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Abstract
We prove that if strong pseudorandom number genera-

tors exist, then the class of languages that have polynomial-
sized circuits (P/poly) is not measurable within exponential
time, in terms of the resource-bounded measure theory of
Lutz. We prove our result by showing that if P/poly has mea-
sure zero in exponential time, then there is a natural proof
against P/poly, in the terminology of Razborov and Rudich
[25]. We also provide a partial converse of this result.

1 Introduction
The theory of resource-bounded measure, initiated by

Lutz [13], provides a useful framework that links many cen-
tral problems in complexity theory. Given a measure defined
on a large complexity class, such as EXP � DTIME � 2nO � 1 ���

,
and a subclass C such as P, NP, or PSPACE, one tries to de-
termine whether C has measure zero, has measure one, or
perhaps is not measurable at all.

For example, P has measure zero in EXP. In fact, for any
fixed c 	 0, DTIME � 2nc �

has measure zero in EXP. The class
of P-bi-immune sets in EXP has measure one [19]. Lutz
[13, 15] has advanced the hypothesis that NP does not have
measure zero, which implies NP 
� P. Indeed, the hypoth-
esis implies that NP has P-bi-immune sets, and that for ev-
ery c 	 0, there are languages in NP that require determin-
istic time more than 2nc

. Lutz and Mayordomo [17] showed
another plausible implication: there would be NP-complete
sets under Turing (Cook) reductions that are not complete
under many-one (Karp) reductions. In view of this, it is im-
portant to seek techniques for proving that certain subclasses
do not have measure zero, or are non-measurable. This pa-
per provides a new technique of this kind, using the theory
of pseudorandom generators (PSRGs).

The meaning of a class C having measure zero in EXP
is, roughly speaking, that there is a single exponential time
deterministic Turing Machine M that can “predict” every
language in C � EXP reasonably well. This M embodies a
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strong and quantitative form of diagonalization. A prime
motivation of the theory is that the notion of measure should
connect to quantitative notions of cryptographic hardness
and randomness and information content that are important
in other areas of complexity. Lutz and Mayordomo [16]
showed that, for any fixed c, the class of languages that “ap-
pear random” to all 2nc

time-bounded machines has mea-
sure one in EXP. Lutz [15] showed a measure-one class
in which every member is a pseudorandom source for BPP,
and Allender and Strauss [1] extended this for measures on
DTIME � 2nε �

, for every ε 	 0. Related work is [14, 18, 11,
12, 20, 31]. Our main theorem relates a measure question
directly to PSRGs and the class P/poly of languages having
polynomial-sized circuits:

Theorem 1 If strong PSRGs exist, then P/poly is not mea-
surable in EXP.

Here strong means that there exists some ε 	 0 such that the
PSRG is secure against 2nε

-sized circuits. There are PSRGs
based on the discrete logarithm problem that are widely be-
lieved to be strong, indeed with ε approaching 1  2.

We first prove that if strong PSRGs exist, then for any
fixed exponential time deterministic TM M, there is a large
collection of “pseudorandom” languages in P/poly that can-
not be predicted by M. For the non-measurability, we show
that if P/poly 
� EXP, as implied by the existence of strong
PSRGs, then P/poly cannot have measure one in EXP. Our
proof of this shows that NP and many other classes cannot
have measure one in EXP unless they equal EXP. This an-
swers a question left open by Lutz for NP in [15].

What is interesting about Theorem 1 is that ordinarily
P/poly is considered a “feasible” class, intuitively smaller
than a “hard” class like NP. What our result really brings
out is the quantitative role of nonuniformity. We treat this
issue and the question of security of PSRGs against uniform
adversaries in Section 4.

Razborov and Rudich [25] introduced the notion of “nat-
ural proofs,” and showed that if there is a proof that is
“P/poly natural against P/poly,” then strong PSRGs do not
exist. We prove Theorem 1 by showing that a machine M
witnessing measure-zero for P/poly � EXP yields such a nat-
ural proof, in fact one of exponentially greater size than what



suffices for their theorem. The second half of this paper takes
a closer look at the nature of statistical tests, and at the spe-
cific size and strength of natural proofs in the Razborov-
Rudich framework. We show a partial converse to theo-
rem 1: if there is a D-natural proof of sufficient density
and strength against a class C , then C has measure zero in
nonuniform-D.

We also prove unconditionally that nonuniformAC0 plus
parity does not have measure zero under either of the mea-
sures defined by Allender and Strauss [1]. Our results give
strong reasons to investigate further both the measure theory
and the natural-proofs theory, promising progress on impor-
tant problems in complexity.

2 Preliminaries

The notationand conventions we use are essentially stan-
dard. All languages and functions are assumed to be defined
over the finite alphabet Σ � �

0 � 1 � . The empty string is de-
noted by λ. We denote by Fn the set of all Boolean functions
in n variables. A Boolean function fn

�
Fn can be thought of

as a binary string of length 2n that represents the truth table
of fn. For readability we often write N for 2n . We identify
a language A with its characteristic sequence χA, and regard
the latter also as a member of the set

�
0 � 1 � ω of infinite bi-

nary strings. For all n � 0 we also identify A � n with the seg-
ment un of χA of length 2n that represents the membership or
nonmembership in A of all strings of length n, and likewise
identify A � n with u0u1 ����� un . Note that each un belongs to
Fn . Then the cylinder Cw � �

z � �
0 � 1 � ω : w � z � contains

A and all languages that agree with A on the membership of
strings up to the last one indexed by w, under the standard
ordering of Σ

�
.

