
Fully Dynamic Cycle-Equivalence in Graphs

Monika Rauch Henzinger
Department of Computer Science

Cornel1 University
Ithaca, NY 14853

Abstract

Two edges el and e2 of an undirected graph are
cycle-equivalent iff all cycles that contain el also
contain e2, i.e., iff el and e2 are a cut-edge pair.
The cycle-equivalence classes of the control-flow graph
are used in optimizing compilers to speed up ezast-
ing control-flow and data-flow algorithms. While the
cycle-equivalence classes can be computed in linear
time, we present the first fully dynamic algorithm for
maintaining the cycle-equivalence relation. In an n-
node graph OUT data structure executes an edge in-
sertion OT deletion in O(fi1ogn) time and answers
the query whether two given edges are cycle-equivalent
in O(log2n) time. W e also present an algorithm for
plane graphs with O(1ogn) update and query time
and for planar graphs with O(1ogn) insertion time
and O(log2 n) que y and deletion time. Additionally,
we show a lower bound of R(lognllog1ogn) for the
amortized tame per operation for the dynamic cycle-
equivalence problem in the cell probe model.

1 Introduction

Two edges e1 and e2 of an undirected graph are
cycle-equivalent iff all cycles that contain el also
contain e2. Computing cycle-equivalence is central
to many compilation problems, because the control-
dependence equivalence relation of a program is
the cycle-equivalence relation of the undirected ver-
sion of the control-flow graph [12]. In particular,
code-optimization algorithms, such as static single-
assignment form construction, and data-flow analy-
sis, such as determining the subexpression availability,
can be sped up if the cycle-equivalence classes of the
control-flow graph are known [13]. A third applica-
tion of the control-dependence equivalence relation is
in global scheduling of instructions for pipelined ma-
chines [ll].

In [13], a static algorithm is used that computes

the cycle-equivalence relation in linear time. Then the
question is posed if the cycle-equivalence relation can
be maintained efficiently during modifications of the
control-flow graph. This problem is of practical signif-
icance, because it can speed up incremental compilers
used in programming environments and text editors.
In particular, fast query time is essential.

We present the first dynamic algorithm for main-
taining the cycle-equivalence relation under edge in-
sertions and deletions. Our data structure requires lin-
ear preprocessing time and space and tests if two edges
are cycle-equivalent in O(log2 n) query time, where n
is the number of vertices in the graph. The data struc-
ture can be updated in O(fi1ogn) time after the in-
sertion or deletion of an edge. Note that up to logn
factors this is as efficient as the fastest known algo-
rithm for the simpler problem of dynamically main-
taining the connectivity relation, which requires O(1)
query time and O(& update time [3].

Dynamic cycle-equivalence is also interesting be-
cause of the relation to dynamic 3-edge connectivity:
two edges el and e2 are cycle-equivalent iff (e 1 , e ~) is
a cut-edge pair (i.e., the removal of el and e2 discon-
nects the graph). While the best known dynamic algo-
rithm for testing 3-edge connectivity requires O(n2/3)
query and update time 191, we can solve the witness
version of 3-edge connectivity in O(log2 n) query time
and O(fi1ogn) update time: given two vertices U and
v and two edges el and e2, is (e1,e2) a cut-edge pair
witnessing that U and v are not 3-edge connected (i.e.,
does the removal of el and e2 disconnect U and v)?
Again, note that up to logn factors our algorithm is
as efficient as the best known dynamic algorithms for
the witness versions of the simpler problems of 2-edge
connectivity: checking if an edge is a bridge witness-
ing that two given vertices U and v are not 2-edge
connected requires O(1ogn) query time and O(&)
update time [3].

We also present an algorithm for plane graphs with
O(1ogn) time per operation and an algorithm for pla-
nar graphs with O(log2 n) time per operation. Addi-

744
0272-542W94 $04.00 0 1994 IEEE

tionally, we show a lower bound of R(1og n/ log log n)
on the amortized time per operation for the dy-
namic cycle-equivalence problem in Yao’s cell probe
model [17]. This is the most general model for lower
bounds and encompasses all RAM algorithms. All
three bounds match the best known bounds for the
dynamic connectivity problem.

We call a binary relation of vertices (or edges)
conuex if whenever two vertices (edges) U and v are
related, then there exists a path between U and v
such that all vertices (edges) on the path are related.
For example, connectivity, 2-edge connectivity, and
2-vertex connectivity are convex; k-edge connectiv-
ity and k-vertex connectivity for k 2 3 are not con-
vex. Convexity simplifies the design of dynamic algo-
rithms: the best known dynamic algorithms for con-
nectivity 2-edge connectivity require O(&) update
time and 0 (1) resp. O(1ogn) query time; for 2-vertex
connectivity, O (f i) update time and O(1) query
time [15]; for 3-edge connectivity, R(n2/3) update and
query time (91; for 3-vertex connectivity, R(n) update
time (31; for 4-edge connectivity and 4-vertex connec-
tivity, R(na(n)) update time [3]; for k-edge connec-
tivity with constant k > 4, R(n1ogn) update time [4].
Cycle-equivalence is not convex: two edges e l and e2
can be cycle-equivalent without any other edge being
cycle-equivalent to e l or e2. Our algorithm, therefore,
is the first known O(&logn) update time algorithm
for a nonconvex problem in general graphs.

Convexity supports a divide-and-conquer approach:
(1) decompose the graph into small connected sub-
graphs, so-called clusters; (2) solve the problem in
each cluster using a static algorithm; and (3) apply
a variant of the dynamic algorithm recursively to the
graph of clusters. The lack of convexity in the cycle-
equivalence problem, on the other hand, makes it im-
possible to solve the problem in each cluster with a
static algorithm alone. Rather, we maintain a span-
ning tree T of the graph and we solve three sub-
problems: (2a) test the cycle-equivalence between a
tree edge and a non-tree edge; (2b) test the cycle-
equivalence between a tree edge in the cluster and a
tree edge outside of the cluster; and (2c) test the cy-
cle equivalence between two tree edges in the cluster.
(Two non-tree edge cannot be cycle-equivalent.) For
testing (2a) we combine the ambivalent data struc-
ture of [7] with the recipe technique of [lo]. For test-
ing (2b), we introduce the following new technique,
called f a s t non-tree updates: We give each edge out-
side the cluster cost 1 and each other edge cost 0 and
maintain a minimum spanning tree of this graph using
a data structure that implements insertions of edges

and deletions of non-tree edges in time O(1ogn) and
deletions of tree edges in time linear in its size, which
is O(&). Note that no edge outside the cluster is
contained in the minimum spanning tree of the graph.
Thus, the data structure of a cluster can be updated
in O(1ogn) time when an outside edge changes. Since
during an update one inside edge in at most two clus-
ters and O(1) outside edges in potentially all O(&)
clusters have to be updated, this technique allows us to
update all data structures in time O(&log n). Later,
the technique of fast non-tree updates has also been
used to analyze and design dynamic algorithms in a
random input model [l]. For testing (2c), we maintain
for every cluster ambivalent information and develop a
variant of topology trees [6], called lazy topology trees:
each node in the topology tree is labeled, but after
each update the labels of only a dynamically changing
subset of the nodes are updated, even though the label
value at all nodes can change.

In Section 2 we present the algorithm for general
graphs, in Section 3 we give the algorithm for plane
and planar graphs and show the lower bound.

