that the normalized load of
the offline algorithm never exceeds 1 implies that

Zi,P|eEP fipye < 1. Also, for each server e the left
hand-side is a telescopic sum without the differences
created by the pending incremental demand on that
server. However, reducing the height of the each com-
mitted incremental demand by the accumulative size
of the pending demand on that serverwith of lower
heights may only reduce the value of the expres-
sion. That results in a telescopic sum which is just
at() — q° Thus we conclude that

Z(afe(t) _ 1) <~ Z aze(t)

ecE ecF
Using the fact that v < 1, we get

S ak M < |EB|/(1- ).

1=

Theorem 4.4 The algorithm maintain MIH(?)

Proof: Clearly MIH holds initially. New inequalities
are added to MIH only when some k% (t) is increased.
That occurs after some job iy starts a new phase
which causes some previous pending incremental de-
mand of feasible subsets in P to become committed.
Let t1 be a time immediately after committing and
t~ a time just before committing. Both times are at
the same phase k;,. We assume by induction that the
MIH(¢~ ) and show show that it is maintained also at
tt.

By assumption the inequalities hold at ¢~ for any
feasible subsets P, P’ € P'. Since the right hand-side
is monotonic non-decreasing function of ¢ they also
hold at time ¢t for all 4, P and k < k%(¢7). Thus,
we need to proof the inequalities for any committed
P € Pt and arbitrary P’ € P where k* = k2 (t1).
We first proof the following:

Lemma 4.5 For any t <1~ Ee(t) < ll(t) +2

Proof: There is at most one pending incremental de-
mand for each f% for any unsatisfied job. The value
of this incremental demand is at most f5/3 if the
committed flow of job ¢ on feasible subsetP is posi-
tive and it is at most A*c(e)/n? otherwise. Since the
load is just the sum of the flow we have

L(t)

—Le() S LB +n - (Ac(e)/n®)/(Ae(e))
LB)B+1/n<2

where the last inequality follows from the inductive
hypothesis and Lemma 4.3 ||

Lemma 4.5 implies that

Z aie(t_)/c(e) <a? Z azﬂ(t_)/c(e).

ee P/ ee P/

Let stage(k;,) denote the value of the stage of the
current phase k;, of for job i. By the definition of a
stage
Qstage(k,u)—l < Z af,e(t_)/c(e)
ec P!

On the other hand since P is currently active
weight p(k*) < gstagelhio)

Moreover, by the monotonicity of the load and the
fact that testing the weight of a feasible subsetis com-
puted after adding to its flow

Z aﬁ;”)e(k*)/c(e) < weight p(k*).
eeP
Combining the above inequalities yields that

Z aﬁ;”)e(k*)/c(e) <4 Z azﬂ(ﬁ)/c(e).

eeP ee P/

We conclude

Corollary 4.6 For all ¢ and e,
* Teepa® < |B/(1=7)
o l(t)< P
o L.(t) <l.(t)+2

Proof of Theorem 3.1: By corollary 4.6, Ee(t) is
bounded by O(logn). Thus, the algorithm is O(logn)
competitive. Next we bound the number of steps un-
til it converges. Consider job i. We claim that after
¢ logn phases the value of stage increases by 1 or
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the job is already satisfied for an appropriate con-
stant ¢. Otherwise there exists a feasible subset P
whose weight is below 2¢'99¢ at all these phases and
it is active at all of them. Clearly after the first phase
f5 > min{d;, A*cp}/n® Moreover, the flow is in-
creased by a factor of 141/8 at each phase and hence
it increases by factor of (141/3)°? 196" > 4n?3. Thus
after the c¢flogn phases the value of the flow 1s at
least 48 -min{d;, A*cp}. If the minimum in the above
expression 1s d; then job 7 is already over-satisfied and
therefore its assignment was completed. On the other
hand if the minimum i1s A*¢p then the server whose
capacity is c¢p has relative load L. > 406 > 42 which
contradicts corollary 4.6.

Thus, unless the job it satisfied stage increases
by 1 every c¢flogn phases. The minimum possible
weight of a feasible subset is 1 since we normalized
max, ¢(e) = 1. By corollary 4.6, the maximum weight
of a feasible subset is |E|/(1 —+)/ min, ¢(e). Thus by
the claim above the total number of rounds is at most

O(Blogn(f + log p)) = O(log® n)
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