Unless specified otherwise, all Boolean circuits are over
the basis

�	� ��
��� � . P/poly denotes the class of languages
that have polynomial-sized circuit families. QP stands for
DTIME � 2polylog n �

, which is often called quasipolynomial
time. QP/qpoly stands for the class of languages that have
quasipolynomial-sized circuit families. This is analogous to
P/poly but for quasipolynomial bounds. AC0 denotes the
class of languages that have polynomial size, constant depth
circuit families, and AC0 ��� �

denotes the class of languages
that have polynomial size, constant depth circuit families
over the basis

�	� ��
������� � , where � denotes parity. All log-
arithms in this paper are to the base 2.

A PSRG is formally a sequence
�
Gn � , where each Gn is a

function from
�
0 � 1 � n to

�
0 � 1 ����� n � , and ��� n � 	 n. Intuitively,

Gn “stretches” a sequence of n truly random bits into a longer
sequence of bits that appear random to resource-bounded ad-
versaries.

Definition 1 Given a PSRG G � �
Gn � and a circuit C with��� n � -many input gates, say that the bias achieved by C is the

quantity����� Pr
y ��� 0 � 1 ��� � n � � C � y � � 1

�! 
Pr

x ��� 0 � 1 � n
� C � Gn � x �"� � 1

�

�����$#
Similarly, we define the bias achieved at length n by a fixed
probabilistic Turing machine M in place of C. The hardness
of G at n, denoted by H � Gn � , is the largest integer S � n � such
that every ��� n � -input circuit C of size at most S � n � achieves
bias at most 1  S � n � . Then we say:

(a) G has hardness at least h � � � against nonuniform ad-
versaries if for all but finitely many n, H � Gn �%� h � n � .

(b) G is h � � � -hard against uniform adversaries if for ev-
ery h � n � -time bounded probabilistic TM, M, and all but
finitely many n, M achieves bias at most 1  h � n � on Gn .

A well-known “robustness” theorem (see [5, 9]) states
that so longas ��� n � � nO � 1 � , H � Gn � is invariantup to constant
factors. As Razborov and Rudich do, we work with PSRGs
that stretch n bits to 2n bits. We use “secure against” inter-
changeably with “hard against.”

2.1 Resource-bounded measure

The resource-bounded measure theory of Lutz [13, 15]
is developed along the lines of classical measure theory (see
[22, 6, 23]). Languages are regarded as points in the topolog-
ical space whose basic open sets are the cylindersCw , one for
each w � �

0 � 1 � �
, and complexity classes are point sets. The

general form of Lutz’s theory, expounded recently by May-
ordomo [20], defines conditions for a class C to be measur-
able by a function class ∆, and to have measure e, written
µ∆ � C � � e, where 0 & e & 1. Since all complexity classes we
discuss are closed under finite variations, and by a form of
the Kolmogorov zero-one law proved in [20] have measure
zero or one, we need only discuss conditions for classes to
have measure zero. References [13, 15, 20] show that these
measurability conditions can be defined in terms of martin-
gales of the kind studied earlier by Schnorr [28, 29, 30]. A
martingale is a function d from

�
0 � 1 � �

into the nonnegative
reals that satisfies the following “exact average law”: for all
w � �

0 � 1 � �
,

d � w � � d � w0 �(' d � w1 �
2

# (1)

Let ) stand for the nonnegative dyadic rationals; i.e., those
numbers of the form n  2r for integers n � r � 0.

Definition 2 (compare [13, 20]) Let ∆ be a complexity
class of functions. A class C of languages is ∆-measurable
and has ∆-measure zero, written µ∆ � C � � 0, if there is a
martingale d :

�
0 � 1 � �+* ) computable in ∆ that succeeds

on C , in the sense that C , S∞ � d �
where

S∞ � d � � �
A : lim

w - A
d � w � �.' ∞ � #



Put another way, the success class S∞ � d �
is the class of lan-

guages A that satisfy

��� K 	 0 � ��� N 	 0 ����� w � A � ���w ��� N � d � w �%� K
� # (2)

Intuitively, the martingale d is a “betting strategy” that starts
with a capital sum d � λ � 	 0 and makes infinite profit along
the characteristic strings of every A

�
S∞ � d �

. The purpose of
the theory is to analyze the complexity required for a mar-
tingale to succeed on every language in certain subclasses C
of a given class D. This provides a tool for analyzing the
internal structure of D.

If D is defined by a collection R of resource bounds
that is closed under squaring, then Lutz defines ∆ � D � to
be the class of martingales computable within the bound
r � logN � for some function r � N � � R . For any class C , Lutz
writes µ � C �D � � 0, read “C has measure zero within D,” if
µ∆ � D � � C � D � � 0. Two instances of particular importance
are:

D � E, ∆ � P,
D � EXP, ∆ � QP.

If µ � C �D � � 0, then C � D is intuitively “small” as a
subclass of D. The classical time-hierarchy theorems carry
over to measure; in particular, P and QP have measure zero
in E, and E itself, indeed DTIME � 2nc �

for any fixed c, has
measure zero in EXP. It is shown in [13, 15, 1] that classes
of measure zero behave very much like null-sets in classi-
cal measure theory. The complement (in D) of a measure-
zero subclass C has ∆ � D � measure 1 (this is a definition
in [13, 15] and a theorem in [20]). Finite unions, and also
“∆ � D � -bounded” countable unions, of measure-zero classes
have measure zero.

2.2 Natural Proofs

The technical concept at the heart of the paper by
Razborov and Rudich [25] is the following. Define a combi-
natorial property to be a sequence Π � � Πn

� ∞
n � 0, where each

Πn is a subset of the set Fn of all n-variable Boolean func-
tions. A language A is drawn from Π if for all n, the Boolean
function given by A � n belongs to Πn . The property Π diag-
onalizes over a class C of languages, or “is useful against”
C 1 , if no language drawn from Π belongs to C . When C is
closed under finite variations, this is equivalent to diagonal-
izing i.o. against C :

��� B
� C ����� ∞n � B � n � Πn

# (3)

We remark that all of the natural properties constructed in
[25] satisfy the stronger condition

��� B
� C ����� ∞n � B � n � Πn � (4)

1Since C may be an uncountableclass like P/poly, this is not necessarily
a “diagonalization” in the classical sense—hence the term “useful” in [25].
But we prefer to retain it.

which was adopted in [26]. We call this diagonalizing a.e.
against C .