2 General graphs

We assume that the graph G is connected. If not,
we connect it with O(n) artificial edges that we update
appropriately if the connected components change. A
pair of edges (e 1 , e 2) is a cut-edge pair if the removal
of e l and e2 disconnects the graph.

Lemma 2.1 Two edges are cycle-equivalent iff they
are a cut-edge pair in the graph.

Let T be a spanning tree of G, let T’ (T”) be a
spanning forest of G \ T (G \ {T U TI}) , and let G” =
TUT’UT”. (When refering to a tree edge, we mean an
edge of T .) As shown in [14] two edges are a cut-edge
pair in G iff they are a cut-edge pair in G”. Lemma 2.1
immediately implies the following lemma.

Lemma 2.2 Two edges of G are cycle-equivalent in
G iff they both are contained in GI’ and they are cycle-
equivalent in G”.

This implies that it suffices to test cycle-equivalence
in a graph with O (n) edges. Using a dynamic connec-
tivity data structure for G, for G\T and for G\{T, TI}
we maintain T , TI, and TI’ and, thus G” dynami-
cally. We present in the next section an algorithm for
maintaining cycle-quivalence in G” with update time
O((k + n / k + log n) log n) and query time O(log2 n).
Choosing k = f i gives the following result.

745

Theorem 2.3 The cycle-equivalence of edges in a
graph can be maintained an time O(log2n) per query
and O(Ji6logn) per update.

Lemma 2.4 Two edges el and e2 are a cut-edge pair
witnessing that to vertices U and v are not 3-edge con-
nected iff el and e2 are a cut-edge pair and either el
or e2 lies on the tree path between U and U.

Theorem 2.5 OUT data structure can answer a
witness-query in time O(log2 n).

Note that 2 non-tree edges cannot be cycle-
equivalent. Thus, it suffices to test the cycle-
equivalence between two tree edges (Section 2.2) and
the cycle-equivalence between a tree edge and a non-
tree edge (Section 2.3). First (Section 2.1) we give
some basic definition and data structures.

2.1 Basics

We present first the topology trees data structure [6].
Given a graph G with spanning tree T we expand ev-
ery vertex of G with degree d > 3 into d vertices that
are connected by a chain of d - 1 edges. We naturally
expand T to be a spanning tree of the expanded graph
G’. Note that two edges are cycle-equivalent in G’ iff
they are cycle-equivalent in G.

A cluster partition of order k of T is a partition of
T into O (m / k) subtrees, each consisting of O(k) edges
and vertices. Each subtree is called a level-0 cluster or
simply cluster. An edge with (exactly) 1 endpoint in
C is an incident edge of C. The tree degree of a C is
the number of tree edges incident to C. A restricted
partition of order k is a cluster partition where the
tree degree of all clusters is at most 3 and if the tree
degree of a cluster is 3, then the cluster consists of
only one vertex and this vertex is not incident to any
non-tree edges.

An edge with 2 endpoints in C is an internal edge
of C, an edge with 0 or 1 endpoint in C is an external
edge of C . Note that a cluster with tree degree 3 does
not have any internal edges. The tree path T P (C) of
C with tree degree 2 is the tree path connecting the
two tree edges incident to C. If C has tree degree
1 or 3, its tree path consists of the endpoint of the
tree edge(s) incident to C. We denote by R (u , ~) the
tree path between U and v and by C (u) the cluster
containing U . A non-tree edge (2, y) cowers a tree edge
e iff e lies on the tree path ? r (z , y) between x and y .

Let a high-level graph H of G consist of one vertex
per cluster and an edge between two clusters C1 and
C, iff there exists an edge between a vertex of Cl and

C2. The spanning tree of G induces a spanning tree
on H. An edge incident to two clusters is a high-level
edge or h-edge.

A level-i cluster is (1) the union of two level-(i - 1)
clusters that are connected by a tree edge such that
one of them has tree degree 1 or both have tree degree
2, or (2) one level-(i - 1) cluster if the previous rule
does not apply. A topology tree TT is a tree such that
each node C at level i corresponds to a level-i cluster.
If X is the union of two clusters X1 and X2 at level
i - 1, then X1 and X2 are the children of X. If X
consists of one level-(i - 1) clusters X at level i, then
X1 is the only child of X in TT. We call the vertices
of TT nodes. We say that a vertex x of G belongs to
a node X of TT and that X contains x if x belongs to
the cluster corresponding to X .

2.2 The cycle-equivalence of two tree
edges

To test the cycle-equivalence of 2 tree edges we dis-
tinguish between testing (1) 2 h-edges, (2) an internal
and an external edge of a cluster C, and (3) 2 edges
internal to C. We build 3 different data structures,
called external, combined, and internal data structure
and use combinations of them to solve cases (1) - (3).

In the rest of the section let us denote the 2 query
edges by (u,v) and (z , y) and assume that v and y
lie on R (Z , U) (i.e., v , y E ~ (x , u)) . If (z , y) is a tree
edge, we denote by the subtree of x in T \ (x , y) the
subtree of T \ (2, y) containing x . If x is contained in
a cluster C, then the subtree of x in c \ (x,y) is the
part of the subtree of x in T \ (s , y) that is contained
in C. If e = (u ,v) and e’ = (z , y) are 2 edges of T
with v , y E ?T(u,x), then the subtree of e and e’ is the
subtree of T \ { e , e’} containing v and y .

We need to test 4 quite technical properties, called
Type i queries for i 5 4. The external data structure
tests the lst , the combined data structure tests the 2nd
and 3rd, and the internal data structure tests the last.
Type 1 query: Let el = (x,y), e2, and e3 be h-edges
of T such that the subtree TI of x in T \ (z, y) and the
subtree T2 of e2 and e3 are vertex-disjoint. Is there a
non-tree edge between TI and T2?
Type 2 query: Let (z , y) be an edge on T P (C) and
let (u , v) be an edge with U $! C and v , y E ?T(u,x) .
Is there a non-tree edge between (1) the subtree of
x in C \ (2, y) and the subtree of (x , y) and (u ,v) or
(2) between the subtree of y in C \ (x , y) and either
the subtree of U in T \ (u , v) or the subtree of x in

Type 3 query: Let (x, y) be an internal edge of C not
on T P (C) and let (u ,v) be an edge with U C and

T \ (x, Y)?

746

w,y E T (u , z) . Is there a non-tree edge (1) between
the subtree of z in C \ (z, y) and the subtree of (x, y)
and (u,w) or (2) between the subtree of y in C\ (z,y)
and the subtree of U in T \ (U , w)?
Type 4 query: Let (z,y) be an internal edge of C
no on T P (C) and let (u,w) be an edge on T P (C) with
y , v E ~ (x , u) . Let (z , w) and (2, w’) be the tree edge
incident to C with w, w’ @ C and U , v E ~ (x , w’). Is
there a non-tree edge (1) between the subtree of w in
H \ C and either the subtree of z in C \ (z, y) or the
subtree of U in C \ (U , w) or (2) between the subtree of
w’ in H \ C and the subtree of (5,y) and (u , ~) in C?

We first split the cycle-equivalence problem into
suitable subcases and show how to solve each of them
by a combination of Type i queries. Then we present
3 data structures to answer the Type i queries.
Two h-edges
Testing 2 h-edges requires one query in the external
data structure:

L e m m a 2.6 Let (x,y) and (u,w) be two external tree
edges with y , v E ~ (x , u) . Then (x ,y) and (u,w) are
cycle-equivalent iff there is no non-tree edge between
the subtree of (z,y) and (u,w) and either the subtree
of z in T \ (z, y) or the subtree of U in T \ (U , w).

