Derandomizing Semidefinite Programming Based
Approximation Algorithms

Sanjeev Mahajan H. Ramesh*
Max Planck Institut fir Informatik
Saarbriicken, Germany, 66123

Abstract

Remarkable breakthroughs have been made recently in obtaining approximate solutions to some
fundamental NP-Complete problems, namely Maz-Cut, Maz k-Cut, Maz-Sat, Maz-Dicut, Maz-
Bisection, k Vertex Coloring, Independent Set, etc. These breakthroughs all involve polynomaial
time randomized algorithms based upon Semidefinite Programming, a technique pioneered by
Goemans and Williamson[8].

In this paper, we give techniques to derandomize the above class of randomized algorithms,
thus obtaining polynomial time deterministic algorithms with the same approximation ratios for
the above problems. At the heart of our technique is the use of spherical symmetry to convert a
nested sequence of n integrations, which cannot be approzimated sufficiently well in polynomial
time, to a nested sequence of just a constant number of integrations, which can be approzimated
sufficiently well in polynomial time.

1 Introduction

The application of Semidefinite Programming to obtaining approximation algorithms for NP-
Complete problems was pioneered by Goemans and Williamson[§]. This technique involves re-
laxing an integer program (solving which is an NP-Complete problem) to a semidefinite program
(which can be solved with a sufficiently small error in polynomial time). In a remarkable break-
through, Goemans and Williamson showed how this technique could be used to give a randomized
approximation algorithm for the Max-Cut problem with an approximation ratio of .878. This
must be contrasted with the previously best known approximation ratio of .5 obtained by the
simple random cut algorithm. Subsequently, semidefinite programming based techniques have
led to randomized algorithms with substantially better approximation ratios for a number of
fundamental problems.

Goemans and Williamson[§] obtained a .878 approximation algorithm for Max-2Sat and an
.758 approximation algorithm for Max-Sat, improving upon the previously best known bound of
3/4 [18] for both. They also obtain a .796 approximation algorithm for Max-Dicut, improving
upon the previously best known ratio of .25 given by the random cut algorithm. Feige and
Goemans [5] obtained improved approximation algorithms for Max-2Sat and Max-Dicut.

*Present Address: Indian Institute of Science, Bangalore, India

Karger, Motwani and Sudan obtained an algorithm for coloring any k-colorable graph with
O(n'=3/+D10g n) colors[11]; in particular, for 3-colorable graphs, this algorithm requires O(n?> log n)
colors. This improvesupon the deterministic algorithm of Blum[2] which requires O(nl_ =i log% n)
colors for k-colorable graphs.

Frieze and Jerrum[6] obtained a .65 approximation algorithm for Max-Bisection improving the
previous best known bound of .5 given by the random bisection algorithm. They also obtained a
1— % + 212—2]“ approximation algorithm for the Max k-Cut problem, improving upon the previously
best known ratio of 1 — % given by a random k-Cut.

Alon and Kahale[l] obtained an approximation algorithm for the independent set problem.
For any constant k& > 3, if the given graph has an independent set of size n/k + m, where n

is the number of vertices, they obtain an Q(mk% log m) sized independent set, improving the

previously known bound of Q(mlel) due to Boppana and Halldorsson[3].

All the new developments mentioned above are randomized algorithms. All of them share
the following common paradigm. First, a semidefinite program is solved to obtain a collection
of n vectors in n dimensional space satisfying some properties dependent upon the particular
problem in question. This step is deterministic (in the Feige, Goemans paper [5], there is another
intermediate step of generating a new set of vectors from the vectors obtained above). Second,
a set of independent random vectors is generated, each vector being spherically symmetric, i.e.,
equally likely to pass through any point on the n dimensional unit sphere centered at the origin.
Finally, the solution is obtained using some computation on the n given vectors and the random
vectors.

It is not obvious how to derandomize the above randomized algorithms, i.e., to obtain a “good”
set of random vectors deterministically. A natural way to derandomize is to use the method of
Conditional Probabilities[14, 16]. The problem that occurs then is to compute the conditional
probabilities in polynomial time.

e The main contribution of this paper is a technique which enables derandomization of all the
semidefinite programming based approximation algorithms listed above. This leads to determin-
istic approximation algorithms for Max-Cut, Max k-Cut, Max Bisection, Max-25at, Max-Sat,
Max-Dicut, k Vertex Coloring, and Independent Set with the same approximation ratios as their
randomized counterparts mentioned above.

Our derandomization uses the conditional probability technique. We compute conditional
probabilities as follows. First, we show how to express each conditional probability computation
as a sequence of O(n) nested integrals. Performing this sequence of integrations with a small
enough error seems hard to do in polynomial time. The key observation which facilitates condi-
tional probability computation in polynomial “time is that, using spherical symmetry properties,
the above sequence of O(n) nested integrals can be reduced to evaluating an expression with just
a constant number of nested integrals for each of the semidefinite based approximation algorithms
mentioned above. This new sequence of integrations can be performed with a small enough error
in polynomial time. A host of precision issues also crops up in the derandomization. Conditional
probabilities must be computed only at a polynomial number of points. Further each conditional
probability computation must be performed within a small error. We show how to handle these
precision issues in polynomial time.