The complexity of Π is the complexity of the decision
problem: given a Boolean function fn

� Fn, is fn
� Πn? Fi-

nally, define the density of Πn by ρ � Πn � ��� Πn �2N . The prop-
erty is large if there exists a polynomial p such that for all
but finitely many n,

ρ � Πn � � 1
p � N � # (5)

Put another way, the Boolean functions in Πn have non-
negligible density in the space of all Boolean functions.

Definition 3 (cf. [25]) Let C and D be complexity classes
of languages. A combinatorial property Π is D-natural
against C if Π is large, belongs to D, and diagonalizes over
C .

Razborov and Rudich show that several important sepa-
ration results in complexity theory use techniques that con-
struct natural properties. Their main theorem points out lim-
itations of such techniques. The following improvement
of their theorem from polynomial to quasipolynomial size
bounds for D was noted by Razborov [24]:

Theorem 2 If there exists a combinatorial property that is
QP/qpoly-natural against P/poly, then PSRGs of exponen-
tial hardness against nonuniform adversaries do not exist.

(Remarks: In their conference version [25], Razborov and
Rudich used the “i.o.” definition of natural proof, which suf-
fices for Theorem 2. All of their examples, however, satisfy
the stronger “a.e.” definition, and they have adopted it in the
later version [26]. In Appendix 1, we sketch the additions
needed for Theorem 2 that do not appear in [24, 25, 26], and
give details of the proof in [25] for later reference in the proof
of Theorem 17.)

By a proof analogous to that of Theorem 2, and exploit-
ing the fact that there is a pseudorandom generator, based on
the parity function, that is of exponential hardness against
AC0 [21], Razborov and Rudich show:

Theorem 3 There does not exist a combinatorial property
that is qAC0-natural against AC0 � � �

, where qAC0 denotes
the class of languages accepted by a quasipolynomial size
circuit family of constant depth.

3 Main Results
To prove our main theorem, we show that if

µ � P/poly � EXP � � 0, then one can build a natural prop-
erty that diagonalizes over P/poly. Our first lemma follows
by an elementary counting argument, using the fact that
∑v ��� 0 � 1 � � d � uv � � 2� � d � u � .



Lemma 4 Let d be a martingale. For any string u and any� ��� , b
���

,���� � v
� �

0 � 1 � � : d � uv �%&
�

1 ' 1
b � d � u � �

���� � 2�
�

1
b ' 1 � #

Our key lemma has the idea that given a martingale d
that succeeds on P/poly, we can build a combinatorial prop-
erty that captures those Boolean functions on

�
0 � 1 � n along

which d makes too little income to succeed. This property
then diagonalizes i.o. against the success class of the martin-
gale, which contains P/poly. Since Πn � 1 ' 1  n2 � converges,
we can say that a return on capital of 1  n2, let alone losing
money along a branch, is “too little income” for d. Lemma 4
will guarantee that the density of these poor branches is at
least 1  n2 � 1 (� log2 N � , a notably greater density than that
called “large” in Equation (5).

Lemma 5 If a QP martingale d succeeds on P/poly � EXP
then for every polynomial q, there exist infinitely many n and
circuits Ci of size at most q � i � , for 0 & i � n, such that for all
circuits Cn of size at most q � n � ,

d � u0
# #�# un � 	

�
1 ' 1

n2 � d � u0
#�#�# un � 1 � �

where ui is the 2i-bit binary “characteristic string” that in-
dicates the membership in L � Ci � of

�
0 � 1 � i.

Proof. Suppose not. Then there is a polynomial q and con-
stant n0

��� such that for all n � n0, for every sequence
of circuits Ci of size at most q � i � , for 0 & i � n, there ex-
ists a circuit Cn of size at most q � n � such that d � u0

#�# # un � &	
1 ' 1

n2 
 d � u0
#�# # un � 1 � , where the ui’s have the same mean-

ing as in the statement of the lemma.
We will build a language L as follows: for strings of

length less than n0 , membership in L will be an arbitrary
but fixed sequence. Let α � d � u0

#�#�# un0 � 1 � . Clearly α �
∞. For n � n0, we define L � n inductively. Let u0 � #�#�# � un � 1
be the result of the recursively applying the construction to
obtain L � n; that is, ui � L � i. By assumption, there exists
a circuit Cn of size at most q � n � such that d � u0

#�#�# un � &	
1 ' 1

n2 
 d � u0
#�# # un � 1 � . Set un � L � C � � � n, where C

�
is the

lexicographically first Cn that satisfies this inequality (under
some fixed encoding of circuits of size at most q � n � ).

Clearly L � P/poly, since it can be accepted by the cir-
cuit family � Cn

� ∞
n � 0. That L

� EXP is immediate from the fact
that finding the lexicographically first Cn takes time at most
2q � n �� p � n � , where the running time to compute the martingale
d determines p � n � . Finally,

lim
n � ∞

d � L � n � & α∏ � 1 ' 1  n2 ��� ∞ �
so d does not succeed on L, a contradiction.

The remaining technical problem is to weave together
the constructions in Lemma 5 for all polynomial bounds q.
We do not know of a uniform way to choose the circuits
C0 � C1 � # #�# � Cn � 1 promised by Lemma 5 over all q and the
infinitely-many n for each q, and this is where nonuniformity
enters into our results.

Lemma 6 If µ � P/poly �EXP � � 0, then there is a QP/poly-
natural property against P/poly.