O n e internal and one external edge of C
Testing an internal and an external edge of C requires
tests in the external data structure (Condition 1 and
2) and in the combined data structure (Condition 3):

L e m m a 2.7 Let (x ,y) be an edge internal to the clus-
ter C , but not on T P (C) , and let (u , v) be an external
edge of C withy, w E ~ (x , u) . Let e l be the tree edge on
T (U , Z) incident to C and let e2 = (z , w) with w @ C
be the other tree edge incident to C (if it exists). Then
(z,y) and (u,w) are cycle-equivalent iff

1. there is no non-tree edge between the subtree of U

in T \ (u,w) and the subtree of (u,w) and e l ,
2. there is no non-tree edge between the subtree of U

in T \ (u , v) and the subtree of w in T \ e2, and
3. there is no non-tree edge between (1) the subtree

o f u in T \ (u,w) and the subtree of y in C\ (x, y)
and (2) between the subtree of x in C \ (x, y) and
the subtree of (u , v) and (5 , ~) .

L e m m a 2.8 Let (z,y) be an edge on T P (C) and let
(u,w) be an external edge with y,w E ~ (x , u) . Let el
be the tree edge on T (U , Z) incident to C and let e2 =
(z ,w) with w @ C be the other tree edge incident to C .
Then (z, y) and (U, w) are cycle-equivalent ifl

1 . there is no non-tree edge between the subtree of u
in T \ (u,w) and the subtree of (u,w) and e l ,

2. there is no non-tree edge between the subtree of w
and the subtree of (U , U) and el .

3. (1) there is no non-tree edge between the subtree
of y in c \ (z,y) and either the subtree of U in
T \ (u,w) OT the subtree of z in T \ (x ,y) and
(2) there is no edge between the subtree of z in
C \ (x ,y) and the subtree of (u , v) and (x ,y) ,

Two internal edges of C
We distinguish the case that (1) either both query
edges lie on T P (C) or neither does and (2) that one
query edge lies on T P (C) and the other does not.
Let G’(C) be the graph consisting of all vertices of
C and 1 vertex representing all vertices outside of C.
The vertices of G’(C) are connected by all edges in-
cident to vertices of G’(C). Thus, G’(C) is created
from G by collapsing all vertices outside C to one ver-
tex. Lemma 2.9 shows that Case (1) can be reduced to
testing cycle-equivalence in G’(C), a graph with O (k)
edges and vertices. Cycle-equivalence in GI(C) can
be maintained using the static algorithm in time O (k)
per update and O(1) per query.

L e m m a 2.9 Let (z,y) and (u,w) be two edges of C
with y,w E T (X , U) and such that either both edges lie
on T P (C) OT neither lies on T P (C) . The edges (x,y)
and (u , v) are cycle-equivalent in G iff they are cycle-
equivalent in G’(C).

Let G”(C) be the graph induced by all vertices of
C and all edges internal to C. As in the case of G’(C),
G”(C) can be maintained in time O (k) per update and
O(1) per query. In Case (2) we test cycle-equivalence
using the external data structure for Condition 1 of
the next lemma, using G”(C) for Condition 2, and a
Type4 query for Condition 3-5.

L e m m a 2.10 Let (x,y) be an internal edge, not on
T P (C) and let (u,w) be an edge on T P (C) with
y , v E ~ (x , u) . Let e l = (w,z) and e2 = (w ‘ , ~ ’) be
the tree edges incident to C with w , w’ @ C such that
(u,w) E ~ (x , w ’) . The edges (x ,y) and (u,w) are cycle-
equivalent in G iff

1.

2.
3.

4 .

5.

there is no non-tree edge between the subtree of
w’ in T \ e2 and the subtree of w in T \ e l .
(5 , ~) and (u,w) are cycle-equivalent in G”(C)
there is no non-tree edge between the subtree of U

in C \ (U , U) and the subtree of w in T \ el
there is no non-tree edge between the subtree of
w’ in T \ e2 and the subtree of (2, y) and (U , U) in
c,
there is no non-tree edge between the subtree of x
in C \ (x, y) and the subtree of w in T \ e l

741

2.2.1 The external data structure

Given 3 h-edges el = (z, y) , e2, and e3 that are tree
edge such that the subtree of x and the subtree of e2
and e3 are vertex-disjoint, the external data structure
allows to test if there is a non-tree edge between the
subtree of z in T \ (z, y) and the subtree of e2 and e3.

We maintain a topology tree TT for G and keep
at each node X of TT a copy T T (X) of TT (called
individual topology tree or i-tree) in which we store
some of the edges leaving X . To be precise at the node
representing the cluster Y which is not an ancestor or
descendant of X in T T (X) we store an edge between
Y and X if such an edge exists and 0 otherwise.

All i-trees are computed bottom-up. If X is a level-
0 cluster, T T (X) contains at the node Y which is not
an ancestor of X one edge between X and Y if such an
edge exists and 0 otherwise. If X is an internal node
of TT and it has one child, the labels of T T (X) are
identical to the label of its child. If X has two children
XI and X2, then a node of T T (X) is labeled with an
edge iff the corresponding node is labeled in TT(X1)
or TT(X2). Thus, building T T (X) takes time O(k +
m/k) in both cases. Note that updating T T (X) if the
structure of TT has changed takes time O(1ogn) given
(1) the edges incident to X if X is a level-0 cluster or
(2) i-tree of the children of X if X is not a level-0
cluster: First T T (X) is split and joined appropriately,
then the labels of the 0 (1) new leaves of T T (X) are
determined from (1) the edges incident to X or (2) the
i-trees of the children of X . Finally the labels of the
O(1ogn) new non-leaf nodes of T T (X) are computed
bottom-up in T T (X) .

After an update (a , b) operation the i-trees of all
clusters are rebuilt bottom-up. Since TT has depth
O(logn), this takes time O((k + m/k)logn). If the
update changes TT, then all O(m/k) i-trees are up-
dated, each in time O(1ogn). Thus the total time to
update the external data structure after an update
operation is O ((k + m/k) logn).

To answer a query note that the subtree of x in
T \ (2 , y) (the subtree of e2 and ea) is represented by
O(1ogn) subtrees of TT. We call the roots of these
subtrees the topology nodes representing (topology
nodes representing the subtree of e2 and e3).

Lemma 2.11 Let R I , . . . , R I be the topology nodes
representing x . There is an edge between the subtree
of x an T \ (2 , y) and the subtree of e2 and e3 a# there
is an edge at a node X that is an internal node in
TT(R,) for of a node Ri and represents the subtree of
e2 and e3 in TT(R,) .

Theorem 2.12 The external data structure can an-
swer a query in time O(log2n) and can be updated an
time O((k + m/k) log n).

2.2.2 The combined data structure

Description
The combined data structure answers Type2 and

Type3 queries using a data structure with fast non-
tree updates. Since in this case C has an internal
edge, the tree degree of C is 1 or 2.