As mentioned above, our derandomization techniques apply to all the semidefinite program-
ming based approximation algorithms mentioned above. Loosely speaking, we believe our tech-
niques are even more general, i.e., applicable to any scheme which follows the above paradigm
and in which the critical performance analysis boils down to an “elementary event” involving
just a constant number of the n vectors at a time. For example, in the graph coloring algorithm,
only two vectors, corresponding to the endpoints of some edge, need to be considered at a time.
An example of an elementary event involving 3 vectors is the Max-Dicut algorithm of Goemans
and Williamson. Another example of the same is the algorithm of Kelsen, Mahajan, and Ramesh
[12] for coloring 2-colorable 3-uniform hypergraphs approximately.

The paper is organized as follows. In Section 2, we outline the Goemans and Williamson
Max-Cut algorithm and the Karger, Motwani, Sudan coloring algorithm. We then describe our
derandomization scheme. Since the Karger, Motwani, Sudan coloring algorithm appears to be the
hardest to derandomize amongst the algorithms mentioned above, our exposition concentrates
on this algorithm. The derandomization of the other algorithms is similar. Section 3 describes
the derandomization procedure. The following sections describe the derandomization procedure
in detail.

2 The Semidefinite Programming Paradigm

It is known that any concave polynomial time computable function can be maximized (within

some tolerance) over a convex set with a weak separation oracle in polynomial time [7]. One
such convex set is the set of semidefinite matrices, i.e., those matrices whose eigenvalues are
all non-negative. A set formed by the intersections of half-spaces and the set of semidefinite
matrices is also a convex set. Further, this convex set admits a weak separation oracle. A
semidefinite program involves maximizing a polynomial time computable concave function over
one such convex set. Semidefinite programs are therefore solvable (up to an arbitrarily small
additive error) in polynomial time. Goemans and Williamson first used this fact to obtain an
approximation algorithm for Max-Cut.
The Goemans-Williamson Max-Cut Algorithm. Goemans and Williamson took a natural
integer program for Max-Cut and showed how to relax it to a semidefinite program. The solution
to this program is a set of n unit vectors, one corresponding to each vertex of the graph in
question. These vectors emanate from the origin. We call these vectors vertez vectors. These are
embedded in n dimensional space. This leads to the question as to how a large cut is obtained
from these vectors.

Goemans and Williamson choose a random hyperplane through the origin whose normal is
spherically symmetrically distributed; this hyperplane divides the vertex vectors into 2 groups,
which define a cut in the obvious manner. The expected number E(W) of edges' across the
cut is 3, wyep arccos(v - w)/m = 3, wep Pr(sign(v - R) # sign(w - R)), where E is the set of
edges in the graph and v, w denote both vertices in the graph and the associated vertex vectors.
Goemans and Williamson show that E(W) is at least .878 times the maximum cut.

Note that the n random variables involved above are the n coordinates which define the nor-
mal R to the random hyperplane. Let R, R,,..., R, be these random variables. For R to
be spherically symmetrically distributed, it suffices that the R,’s are independent and identi-

'For simplicity, we consider the nunweighted Max-Cut problem.

cally distributed with a mean 0 and variance 1 normal distribution, i.e., the density function is

%e‘ﬁ/z [4]. Derandomizing the above algorithm thus requires obtaining values for Ry,..., R,

eterministically so that the value of the cut given by the corresponding hyperplane is at least

E(W).

The Karger-Motwani-Sudan Coloring Algorithm. The Karger, Motwani, Sudan algorithm
shows how to color a 3-colorable graph of n vertices with O(n'/*logn) colors. The authors use a
semidefinite program to obtain a set of vertex vectors such that v -w < —%, for all edges (v, w).
Note that if these vectors are somehow constrained to be in 2 dimensions, then there are at most
3 distinct vectors, which would specify a 3-coloring. However, the output to the semidefinite
program are vectors in an n-dimensional space. It remains to be described how a coloring is
obtained from these vectors. This is done as follows.

Karger, Motwani and Sudan choose r vectors, t1,...,t,, independently and at random; each is
spherically symmetric. These vectors are called centers. Let the jth coordinate of ¢; be denoted
by t:[j], 1 < j < n. Spherical symmetry is obtained by the following procedure: each ¢,[j] is
chosen independently at random from a normal distribution with mean 0 and variance 1. The
color that vertex v gets is simply ¢, where t. - v = max;<;<,t; - v. In other words, the color
assigned to a vertex v corresponds to that amongst the r centers which has the largest projection
on the vector v.