Proof. For each k, let Tk be the infinite set of numbers n
promised by Lemma 5 for the bound q � n � � nk. Set T : ��

kTk. For all n
�

T , take the largest number k & n such
that n

�
Tk , take the lexicographically first C0 � # #�# � Cn � 1 that

works in Lemma 5, and define Un � 1 to be the concatenation
of the corresponding u0 � #�# # � un � 1. For n � T , make some ar-
bitrary choice such as Un � 1 � 02n � 1. Finally, for all n define

Πn : ��� fn : d � Un � 1 fn � &
�

1 ' 1
n2 � d � Un � 1 ��� #

Now, by Lemma 4, the property Π � �
Πn � is large;

in fact, it has density 1  poly � n � , not just 1  poly � 2n � . By
the computability of the martingale d, Πn can be recog-
nized in quasi-polynomial time in 2n, given the Un � 1’s as ad-
vice. Equivalently, there is a family of circuits of size quasi-
polynomial in 2n that recognizes Πn . Let L be an arbitrary
language in P/poly, and let nk be a bound on the size of a fam-
ily of circuits to recognize L. Clearly, for all n � Tk, L � n 
�
Πn. Therefore, property Π diagonalizes i.o. over P/poly.

Theorem 7 If µ � P/poly �EXP � � 0, then for every family of
pseudorandom generators G � �

Gk :
�
0 � 1 � k * �

0 � 1 � 2k �
computable in P/poly, for every ε 	 0, for sufficiently large
values of k, H � Gk �%& 2kε

.

This follows from the above three lemmas and Theorem 2.
From the known equivalence of strong PSRGs and strong
one-way functions (see [10, 8, 9, 25]), we also have:

Corollary 8 If for some γ 	 0 there exists a one-way func-
tion of security 2nγ

, then P/poly does not have measure zero
in EXP.

3.1 Non-measurability of P/poly

We strengthen the conclusion of our main result from
“not measure zero” to “not measurable at all,” after observ-
ing that Lutz’s measures are invariant under “affine transla-
tions.”

Lemma 9 Let C be a proper subclass of EXP that is closed
under symmetric difference. Then C does not have measure
one in EXP.



Proof. Suppose C does have measure one in EXP, that is,
EXP � C has measure zero in EXP. Let d be a martingale
that succeeds on EXP � C .

Let A � EXP � C . Define CA � �
L � A � L � C � . We claim

that if EXP � C has measure zero, then so does CA. To see
this, first note that CA , EXP � C since C and EXP are closed
under symmetric difference. Now define a QP martingale d �
that, on input w, outputs d � w � v � , where v is the prefix of
χA of length �w � , and where � denotes bitwise exclusive-or.
Since A � EXP, it is easy for d � to compute χA. Finally ob-
serve that for every L � C , L � A belongs to CA, so d succeeds
on L � A, and thus d � succeeds on L.

Since the existence of a secure PSRG implies EXP 
, P/poly,
Lemma 9 implies:

Theorem 10 If there exists a PSRG of hardness 2nγ
, for

some constant γ 	 0, then P/poly is not measurable in EXP.

Proposition 11 Let C be a proper subclass of EXP that is
closed under finite union and intersection. Then C does not
have measure one in EXP.

Proof. If C has measure one in EXP, then so does co-C , and
hence C � co-C . If C is closed under finite union and inter-
section, so is co-C . Therefore, C � co-C is closed under sym-
metric difference, and Lemma 9 does the rest.

Corollary 12 Let C denote any of NP, coNP, Σp
k , Πp

k ,
P/poly, nonuniform NC, BPP, PP, or PSPACE. Then
µ � C � EXP � � 1 � � C � EXP � � C � co-C � EXP. In
particular, NP has measure one in EXP iff NP � EXP.

3.2 Measure of AC0 �����
Allender and Strauss [1] have defined measures on the

class D � P, imposing a restriction on the corresponding
martingale class that becomes vacuous for D � E or D �
EXP, and that can be described as follows: Rather than give
the Turing machines M computing martingale values d � w �
the string w as input, give them N � �w � in binary notation
on their input tape, and let them query individual bits of w.
(Then M is formally the same as the machines used to define
the PCP classes in [4, 3].) Measure time bounds in terms of
n �
	 log2 N � � �N � rather than N. Then the function d � � � be-
longs to Γ � P � as defined in [1] if M runs in time nO � 1 � , and
if every node N in the directed “dependency graph,” defined
to have an edge � m � N � if M on input N queries bit m of some
w, has nO � 1 � predecessors. They write µ � C � P � � 0 if there is
a Γ � P � martingale that succeeds on C � P.

Allender and Strauss note that their measure is robust un-
der either one of the following relaxations, but that relaxing
both yields a different measure: allowing d � w �%� � d � w0 �('
d � w1 �"�  2 in place of (1), and using the “limsup” condition

of success in place of (2). We write µ2 � C � P � � 0 to signify
that C is one of the strictly-larger family of null classes in
their second measure. They show that the class of sparse sets
in P is null in the latter but not the former, and in particular
that (P-uniform) AC0 is not Γ � P � -measurable. But whether
µ2 � AC0 � P � � 0 is open. We show:

Theorem 13 Nonuniform AC0 ��� �
does not have µ2 mea-

sure zero.

Proof Sketch. The main idea is that owing to the
dependency-set restriction in defining Γ2 � P � , the hy-
pothesis µ2 � AC0 ��� � � � 0 yields a qAC0-natural property
against AC0 ��� �

. To handle the fact that the notion of µ2
measure is defined using limsup rather than the limit, we
use the following stronger versions of Lemmas 4 and 5.
Theorem 3 then yields a contradiction.