We define a graph G(C) consisting of one vertex for
each vertex of C, one vertex for each edge incident to
C (called e-vertez), and all edges incident to vertices
of C with cost 0 such that an edge (a ,b) with a E
C and b # C is represented by an edge between a
and the e-vertex of (a,b). Since each cluster contains
O (k) edges, G (C) has size O(k) . Additionally, G(C)
contains artificial edges with cost 1 that are defined
using the following order, called Eulerian tour order
(ET-order):

We fix a tree degree-1 cluster S. Let s E S be the
endpoint of the tree edge incident to S. We start an
Eulerian tour of the spanning tree of H at S and create
a list L of dl clusters (with multiple occurrences) in
the order in which they are visited. We assign to each
cluster C up to 3 numbers n u m l (C) , numz(C) , and
num3(C) such that numi(C) = j iff the i th visit of
C is on position j of L. We also assign each vertex
x E C a number num(z) such that num(x) = i iff
x is the i th vertex visited by the following Eulerian
tour of the spanning tree of C: Let e be the tree edge
that is incident to a cluster C and that is used by the
Eulerian tour to visit C for the first time if C # S,
and let e be the tree edge incident to C if C = S.
The tour starts at e and it visits all vertices before it
crosses the other tree edges incident to C (if the tree
degree is > 1). The ET-order on the vertices of G is
the lexicographic combination (n u m l (C (x)) , num(z))
and is denoted by >ET. If x >ET y , then the first
visit of 2 occurs after the first visit to y in the above
Eulerian tour of T . The edges incident to C are in
ET-order if they are ordered in the ET-order of their
endpoints that are not in C (ambiguities are resolved
in an arbitrary but fixed way).

Let w be a vertex connected to C by a tree edge.
Let L(w) be the list of all edges incident to C and to
the subtree of w in H \ C. The e-vertices of all edges
in L(w) are connected in G(C) by a chain of artificial
edges such that el and e2 of L (w) are connected by
an artificial edge iff el is the immediate successors of
e2 in the ET-order.

Assuming the vertices are in ET-order, the follow-
ing lemmata show how to answer Type 2 or 3 queries.

L e m m a 2.13 Let (x , y) be an edge on T P (C) , let
(u , v) be a tree edge with U 6 C such that v , y E
T (u , x) , let G, be the subtree of U in T \ (u , v) and
let G,, be the subtree of (u ,v) and (x , y) .

I f s 6 G,, then let
a U’ be the smallest vertex in G, incident to C
a U” be the largest vertex in G, incident to C ,
a U’ be the largest vertex in G,, incident to C OT in

a U” be the smallest vertex in G,, incident to C

Ifs E G,, then let
a U’ be the largest vertex in G , incident to C such

that U’ S E T U ,

e U“ be the smallest vertex in G, incident to C such
that U” >ET U ,

e U’ be the smallest vertex in G,, incident to C or
in C ,

a U” be the largest vertex in G,, incident to C.
(It is possible that U“ and U” do not exist.) There

is an edge between (1) the subtree of x in C \ (x, y)
and the subtree of (u , v) and (x , y) or (2) between the
subtree of y in C\(x, y) and the subtree of U in T\(u, v)
or the subtree of x in T \ (x , y) i f (2 , y) is covered in

C such that v’ <ET U ,

such that U” > E T U.

{G(C) U (U‘, x)) \ {(U’, U ’) , (U’’, v”)).

L e m m a 2.14 Let (2, y) be an internal edge of C not
on T P (C) , let (u , v) be a tree edge with U 6 C such
that v , y E T (u , x) . Let u’,~’’,v~,v’’ be defined as in
Lemma 2.14.

There is an edge between (1) the subtree of x in
C \ (x , y) and the subtree of (u , v) and (2 , y) or (2)
between the subtree of y in C\ (2 , y) and the subtree of . . ~,

U i n T \ (u , v) i . f (x , y) is covered in {G(C)U(u ’ ,x) } \
{(u’,v’), (u”,v”)}.

Data s t ruc tu re
The data structure at each cluster C consists of 2

parts: (1) We keep a balanced search tree of all edges
incident to C in ET-order. (2) We keep the follow-
ing data structure for fast non-tree updates FAST(C):
We maintain the minimum spanning tree of G(C) in
a dynamic tree data structure [16] and keep for each
tree edge the coverage number, the number of non-
tree edges covering it. Every insertion or deletion
of an edge (a , b) increases or decreases the coverage
number of all edges on ~ (a , b) by one. Thus, it takes
time O(1ogn). Since the minimum spanning tree of

G(C) does not contain any artificial edges, insertions
or deletions of artificial edges in FAST(C) take only
time O(1ogn).
Updates

We describe how to update each of the 2 parts:
(1) If the ET-order inside a cluster C’ changes, we
delete all edges incident to C’ from all balanced search
trees of the other clusters and reinsert them in the
new order. Since O (k) edges are incident to C‘,
this takes time O(k1ogn). If the ET-order of H
changes, note that the change is structured as fol-
lows: Let 1 , 2 , . . . , p be the labels of the clusters be-
fore the change. Then there exist labels il < i2 and i 3

such that the new order is either 1 , 2 , . . . , il - 1, i 2 +
l , i 2 + 2 , . . . , i 3 , i l , i l + 1 , . . . , i 2 , i 3 + l , i 3 + 2 , . . . , p or
1 , 2 , . . . i 3 ,21 ,21 + l , . . . , i 2 , i 3 + 1 , i 3 + 2 , .. . ,il - l , i 2 +
1, i 2 + 2 , . . . , p . Thus, updating a balanced search tree
requires a constant number of splits and joins and
takes time O(1ogn).

(2) Whenever an edge incident to a cluster is in-
serted or deleted, we rebuild its FAST-data structure
from scratch in time O (m / k + k) . Since each edge is
incident to at most 2 clusters, a t most 2 FAST-data
structures have to be rebuilt. If the ET-order inside a
cluster C’ changes, we delete all artificial edges in-
cident to e-vertices of edges between C’ and C in
FAST(C). Then we reconnect the e-vertices with arti-
ficial edges in the new order. Updating all FAST-data
structures takes time O(k1ogn). If the ET-order of H
changes, then as shown in (2) a constant number of
artificial edges of FAST(C) have to be modified (and
the balanced search tree of C provides these edges).
Hence, updating FAST(C) takes time O(1og n) , up-
dating all FAST-data structures takes time O (k log n).
Thus, updating all combined data structures takes
time O ((k + m/k) logn).
Queries

To answer Type 2 and Type 3 queries we deter-
mine the vertex U‘, U”, U‘, and U” (as defined in
Lemma 2.13) in time O(1ogn) using the balanced
search tree of the edges incident to C, the num, la-
bels of the clusters, and the num label of the ver-
tices. Then we delete (u’,v’) and (u ” , ~ ”) from the
FAST-data structure of G(C), insert (x ,u’) with cost
1, and test the coverage of (x , y) . Afterwards we re-
store G(C). Since (U’, v’), (U”, v”) and (x, U’) are non-
tree edges of G(C), this takes O(1ogn) time.

Theorem 2.15 Each query in a combined data struc-
ture can be answered in time O(1ogn). After an update
in G it takes time O ((k + m/lc)logn) to update all
combined .data structures.

749

2.2.3 The internal data structure

If the query edges (z, y) and (U, U) lie in the same clus-
ter C with (x ,y) not on TP(C) and (u ,v) on T P (C) ,
we have to answer a Type 4 query which corresponds
to testing Conditions 3-5 of Lemma 2.10. Since (2, y)
is not on TP(C) , the tree degree of C is 2 and, thus,
s 6 C (see Section 2.2). A vertex z is cowered iff the
removal of z does not disconnect the graph.

Lemma 2.16 Condition 1 of Lemma 2.10 holds iff
the cluster C is not COWeTed an H.