Lemma 14 Let d be a martingale. For any string u and any� ��� , b ��� , the quantity���� � v � �
0 � 1 � � : ��� w � v � d � uw � &

�
1 ' 1

b � d � u � �
����

is at least 2 � (� b ' 1 � .
Lemma 15 If a Γ � P � martingale d succeeds on AC0 ��� �

,
then for every polynomial q and constant h, there exist in-
finitely many n and

�	� �$
 �$ � � � -circuits Ci of size at most
q � i � and depth at most h, for 0 & i � n, such that for all�	� �$
 �$ � � � -circuits Cn of size at most q � n � and depth at
most h,

� � u � un �
�
d � u0

#�#�# u � 	
�

1 ' 1
n2 � d � u0

#�#�# un � 1 �� �
where ui is the 2i-bit binary “characteristic string” that in-
dicates the membership in L � Ci � of

�
0 � 1 � i.

We have not been able to strengthen this theorem to read:
AC0 ��� �

does not have measure zero in P, that is, no Γ2 � P �
martingale succeeds on AC0 ��� � � P. What we have is that
no Γ2 � P � martingale can succeed on all of (nonuniform)
AC0 ��� �

. Another open question concerning the measure of
AC0 ��� �

is whether the converse to our main theorem, ob-
tained below in Theorem 18 carries over to this case. The
obstacle is that AC0 ��� �

is known to be incapable of comput-
ing “majority,” which is important in converting the random-
ized betting strategy into a nonuniform martingale.

4 The Uniform Case and Honest Martingales
The next interesting question is whether Theorem 7 can

be made to work under the hypothesis that for some γ 	
0 there is a one-way function of security 2nγ

against uni-
form adversaries. The main problem is that the natural



property we construct in Proposition 6 is nonuniform, and
this nonuniformity carries over to the statistical test con-
structed in the theorem of Razborov and Rudich, drawing
on [7]. That is, the property belongs to QP/poly. We have
not been able to obtain a QP-natural property under the hy-
pothesis µ � P/poly � EXP � � 0—the sticking point is that we
have not been able to enforce any “consistency” among the
characteristic prefixes u0 � #�#�# � un � 1 obtained in applications
of Lemma 5 to build the Πk that are interleaved in the proof
of Lemma 6.

Interest in this problem led us to define the following
“prefix-invariance” restriction on martingales, which also
comes up naturally in the next section. We begin by formal-
izing the associated concept of a betting strategy.

Definition 4 A betting strategy is any function b � � � from�
0 � 1 � �

to the closed interval �  1 #�#�# ' 1
�
. The martingale

db derived from b is defined by db � λ � � 1, and for all w
�

�
0 � 1 � �

, db � w1 � � db � w ��� 1 ' b � w � � , db � w0 � � db � w ��� 1  
b � w �"� .

For all w, let xw stand for the string indexed by the bit c in
wc, and let nw be the length of xw; i.e., nw ��� log2 � �w � ' 1 ��� .
Intuitively, b � w � is the signed proportion of current capital
bet on the event that xw belongs to a given language L. A
negative value of b � w � indicates a bet that xw � L. Given a
martingale d, one can regard the function bd � w � : � � d � w1 �  
d � w � �  d � w � as the associated betting strategy. Henceforth
we take “betting strategy” as the fundamental concept, and
“martingale” as the derived one.

Definition 5 A martingale d :
�
0 � 1 � � * � is honest if it is

derived from a betting strategy b :
�
0 � 1 � � * �

, such that
for all w

� �
0 � 1 � �

, the computation of b � w � depends only on
those parts of w that index strings of length nw.

With a few exceptions, most of the martingales implicitly
constructed by Lutz et al. are honest, and this condition de-
serves further investigation. For honest martingales we note
the following stronger form of Lemma 5:

Lemma 16 If an honest QP martingale d succeeds on
P/poly � EXP then for every polynomial q, there exist in-
finitely many n such that for all circuits Cn of size at most
q � n � , and all characteristic prefix strings w � �

0 � 1 � 2n � 1 ,

d � wun � � 	
1 ' 1

n2 
 d � w � � where un is the binary character-

istic string of length 2n that represents the strings accepted
and rejected by Cn.

Theorem 17 If a honest QP-martingale succeeds on
P/poly � EXP, then for all γ 	 0, pseudorandom generators
(and one-way functions) of security 2kγ

against uniform
adversaries do not exist.

Proof Sketch. Given a honest QP-computable martingale d,
for all n, let wn be some characteristic prefix of length N

 
1

such that d � wn � 	 0. For all n, define

Πn � � u � �
0 � 1 � N : d � wnu �%&

�
1 ' 1

n2 � d � wn � � #
The corresponding property Π � �

Πn � is large and be-
longs to QP. By Lemma 16, and with the step of fixing
“u0 � #�#�# � un � 1” in the proof of Lemma 6 now rendered unnec-
essary, it follows that Π diagonalizes i.o. over P/poly. From
the details of the proof due to Razborov and Rudich [25],
which we have supplied in Appendix 1, it can be verified
that the statistical test constructed from Π by Razborov and
Rudich is computable by a probabilistic Turing machine in
time less than 2kγ

.

Theorem 17 strengthens Theorem 7 as well as the main
theorem of Razborov and Rudich: if there is a uniform P-
natural or even QP-natural proof against P/poly � EXP, not
against all of P/poly, then there are no PSRGs of hardness
2nγ

against uniform adversaries. This leads to a sensitive
and interesting point about the interplay between uniformity
and nonuniformity. A QP/qpoly martingale is a martingale
computed by circuits of quasipolynomial size; we also con-
sider nonuniform martingales in the next section. The QP
and QP/qpoly bounds, and the security bound, are tacit be-
low:

(1) A nonuniform martingale that succeeds on P/poly
yields a nonuniform natural proof against P/poly.

(2) A uniform martingale that succeeds on P/poly � EXP
also yields a nonuniform natural proof against P/poly.

(3) An honest uniform martingale that succeeds on
P/poly � EXP yields a uniform natural proof against
P/poly.

(4) A uniform natural proof against P/poly � EXP suffices
to disprove the existence of PSRGs secure against uni-
form adversaries.

(5) A nonuniform natural proof against P/poly � EXP does
nothing, because one exists—even diagonalizing a.e.
against all r.e. sets. Given an enumeration � Mi

�
of TMs,

define for all n,

Πn � �
w � Fn : ��� i & n � w 
� L � Mi � � n �(�

Then Π � P/poly because for strings of length n, i.e.
for w of length N � 2n, we can “hard-wire” the n-many
characteristic sequences of how machines Q1 � #�#�# � Qn

behave at length n. Also each Πn has density 1
 

n  2N ,
which is huge.



The last point indicates that much care is needed when
using the natural proofs theory to talk about separations
from uniform classes, whereas the measure theory is already
tailor-made for uniformity. We ask, however, whether the
theories are equivalent in the nonuniform case; i.e., whether
every natural proof Π yields a (“randomized” or otherwise
nonuniform) martingale that covers the class that Π diago-
nalizes against.

5 Are martingales and natural properties
equivalent?

Say a class D is nice if it is closed under parallel eval-
uation of polynomially many functions in D, under finite
composition, and under the operation of finding “majority.”
Clearly P/poly is a nice circuit class. Recall n � logN, and
that density 1  2O � n � equals “large” in [25].

Theorem 18 Let D be a nice nonuniform class, and let C be
any class of languages. Then:

(a) If there is a natural property Π � D of density 1  n that
diagonalizes a.e. against C , then there is a martingale
computable in D that succeeds on C .

(b) If there is a natural property Π � D of density � 1  
1  n1 � ε � that diagonalizes i.o. against C , then there is
a D-martingale that succeeds on C .

(c) If D is uniform, then the martingale is computed by a
“randomized” D-machine with negligible bounded er-
ror.

Proof Sketch. Suppose we have a D-natural property Π that
diagonalizes a.e. over C , and let A � �

An � denote the al-
gorithm (family of circuits) that decides Π. For every n,
consider the full binary tree Tn of depth N � 2n that has 2N

leaves in one-to-one correspondence with the members of
Fn . Let ϒn � Fn � Πn, and when n is fixed or understood, let
σ ��� ϒn �  2N denote the density of ϒn.

For each n, the property Πn , Fn identifies a large sub-
set of the leaves that are “avoided” by languages in C . By
the a.e. diagonalization condition, this means that for every
L � C , and all but finitely many n, L goes through a branch
in ϒn at length n. This is the only property of C that is used
in the proof; the martingale works only with the informa-
tion about Πn versus ϒn. Given unit capital at the root of Tn ,
the martingale we construct will adopt the following simple
strategy: try to make profit along the paths to all leaves in ϒn ,
avoiding the leaves in Πn. By the restriction on information,
we allow that there may be no way for the martingale to dis-
tinguish among the leaves in ϒn, so the best it can achieve is
to amass a capital of 2N �� ϒn � � 1  σ at every leaf in ϒn.

Suppose the martingale is at an interior node v of Tn . Let
V0 � �

w � Fn � w � v0 � and V1 � �
w � Fn � w � v1 � denote

the set of leaves in the subtrees v0 and v1, respectively. Let

p0 � v � ��� V0 � ϒ � �� V0 � , p1 � v � ��� V1 � ϒ � �� V1 � . If the mar-
tingale could calculate p0 � v � and p1 � v � exactly, then it could

set d � v0 � � 2d � v � 	 p0
p0 � p1 
 and d � v1 � � 2d � v � 	 p1

p0 � p1 
 .

This would ensure that each leaf in ϒ ends up with a capi-
tal of 1  σ (as per the “density systems” idea of Lutz [13]).

The problem is that a martingale that runs in time
poly � N � cannot compute the membership in ϒn of all the
2N leaves. However, by taking polynomially many random
samples at each interior node, a randomized machine M can
(with high probability) estimate the values p0 � v � and p1 � v �
to a high degree of accuracy. Then M can use these estimates
in lieu of the actual values, and still obey the condition (1)
that defines a martingale. This strategy is continued so long
as the subtree below v has more than N2 nodes; when the sub-
tree has atmost N2 nodes, an exhaustive examination of all
leaves is done and most of the capital is diverted towards the
leaves in ϒn, leaving a tiny portion for the leaves in Πn . This
tiny amount is donated to ensure that leaves z

� Πn do not
go to zero, so that the martingale may eventually succeed on
languages L � C with z � χL. To simplify the description of
M and the calculations below, we assume that if M discovers
that small subtree with N2 nodes has no leaves that belongs
to ϒn , it chooses some leaf arbitrarily and directs profits to-
ward it. This “wastage” does not matter much to the profits
on leaves that actually do belong to ϒn .

Let q0 � v � and q1 � v � denote, respectively, the estimates
of p0 � v � and p1 � v � that are obtained by sampling. Via stan-
dard Chernoff-bound methods, one can show that upon tak-
ing poly � N � -many samples (for a suitably large polynomial),
with probability 1

 
exp �  N � , the estimates are within an

additive term of δ � 1  poly � N � of the true values. The
martingale will then adopt the policy that overestimation
(by upto δ) is harmless, but underestimation is dangerous.
More precisely, the martingale will pretend that q0 � v � and
q1 � v � underestimate p0 � v � and p1 � v � , and will therefore use
q0 � v �!' δ and q1 � v � ' δ as safer approximations to the actual
values. It follows that

d � v0 �
d � v � � 2

q0 � v �(' δ� q0 � v �(' δ � ' � q1 � v �(' δ � �
d � v1 �
d � v � � 2

q1 � v �(' δ� q0 � v �(' δ � ' � q1 � v �(' δ � �
and that d � v0 �(' d � v1 � � 2d � v � .