We only test for Condition 3-5 if Condition 1 holds:
Thus, we maintain ambivalent information to test
Condition 3 and 4, and a lazy topology tree to test
Condition 5 only for uncovered clusters. To determine
a t update time all uncovered clusters we maintain a
dynamic biconnectivity data structure (3, 151. It is
updated in O(m/k) time per insertion or deletion.
Condition 3 and 4
The non-tree edges incident to c are in El”-ordeT if
they are ordered in the ET-order of their endpoint in
C (ambiguities are resolved in an arbitrary but fixed
way). Let the projection proj(e’) of a non-tree edge
e’ = (a, b) with a E C and b fZ C onto TP(C) be the
vertex on T P (C) which is closest to a. Let sub(e’) be
the subtree of a in C\proj(e’) and let other(e’) be the
set of all edges incident to C whose endpoint in C does
not lie in sub(e’). Since the degree of proj(e’) is 3, the
projection of an edge in other(e’) is not proj(e’).
Data structure

For each pair of clusters C and C’ and each tree
edge e incident to C we maintain ambivalent informa-
tion [7] in the form of 3 non-tree edges ambivi(C, C’, e)
for i = 1,2,3 (if they exist): Assuming that e
lies on .(C, C’) let ambivl (C, C’, e) (ambivz(C, C’, e))
be the edge e‘ between C and C’ that (1) cov-
ers the maximum number of edges on T P (C) and
that (2) is the first (last) edge in the ET’-order in
sub(e’). Let ambivs(C,C’,e) be one of the edges of
other(ambivl(C, C’, e)) that covers the largest num-
ber of edges on TP(C) , assuming again that e lies
on .(C,C’). I t is possible that ambiwZ(C,C’,e) =
ambivl (C, C’, e).

For each uncovered cluster C and each tree edge e
incident to C we maintain in addition up to 3 edges
mazi(C,e) for i = 1 , 2 , 3 (if they exist): The edge
mazl(C,e) (maxz(C,e)) is the non-tree edge e’ inci-
dent to C and covering e that (1) covers the maximum
number of edges on T P (C) and that (2) is the first
(last) edge in the ET’-order in sub(e’). I t is possible
that maxl(C, e) = maxz(C, e). Let maxs(C, e) be an

edge of other(mazl(C,e)j that (1) covers e and (2)
covers the largest number of edges on T P (C) of all
edges in other (max1 (C, e)) .
Updates

Since the edges ambivi(C, C’, e) depend only on the
spanning tree of C and the edges between C and C’,
an update changes the ambiv-values only for clusters
whose incident edges change or whose spanning tree
changes. There are only O(1) such clusters [6]. Com-
puting the ambiv-values of a cluster takes time O (k) .
Thus, all ambiw-values are updated in time O(k) .

Note (1) that given the numi-labels of the clus-
ter all maz;(C,.) edges can be computed from the
ambivi(C, ., .) edges in time proportional to the num-
ber of neighboring clusters of C. Note (2) that after an
update (a, b) operation the maxi-values only change
for clusters on .(a, b) . Note (3) that we only maintain
the maxi-values for clusters that are uncovered after
the operation. The number of neighboring clusters of
uncovered clusters on x(a,b) sums to O (m / k) , since
each cluster of H is incident to at most two of them.
Thus, updating all maxi values takes time O(m/k) .
Queries
The maxi valses are used to test Condition 3 and 4 in
time o(l0gn) by executing a binary search on T P (C)
as follows:

Lemma 2.17 Let x, y , U, U, w , w’, z , and z’ be de-
fined as in Lemma 2.10.

Condition 3 holds i f f the endpoint of maxl(C, e)
does not lie in the subtree of U in C \ (U, U).
Condition 4 holds iff the endpoints of ma21 (C, e’)
and maxz (C, e’) are contained in the subtree of x
in C \ (x,y) or in the subtree of U in C \ (u , v)
and i f the endpoint of ma23 (C, e’) is contained in
the subtree of U in C \ (u,v).

Condition 5
Let C be a level-0 cluster and w and w’ be the

vertices that are connected to C by tree edges. We
denote by edge(w) the set of edges incident to C whose
other endpoint lies in the subtree containing w in H \
C. Given a topology tree TT(C) of C let X be a node
of TT(C). We say X is w-sided if an edge of edge(w) is
incident to a vertex of X. A node X is double-sided if
it is w-sided and w’-sided. If (2, y) is a tree edge in C,
the subtree of z in C\ (z , y) is represented by O(1ogn)
subtrees of TT(C). The roots of these subtrees are the
topology nodes representing x in TT(C).

Lemma 2.18 Let x, y , U, v, w , w’, z , and z’ be de-
fined as in Lemma 2.10. Condition 5 does not hold iff
one of the topology nodes representing x in TT(C) is
w-sided.

750

Proof: If a topology node R representing x is
w-sided, there exists an edge e with one endpoint
belonging to R and with the other endpoint in
the subtree of w in T \ (w, 2). Since every vertex
that belongs to R lies in the subtree of x in C \
(2, y), Condition 5 does not hold.

If there is an edge e from the subtree of x in
C \ (x ,y) to the subtree of w in T \ (w, z) , then
let R be the topology node representing x that
contains the endpoint of e in C. Obviously R is
w-sided. I
Lemma 2.18 suggests a way t o test for Condition 5:

Test if one of the O(1ogn) topology nodes represent-
ing x is w-sided. In the following we present a data
structure that executes this test in time O(log2 n).
Data Structure

For each cluster C we keep a bit Cond 3&4 (see
below) and a lazy topology tree TT(C). At each node
X of TT(C) we keep (1) a list L(C, C’, X) for each
level-0 cluster C’ # C containing all edges between
the subgraph represented by X and C’; (2) a list
L (X) of all non-emtpy trees L(C, . ,X) ; (3) the number
n u m (X) of level-0 clusters whose vertices are incident
to a vertex belonging to X ; (4) the bits marked and
doublesided (see below). The two bits of (4) are up-
dated only for a dynamically changing set of nodes
of TT(C) . The number of edges stored in all lists
L(C, C’, .) is O(v(C, C’) logn), where v(C, C’) is the
number of edges between C and C’.

Lemma 2.19 If num(R) = 0 for a node R of TT(C) ,
t h e n R i s n o t w-sided.

Thus, we are left with testing if a node R with
num(R) > 0 is w-sided: Using the num, labels of
Section 2.2 we can determine in constant time if a
cluster C’ # C lies in the subtree of w or of w’ in
H \ C. If L(C, C’, X) is non-empty and C’ lies in the
subtree of G with G E {w, w’}, it follows that X is G-
sided. Thus, using L (X) we can determine in constant
time a vertex 6 such that X is G-sided. If we have
some more information about X , namely if we know
that X is not double-sided, then this test determines
in constant time if X is w-sided. Note that without
this information if it takes time O (n u m (X)) to deter-
mine if X is w-sided or not. Since it takes also time
O (n u m (X)) to determine if X is double-sided, it is too
expensive to determine for each node X in T T (C) if
it is double-sided. Thus, after each update we mark a
dynamically changing set of O(1ogn) nodes in TT(C)
and we determine for all marked nodes and their chil-
dren if they are double-sided. We keep at each node of

TT(C) two bits, called marked and doublesided such
that the following invariant is fulfilled: If C is n o t
cowered and ei ther X OT its parent marked, t h e n
d o u b l e s z d e d (X) is set t o 1 iff X is double-sided. We
discuss below which nodes are marked.

We call a node of TT(C) red if it contains a vertex
of T P (C) and a vertex not on T P (C) , and white oth-
erwise. We store at each node a bit indicating its color
when TT(C) is built. (This increases the time to build
TT(C) only by a constant factor.) If Lemma 2.10 ap-
plies to C, the edge (x,y) does not lie on T P (C) and,
thus, the root of TT(C) is red. The following lemma
shows that the double-sided, red nodes in C form two
paths in TT(C).

Lemma 2.20 L e t x, y, U, v, w, w’, z , and z’ be
defined as in L e m m a 2.10. If Condi t ion 3 and 4 of
L e m m a 2.10 hold, t h e n every double-sided, Ted node
contains e i ther (x,y) or (u,v).

Proof: Assume there exists a double-sided, red
node X that does not contain (x ,y) or (u,v).
Then the subtree represented by X either lies
completely (1) in the subtree of (x,y) and (u ,v)
or (2) in the subtree of U in C \ (u ,v) or (3) in
the subtree of x in C \ (x,y). Since Condition
3 and 4 hold and X is double-sided, the first
and second case are not possible. The third case
is not possible, since X is red and the subtree
of x in C \ (2, y) does not contain vertices from
TP(C). I
After each update we determine for ever uncovered

cluster C if the red, double-sided nodes from two paths
in TT(C). If not, we set the bit C o n d 3&4(C) to 1.
Otherwise, we set this bit to 0 and call the nodes with
lowest level on each of the paths X I and X2 such that
X1 contains (x, y). Note that the definition of X1 and
X2 does not depend on the query edges and can, thus,
be computed after each update.

The marked nodes are all ancestors and all children
of X I and X2 and some of the descendants of these
children such that the following invariant is main-
tained: A node X is marked ifl i t s parent is marked,
X is double-sided and the sibling of X is n o t double-
sided. Note that O(1ogn) nodes are marked, since at
most one child of each marked proper descendent of
X1 or X2 is marked. We first show a technical lemma.

Lemma 2.21 If a node X is double-sided and un-
marked and its parent is marked, then (1) ei ther the
parent in a n ancestor of X I OT X2 OT (2) the parent
is a proper descendant of X I or X2 and the sibling of
X is double-sided.

751

The highest unmarked ancestor of a node R in
T T (C) is denoted by HU(R). This is the lowest an-
cestor of R for which we know at query time if it is
double-sided or not.

Lemma 2.22 Let x , y , U, U, w, w', z, and z' be de-
fined as in Lemma 2.10 and let R be a topology node
representing x with num(R) > 0 . If Condition 3 and
4 of Lemma 2.10 hold, then the following is true: If
HU(R) is not w-sided, then R is not w-sided. If
HU(R) is w-sided, then there exists a topology node
R' representing x that is w-sided.

Proof: Let A = HU(R). If R is w-sided, then
A is w-sided, since A is an ancestor of R.

If A is w-sided, but not w'-sided, then all
edges incident to A, and, thus all edges incident
t o R belong to edge(w). Hence, R is w-sided.
We are left with the case that A is double-sided.
Again we distinguish two cases: (1) If A does not
contain x , then A contains only vertices of the
subtree of z in C\(x, y) . Since A is double-sided,
there exists a topology node R' representing x
that is w-sided. (2) If A contains x , then, by
Lemma 2.21, A and the parent of A are proper
descendants of XI, since A is unmarked. Since
the parent of A is double-sided and XI is the
lowest double-sided node that is red and con-
tains 2, it follows that the parent of A is white.
Together with the fact that A contains x, this
implies that the parent of A does not contain
any vertices on T P (C) , especially it does not
contain U. Lemma 2.21 shows that the sibling
s (A) of A is double-sided as well. Since s (A)
contains neither x nor U, all vertices of s (A) are
completely contained either (1) in the subtree
of x in C \ (2 , y) or (2) in the subtree of U in
C\ (U, U) or (3) in the subtree of (U, U) and (x , y)
of C . Since Condition 3 and 4 hold, case (2) and
(3) are not possible. Thus, all vertices of s (A)
are contained in the subtree of x in C \ (x , y) .
Since s(A) is double-sided, it follows that there
exists a topology node R' representing x that is
w-sided.

Lemmata 2.19, 2.18, and 2.22 imply the following
lemma.

Lemma 2.23 Let x , y, U, U, w, w', z, and z' be
defined as in Lemma 2.10. If Condition 3 and 4 of
Lemma 2.10 hold, then Condition 5 of Lemma 2.10
holds i f f for all topology nodes R representing x in
T T (C) with num(R) > 0 the node HU(R) is not w-
sided.

The topology tree TT(C) has depth O(1og n) which
implies that there are O(1ogn) topology nodes repre-
senting x . Finding the highest unmarked ancestor of
a topology node takes time O(1ogn). Thus, it takes
time O(log2 n) to find the highest unmarked ancestor
for all topology nodes that represent x . Since we know
at query time for each highest unmarked ancestor, if
it is double-sided, we can determine in constant time
if it is w-sided. Thus, Lemma 2.23 provides a test for
condition 5 in time O(log2 n).

Updates
After each update we rebuild the topology tree of

the 0 (1) clusters whose spanning tree has changed.
The list L(C, C', X) can be built in time linear in its
size if the lists L(C,C',.) of the children of X are
given. Thus, whenever TT(C) is rebuilt or an edge
incident to C is inserted, we can compute all lists
L(C,.,.), the lists L(X), and num(X) from scratch
in time O(k1ogn). Since only O(1) clusters are af-
fected, updating all trees TT(C) and labels (1) - (3)
takes time O ((k + m / k) logn).

To update the doublesided and marked bits after an
update (a, b) operation, note (1) that the doublesided
bits only change for clusters on n(a, b) and (2) that
only the doublesided and marked bits of uncovered
clusters have t o be updated. We describe below how
to update these bits in T T (C) and the Cond 3&4(C)
bit in time O(v(C) logn), where v(C) is the number of
neighboring clusters of C. Since the sum of v(C) for
all clusters C fulfilling (1) and (2) adds up to O (m / k) ,
the total time for updating all marked, doublesided,
and Cond 3&4 bits is O(m/klogn).

We describe first how to find X1 and X2. We set
a counter to 0 and start the following recursion using
the root of T T (C) as current node: We determine if
the children of the current node are double-sided. If
the current node has only one red, double-sided child,
we recurse on it. If it has two red, double-sided chil-
dren and the counter is 0, we set the counter to l
and recurse on both. Otherwise, we terminate. If a t
termination one of the two current nodes has two red,
double-sided children, we set Cond 3&4(C) to 0. Oth-
erwise, we set it to 1 and we call the two current nodes
XI and X2. Note that this requires to determine for
O(1ogn) nodes if they are double-sided. Each test
takes time O(v(C)).

Next we describe how to set the marked and
doublesided bits of the appropriate nodes of T T (C)
in O(v(C)logn) time. First we clear all marked bits
of T T (C) . Then we set the marked bit and compute
the doublesided bit for all ancestors of X1 and XZ and
the children of XI and X.L. Then for each child X

7 52

of X1 or X2 we execute the following recursive algo-
rithm starting with X as the current node Y: First we
set the marked bit of Y and determine if Y is double-
sided. If Y is not double-sided, set doubIesided(Y)
to 0 and stop. Otherwise, set Y’s doublesided bit to
1 and determine and set the doublesided bit for the
at most 2 children of Y. If one child of Y is double-
sided and the other child is not double-sided or does
not exist, we recurse on the double-sided child, oth-
erwise we quit. This algorithm evaluates O(1ogn)
nodes in time O(w(C)) each. This shows that the
doublesided and marked bits of C can be updated in
time O(w(C)logn).