Let m � 	 2N  N2 � , let τ1 � τ2 � # #�# � τm denote the subtrees
of Tn at height 2 logN that contain N2 leaves each. For
each i, let ui denote the root of τi, and let pi denote the
probability � leaves � τi � � ϒ �  N2. Let ρi denote the den-
sity � leaves � τi � � ϒ � �� ϒ � ; it is easy to see that ρi �

pi
p1 � p2 ��� � � � pm

. The total value of d � � � at height 2 logN is ex-

actly 2N � 2log N � m, and the strategy works if for each i,
d � ui � � Ω � ρim � . We show:

Claim. For every i, d � ui �%� 0 # 99ρim whp.



For any node u, let π � u � denote the parent of u. Wlog. let
i � 1, and focus on the first subtree τ1 with N2 leaves. Re-
call that by the simplifying assumption made above, for all
i, pi � 1  N2. The worst case for τ1 is the following: at ev-
ery ancestor v of τ1 , the subtree of v containing τ1 had an
underestimated probability, and the other subtree of v had
an overestimated probability. To wit: at the first level, p1
is underestimated to be p1

 δ, and p2 is overestimated to
be p2 ' δ; at the second level, 1

2 � p1 ' p2 � is underestimated
to be 1

2 � p1 ' p2 �  δ, and 1
2 � p3 ' p4 � is overestimated to be

1
2 � p3 ' p4 �(' δ, and so on. When this happens,

d � u1 � � p1
 δ ' δ� p1

 δ ' δ �(' � p2 ' δ ' δ � � 2d � π � u1 �"�
� 2

p1

p1 ' p2 ' 2δ � d � π � u1 �"�
Similarly,

d � π � u1 �"� � 2
p1 ' p2

p1 ' p2 ' p3 ' p4 ' 4δ � d � π � π � u1 �"� �
Continuing in this fashion logm times, we have

d � u1 �%� m
logm

∏��� 1

∑2 ��� 1

i � 1 pi	
∑2�

i � 1 pi 
 ' 2 � δ
Multiplying and dividing the above by � p1 ' #�#�# ' pm � , and
regrouping the terms,

d � u1 � � m
p1

p1 ' #�#�# ' pm

log m

∏��� 1

∑2 �
i � 1 pi	

∑2 �
i � 1 pi 
 ' 2 � δ

� mρ1

logm

∏�$� 1

��
1
 2 � δ	

∑2 �
i � 1 pi 
 ' 2� δ

��

Since pi � 1  N2 � p for all i,

d � u1 � � mρ1

log m

∏�$� 1
1
 2 � δ

2 � p ' 2 � δ
� mρ1

�
1
 δ

p ' δ � logm

� mρ1

�
1
 1

N2 � N

setting δ � 1  N4

� mρ1e � 1 � N

� 0 # 99mρ1 for N � 100 # �
By standard arguments about converting high-

probability algorithms into nonuniform algorithms, this can
be shown to give a D martingale that succeeds on C .

If the only information used by the martingale is the fact
that for every L in C , L � n � �

0 � 1 � N � Πn (i.o./a.e.), then the
factor of 1  σ � 1  � 1  ρ � Πn �"� is the best possible in stage
n. If Π is a.e. diagonalizing, then a density of Ω � 1  n � �
Ω � 1  logN � for Πn gives a factor of Ω � 1 ' 1  n � in stage n,
which suffices for the martingale to succeed on C .

If Π is merely i.o. diagonalizing, then the above factor
seems insufficient. By a modification of the Borel-Cantelli
lemma as applied to martingales [13] (see also [27]), it can
be shown that if ∑n � 1  ρ � Πn � � converges, then a successful
martingale of equivalent nonuniform complexity can be con-
structed. For example, an i.o.-natural property Π of density
1
 1

n1 � ε for some ε 	 0 against C would give a nonuniform
martingale that succeeds on C .

This partial converse brings out the importance of the
actual density of the natural proof, and whether the diago-
nalization is i.o. or a.e. These are somewhat submerged in
[25, 26], but we note that all six of their examples diagonal-
ize a.e., and the first four have density at least constant or
1
 

o � 1 � . The natural proof involved in the striking formal
independence result of Razborov [24] has density at least
1/2. Hence there are reasons to investigate the effect of dif-
ferent densities.

A stronger converse question is whether the non-
existence of strong PSRGs implies that P/poly does have
measure zero in EXP. From the non-existence it follows
that given any generator of “pseudorandom” functions on�

0 � 1 � n, a relatively small statistical test T can distinguish
them from truly random Boolean functions. However,
T need not have the sharp “all-or-nothing” form of the
statistical test given by a natural proof, and this lack also
hampers efforts to apply our proof idea of Theorem 18. In
any case, there can be no simple answer, because there are
oracles relative to which EXP is contained in P/poly—these
give no PSRGs but also P/poly has measure one in EXP!

5.1 Concluding Remarks

One of the original motivations for this research
was to find a sufficient condition for Lutz’s hypothesis µ � NP �EXP � � 0. We briefly analyze whether Theorem 7
can be made to work with NP in place of P/poly. Our proof
works by taking a hard PSRG G and a given QP-computable
martingale d, and constructing a language L

� P/poly � EXP
on which d does not succeed. The languages L involved
are defined by nonuniform sequences of seeds x for the
“iterated generator” fx � Gx � y � defined from G in [25, 7].
These seeds define the circuits Cn in our key Lemma 5.
The selection of sequences Cn in Lemma 5 is nonuniform,
however. Worse yet, the definition of L uses a predicate
that involves d, which is only known to be computable in
exponential time.

We have shown that there is much ground for a deeper in-
vestigation into details of the natural-proofs theory of [25],



in terms of the size of the properties and whether the diago-
nalization is i.o. or a.e. This may have further ramifications
for the connections to formal systems shown by Razborov
[24]. Finally, the idea of “randomized martingales” used to
prove Theorem 18, and that of “honest” martingales that by-
pass the nonuniformity problem, seem to merit further study
in themselves.
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Appendix 1
Proof sketch of Theorem 2.