Note that the space requirement of the presented
data structure is O(mlogn), since each cluster re-
quires O(k1ogn) space for the labels. However, the
space per cluster can be improved to O (k) as fol-
lows: Except for the root of T T (C) we store at X
instead of L(C,C’,X) a recipe T (C ,C’ ,X) that al-
lows to reconstruct L(C, C ’ , X) if L(C, C‘ ,p (X)) for
the parent p (X) of X is known. Since L(C,C’,p(X))
is created by concatenating the lists of the children
of p (X) , the recipe r (C ,C’ ,X) consists of 2 point-
ers into L(C,C’ ,p(X)) at the first and last element
of L(C,C’ ,X) if L(C,C’ ,X) # L(C,C’ ,p(X)) , and
is empty otherwise. The list L (X) contains all non-
empty recipes. When computing the bits for X in
T T (C) , we traverse T T (C) top-down and can recon-
struct L(C, C’, X) with an overhead of a constant fac-
tor since L(C, C’,p(X)) has been constructed before.
The lists a t the root of T T (C) require O (k) space.
The space needed at each other node is proportional
to the number of non-empty recipes at C. Since there
are O (k) non-empty recipes, the space per cluster is
O (k) and, hence, the total space requirement is O(m).

Theorem 2.24 The presented data structure tests
condition 3-5 in time O(log2n) and can be updated
in time O ((k + m/k) logn).

2.3 The cycle-equivalence of a tree edge
and a non-tree edge

The ambivalent data structure of [7] tests if a tree
edge is covered by at least one non-tree edge. We ex-
tend this data structure to test if a tree edge el is
covered by exactly one non-tree edge and, if so, which
non-tree edge is covering e l . This is equivalent to test-
ing the cycle-equivalence of e and a non-tree edge:

Lemma 2.25 [13] A tree edge el and a non-tree edge
e2 are cycle-equivalent iff e2 is the only non-tree edge
covering e l .

Our data structure consists of (1) a topology tree
TT of G augmented with recipes and pointers to
search trees P P and CP, (2) a labeled 2-dimensional
topology tree 2TT of G, and (3) for each edge that
does not lie on the tree path of its cluster only non-
tree edge covering it if such a non-tree edge exists.
Maintaining (3) using the static algorithm takes time
O (k) per update operation, since it has to be com-
puted for only O(1) clusters. Next we discuss (1) and

We extend the definition of a tree path T P (X) (Sec-
tion 2.1) to clusters X whose level is > 0: If X has
one child, T P (X) is the tree path of its child. If X has
two children, none of which has tree degree 3, T P (X)
is the concatenation of the tree path of the children of
X . Otherwise, T P (X) is empty.

A 2-dimensional topology tree maintains a label
l (X , X’) for two clusters X and X’ at the same level of
T T in time O(k + t (n) m / k) if Conditions (1) and (2)
hold: (1) All labels l (X, .> can be computed in time
O (k) if the level of X is 0. (2) The label l (X ,X’) can
be computed in time t(n) from the labels of all pairs
of children of X and X’ if the level of X is > 0.

Let e be a tree edge incident to X . Let
maz1 (X , XI, e) be the edge between X and X’ cov-
ering the most edges on T P (X) assuming that e E
A (X , X ’) . Assuming that e E .(X,X’) and that
maz1 (X , XI, e) does not exist, let maz2 (X , X ’ , e) be
the edge between X and X’ that covers the most edges
on T P (X) . In [7] it sufficed to maintain maz1. We
maintain both maz- labels and additional labels as
in [7] that are necessary to guarantee that both maz-
labels fulfill Conditions (1) and (2) with t (n) = O(1).
The same holds for the additional labebs. Thus, all
maz-labels can be maintained in time O(k + m/k) .

We keep for each node X of TT a pointers to 2
binary search trees P P (X) and C P (X) . The leaves
of P P (X) leaves are the edges on T P (X) in the or-
der of their occurrence on the tree path. Every node
of P P (X) contains two fields cower1 and cmer2. Let
e’ be an internal non-tree edge of e , let e’ and e‘’ be
the first and last edge on T P (X) covered by e and
let T I , ... ,r1 be the O(1ogn) nodes in P P (X) (1) that
are either ancestors of e’ or e’’ or children of these an-
cestors and (2) whose subtree contains only leaves on
the path between e’ and e’’. We say we cover P P (X)
b y e if for every node T ; we store e in cover1(ri) if it
is empty, or in cower2(r;) if cowerl(T;) is not empty,
but cowerz(r;) is empty. If neither cmer1(r;) nor
cower~(r i) are empty, e is not stored at ~ i . If X is
a level-0 cluster the cover-fields are set as follows: Ini-
tially, all cower fields of nodes of P P (X) are empty. If

(2).

753

an edge e on TP(X) is covered by at least two non-tree
edges, then the cover-fields of the corresponding leaf
in PP(X) store each a different non-tree edge covering
e. If e is covered by only one non-tree edge, a pointer
to it is stored in the cover1 field and the cover2 field is
empty. If e is not covered, both cover fields are emtpy.
The tree C P (X) and the recipe of X is empty.

Next we discuss the case that the level of X is
> 0. If X has only one child XI, P P (X) is iden-
tical to PP(X1), CP(X) and the recipe of X are
empty. If X has two children X1 and X2, none of
which has tree degree 3, then P P (X) is created by
(1) creating a new root node r that points to the
roots of PP(X1) and PP(X2) and (2) covering the re-
sulting tree by maxi(X1, X2, e) and m ~ ~ i (X 2 , XI, e)
for i = 1,2. We also keep at X a list of all modi-
fied cover fields, called the recipe of X. If both chil-
dren have tree degree l, then C P (X) is identical to
P P (X) , otherwise CP(X) is empty. If X has a child
X1 with tree degree 1 and a child X2 with tree degree
3, connected by a tree edge e, then P P (X) is empty.
Let mu21 be the edge of all edges mux1(Xl,Xi,e)
that covers the maximum number of edge on TP(X1)
for any cluster Xi # XI, and let max2 be the edge
of all edges {maxl(Xl,Xi,e),max2(Xl,Xi,e) with
X i # XI} \ {maxl} that covers the maximum number
of edge on TP(X1). The tree C P (X) is created from
PP(X1) by (1) creating a new root node T that points
to the root of PP(X1) and to a 1-node tree that rep-
resents e and (2) covering the resulting tree by ma21
and max2. We also keep at X a list of all modified
cover fields, called the recipe of X.

Assume a label of a node X of TT can be con-
structed (1) from the edges and nodes of X in time
to(n, k) if X is a level-0 cluster and (2) from the label
of the parent of X and the recipes in time O(t:(n, 5)).
Assume (3) that the label and the recipe can be built
from the labels of the children of X in time O(ti(n, k))
if X is a level-i cluster. Then the update algorithm for
TT in [6] maintains the labels of all clusters dynami-
cally in time O (C i ti(n, k) + t:(n, k)). The trees P P
and CP are labels that fulfill Condition (l) , (2), and

for i > 0, where ni is the number of level-i clusters
and t:(n,k) = O(1ogn). Thus, all trees PP and CP
can be maintained in time O(k1og n + log2 n).

At a node X we need 0 (1) space for pointers to the
root of P P (X) and of C P (X) and O(1ogn) space for
the recipe. The trees P P (X) and C P (X) need O(n)
total space since if P P (X) has size O(k) for a level-
0 cluster, and for each cluster whose level is > 0 we
allocate a constant amount of new space. Thus, the

(3) with to(n,k) = O(klOgn), t i (n ,k) = O(ni+logn)

whole data structure requires O(m + n) space.
If el does not lie on the tree path of its cluster, we

use data structure (3) to test el and e2. If it does, we
determine in time O(1ogn) the cluster X whose tree
CP contains e l , traverse the path from the root of
CP(X) to el and check whether e2 is the only edge
stored in a cover-field on any node along this path.
If yes, then el and e2 are cycle-equivalent, otherwise
they are not. Since the depth of TT is O(logn), the
depth of CP(X) is O(1ogn). Thus, a query can be
answered in time O(1ogn).

Theorem 2.26 We can test in time O(1ogn) whether
a tree edge and a non-tree edge are cycle-equivalent.
The data structure can be updated in time O(m/k +
(k + log n) log n).

3 Algorithms for planar graphs and
the lower bound

Dynamic connectivity and cycle-equivalence are
connected as follows:

Lemma 3.1 Two edges el = (x,y) and e2 = (u,v)
are cycle-equivalent iff after the removal of el and e2
either x and y are disconnected OT U and ZI- are discon-
nected.

This lemma provides the following dynamic al-
gorithm for cycle-equivalence: We maintain a dy-
namic connectivity data structure. To check the cycle-
equivalence of el and e2 we delete them from the graph
and test if x and y disconnected or U and v are dis-
connected. Then we restore the graph.

The best known dynamic connectivity algorithm
in plane (=planar embedded) graphs takes O(1ogn)
time per operation [2] solving the dynamic cycle-
equivalence problem in plane graphs in time O(1ogn)
time per operation. The best known dynamic con-
nectivity algorithm in planar graphs takes O(1ogn)
time per insertion or query and O(log2n) time per
deletion [5] implying a solution for the dynamic cycle-
equivalence problem in planar graphs in time O(1ogn)
per insertion and O(log2 n) per deletion.

We also show a lower bound of R(1og n/k(log log n+
logb)) on the amortized time per operation for the
fully dynamic cycle-equivalence problem in plane and
planar graphs where b indicates the wordsize in Yao’s
cell probe model [17]. (Note that this implies a bound
for general graphs.) The lower bound construction is
similar to [15]. We reduce the problem to the following
parity prefix sum problem (PPS problem) for which

754

a lower bound of R(logn/(loglogn + log b)) on the
amortized time per operation is shown in [8]:

Given an array A[1], . . . , A[n] of integers execute
Add(1) and Sum(1) operations, where an Add(1)
increases A[l] by 1 and a Sum(1) returns SZ :=

The-idea of the proof is as follows: Given an in-
stance of the PPS problem, we construct a graph con-
sisting of n + 1 vertices, labeled 0, . . . , n. Vertex 1 rep-
resents SI. Let SO := 0. We connect vertex i with ver-
tex j if j is the largest index smaller than i such that
Sj + Si is even. Thus, all vertices 1 with odd (even) St
are connected by an odd (even) chain. Additionally,
we insert an edge between the last vertex of the odd
chain and vertex 0. In this graph a Sum(1) query cor-
responds the testing the cycle-equivalence of the edges
(0 , l) and el, where el is the edge connecting vertex 1
to its predecessor on its chain. An Add(1) operation
corresponds to a constant number of edge insertions
and deletions. With additional care the bound can be
shown even in a 2-edge connected graph.

Theorem 3.2 Fully dynamic cycle-equivalence in a
plane 2-edge connected graph requires amortized time
R(logn/(loglogn + log b)) per operation in the cell
probe model with wordsize b.

(&i<l 4 4) mod 2.

Acknowledgements

I want to thank Keshav Pingali for bringing this
problem to my attention.

References

D. Alberts and M. Rauch Henzinger, Average Case
Analysis of Dynamic Graph Algorithms. Techni-
cal Report 1994, International Computer Science
Institute, Berkeley, CA.

D. Eppstein, G. F. Italiano, R. Tamassia,
R. E. Tarjan, J. Westbrook, M. Yung, “Mainte-
nance of a Minimum Spanning Forest in a Dynamic
Planar Graph” J. Algorithms, 13 (1992), 33-54.

D. Eppstein, Z. Galil, and G. F. Italiano “Im-
proved Sparsification” Tech. Report 93-20, De-
partment of Information and Computer Science,
University of California, Irvine, CA 92717.

D. Eppstein, Z. Galil, G. F. Italiano, A. Nis-
senzweig, “Sparsification - A technique for speed-
ing up dynamic graph algorithms” PTOC. 33nd An-
nual Symp. on Foundations of Computer Science,
1992, 6k69.

D. Eppstein, 2. Galil, G. F. Italiano, and
T. Spencer. “Separator based sparsification for dy-
namic planar graph algorithms”. Proc. 25th An-
nual Symp. on Theory of Computing, 1993, 208-
217.

G. N. Frederickson, “Data Structures for On-line
Updating of Minimum Spanning Trees” SIAM J .
Comput. 14 (1985), 781-798.

G. N. Frederickson, “Ambivalent data structures
for dynamic 2-edge-connectivity and k smallest
spanning trees” Proc. 32nd Annual IEEE Sympos.
on Foundation of Comput. Sci., 1991, 632-641.

M. L. Fredman, and M. E. Saks, “The Cell Probe
Complexity of Dynamic Data Structures”, Proc.
19th Annual Symp. on Theory of Computing, 1989,
345-354.

Z. Galil, G. F. Italiano, “Fully dynamic algorithms
for 3-edge connectivity” Manuscript.

[lo] J. Hershberger, M. Rauch, S. Suri, “Data struc-
tures for two-edge connectivity in Planar Graphs”
Theoret. Comput. Sci. 130 (1994), 13s161.

[ll] R. Gcpta and M. L. Soffa, “Region scheduling”
Proe. 2nd International Conference on Supereom-
puting, (1987), 141-148.

[12] R. Johnson and K. Pingali, “Dependence-based
program analysis” Proc. Sigplan’93 PLDI, 78-89.
Published as ACM SIGPLAN Notices 28(6).

[13] R. Johnson, D. Pearson, and K. Pingali, “Finding
Regions Fast: Single Entry Single Exit and Con-
trol Regions in Linear Time.” To appear in PTOC.
Sigplan’94 PLDI.

[14] H. Nagamochi and T. Ibaraki. Linear time algo-
rithms for finding a sparse k-connected spanning
subgraph of a k-connected graph. Algorithmica 7,
pages 583 - 596, 1992.

“Improved Data Structures for
Fully Dynamic Biconnectivity” to appear in Proc.
26 Annual Symp. on Theory of Computing, 1994.

[16] D. D. Sleator, R. E. Tarjan, “A Data Structure
for Dynamic Trees” J. Comput. System Sei. 24

[15] M. H. Rauch.

(1983), 362-381.

[17] A. Yao, “Should tables be sorted”, J . Assoc.
Comput. Mach., 28(3), 1981, 615-628.

755