(This is only to bridge the gap between the result stated
in [24] and the proof of the weaker result given in [25].) We
first note the following, which is implicit in [25].

Lemma 19 If a natural property Π (of arbitrary complex-
ity) diagonalizes over P/poly, then for every polynomial q,
there exist infinitely many n such that for every circuit Cn of
size at most q � n � , L � Cn � � n, treated as a 2n-bit string, does
not belong to Πn .

Proof. Suppose to the contrary that for some polynomial q
there exists n0 � 0 such that for all n � n0, there exists a cir-
cuit Cn of size q � n � such that L � Cn � � n � Πn. Define a lan-
guage L by letting L � n � L � C �

n �"� n for all n � n0, where C
�
n

denotes the lexicographically first circuit of size p � n � that
satisfies L � C �

n �"� n � Πn. Clearly L � P/poly, yet Π does not
diagonalize over L, a contradiction.

Now for Theorem 2, let a PSRG G and an arbitrary ε 	 0
be given. The goal is to show that for infinitely many k,
H � Gk � & 2kε

. Let the natural property Π against P/poly
be such that each Πn has density 1  2 � logN � c and circuit size
2 � logN � c � 2nc

. For any n, set k � nc � ε . Using G, one can
build a pseudorandom function generator [7] f as follows:
given a seed x of size k, a (pseudorandom) Boolean func-
tion fx :

�
0 � 1 � n * �

0 � 1 � is defined such that there is a cir-
cuit of size poly � nc � ε � � poly � n � that computes fx � y � for all
y
� �

0 � 1 � n. Using this construction, every infinite sequence
of seeds �x � x1 � x2 � # #�# gives a language L �

x, and all such lan-
guages have circuit families of a fixed polynomial size, say
q � n � .

Now by Lemma 19, there are infinitely many n such that
for every seed x, fx 
� Πn. On the other hand, by the large-
ness of Π, it follows that a randomly chosen f � �

0 � 1 � 2n
be-

longs to Πn with probability at least 1  2O � nc � . This shows
that a circuit for Πn is a statistical test of size 2O � nc � � 2O � kε �
that distinguishes fx from a truly random Boolean function
f . The remaining details are the same as in [25] drawing on
[7]: Using this statistical test, one can build a statistical test
of the same size that distinguishes (with bias of the same or-
der) the output of Gk from a truly random string of length 2k.
Since ε was chosen to be arbitrary, the result follows. For the
sake of completeness, we show how this conversion is done.

Claim. Suppose there is a circuit Cn of size 2O � nc � that
achieves a bias of 2 � O � nc � in distinguishingbetween fx when

x is chosen randomly from
�
0 � 1 � k � k � nc � ε and a randomly

chosen 2n-bit string. Then there is a circuit Dk of size
2O � nc � � 2kε

that achieves a bias of 2 � O � nc � � 2 � kε
in dis-

tinguishing between G � x � when x is chosen randomly from�
0 � 1 � k, and a randomly chosen 2k-bit string.

Proof of Claim. Consider the full binary tree T of height
n. Label the internal nodes of T by v1 � v2 � #�# # � v2n � 1 such
that if vi is a child of v j then i � j. Note that T has 2n

leaves; we will associate the leaves in one-to-one correspon-
dence with all strings of length n. Denote by Ti the union
of subtrees of T consisting of the nodes v1 � #�#�# � vi, together
with all leaves. For a leaf y of T let vi � y � be the root of the
subtree in Ti containing y. For all leaves y, define G0 � y to
be the identity function, and let Gi � y denote the composition
Gyn

� Gyn � 1 ����� Gyn � h � i � y � � 1
. Here h � i � y � denotes the height of

y in Ti, or the distance between vi � y � and y. To each internal
node v of the tree T , assign a string xv chosen uniformly at
random from

�
0 � 1 � k. Next, define the random collection fi

to be the collection of functions
�

fi � x � described as follows.
Let z be a leaf of the tree. Define fi � x � z � to be the first bit of
Gi � z � xvi � z � � . Note that f0 is just a random boolean function
on n variables, and f2n � 1 is just fx defined above. We know
that

�Pr � Cn � f0 � � 1
�! 

Pr � Cn � fx � � 1
� ��� 2 � O � nc � #

Therefore, there must exist an index i such that

� Pr � Cn � fi � � 1
�! 

Pr � Cn � fi � 1 � � 1
� ��� 2 � O � nc � #

At this point, an averaging argument shows that we can fix
all the random strings assigned to the nodes of T except the
children of vi � 1 while preserving the bias. (This might de-
termine many of the bits of fx.) Now there are two ways of
assigning strings to the children of vi � 1: either assign them
both independently chosen random strings from

�
0 � 1 � k, or

assign a random string u to vi � 1 and assign to its two chil-
dren the strings G0 � u � and G1 � u � respectively. The crucial
observation we make is that if these two nodes are assigned
strings in the first way, then the resultingboolean function in-
duced on the leaves is precisely fi, and if they are assigned
strings in the second way, then the resulting boolean func-
tion induced on the leaves is precisely fi � 1. To complete the
proof, we will build a circuit Dn that takes a string in

�
0 � 1 � 2k

and computes the resulting boolean function at the leaves
(which one of fi or fi � 1) as described, and feeds the result
( fi or fi � 1) toCn. Note that computing fi or fi � 1 can be done
in time 2n � poly � n � . Therefore, the size of Dn is bounded by
2O � nc � . Now, Cn has an advantage of at least 2 � O � nc � in distin-
guishing between fi and fi � 1, whence it follows that H � Gk �
is bounded by 2O � nc � � 2O � kε � .