To determine how good the above procedure is, it is necessary to determine the probability
that an edge is bad, i.e., both its endpoints get the same color. Consider two vertex vectors v, w,
such that (v,w) is an edge e in G = (V| E). The probability that v and w get the same color in
the algorithm is given by Pr(E°) = Y;_, Pr(E;), where Ef is the event that both get color #.
E; can be written as:

Ef: tp - v =max{t; -v,...,t, - v} At - w =max{t; - w,...,t, - w}

Karger, Motwani and Sudan[11] show that Y.cx Pr(E®) < n/4, for r = d'/3 log*/? d, where
d is the maximum degree of the graph. Thus, at the end of the above procedure, the expected
number of bad edges is less than n/4. All vertices except those upon which these bad edges are
incident are discarded (the colors assigned to them are final). The remaining vertices, which are
at most n/2 in number, are recolored by repeating the above procedure O(logn) times, using a
fresh set of colors each time. This gives an O(d"/? log?/® dlog n) coloring of a 3-colorable graph.
This combined with Wigderson’s trick [17] gives an O(n'/*1logn) coloring of a 3-colorable graph.

Derandomizing the above algorithm entails deterministically obtaining values for ¢;[j]’s so that
the number of bad edges is at most the expected number of bad edges above, i.e., n/4. Actually
it suffices to obtain values for t;[j]’s such that the number of bad edges is at most n/4 + 7, for
some constant 7. This is what we will do.

Note that the Goemans-Williamson algorithm uses a random hyperplane while the Karger-
Motwani-Sudan algorithm uses a set of random centers. Although these 2 methods seem different,
the hyperplane method can be interpreted as just the center method with 2 centers.

3 The Derandomization Scheme
For simplicity, we restrict our exposition here to the derandomization of the Karger, Motwani,
Sudan algorithm for coloring 3-colorable graphs. Our procedure easily generalizes to all other

known semidefinite programming based approximation algorithms listed in Section 1.

Notation. For a vector u, we denote by u[l...m] the vector formed by the {th to mth coordinates
of u.

The Derandomization Scheme. The scheme is essentially to use the method of conditional

expectations to deterministically find values for the vectors tq,...,¢, so that the number of bad
edges is just n/4 + 7, for some constant 7.
We define a total order < on the conditional variables as follows: #[1] < ... < #1[n] <

tol] ... < ta[n] < ...<t[l] <...<t.[n]. The values of these are fixed one by one, in order. So
suppose that the values

t1[l...n],t2[l...n],..., t;[1... 5 — 1] have been determined. We will show how a value for ¢;[j]
is determined.

Notations. Let £ be an event. Then Pr(€|i, j, d) denotes the probability that the event £ occurs
when the values for all conditional variables < ¢;[j] have been fixed as above and t,[j] itself is
assigned value 6. So, for example, Pr(Ef|i, j,d) denotes the probability that event Ejf occurs
(i.e., that both endpoints of edge e get the color associated with center #;), when the values for
all conditional variables < ¢;[j] have been fixed as above and ¢;[j] itself is assigned value §. For
notational brevity, sometimes we use f(§) to denote Pr(E*|i, 5, 6).

Let p(d) be the expected number of bad edges, when the values for all conditional variables
before ¢,[j] are fixed as above and ¢;[7] is assigned value §; p(8) = Ycer iy Pr(Efli, J,0).

Fixing t¢;[j]. Let d,n;n be the value of § which minimizes p(d), —oo < § < co. We would like
to fix ¢;[j] to dmin. The question is how to compute §,,;,. We do not actually compute -
However, we will show the following.

Theorem 3.1 A value r fort;[j] satisfying the following property can be computed in polynomial
time: p(Smin) < p(k) < p(Smin) + O(1/n?).

From the above theorem, we derive the following corollary.

Corollary 3.2 After all t;[j]’s have been fizred and colors assigned to vertices as in the random-
ized algorithm, the number of bad edges is at most T + O(1).

Proof. Note that the number of conditional variables ¢;[j] is nr < n? (actually for 3-colorable
graphs r is much smaller, namely d'/3 10g4/3 d, where d is the maximum degree).

Recall that the expected number of bad edges before any of the random variables was fixed
is at most 4. By Theorem 3.1, the expected number of bad edges after the first conditional
variable is fixed is at most § + O(n%) An easy inductive argument shows that the expected
number of bad edges after the [th conditional variable is fixed is at most %—I— O(n%) After all the
nr < n? conditional variables have been fixed, the expected number of bad edges (which is just
the number of bad edges since all conditional variables are now fixed) is at most T+ O(1). O

To show Theorem 3.1, we will perform the following steps.

Step 1. First we discretize the vertex vectors. This ensures that derivatives of the functions
f(8) and p(é) are bounded by a polynomial in n. This, in turn, ensures that the values of the

above functions between any two nearby points will not be too different from their values at
these two points. This facilitates discrete evaluation. This discretization is described in Section

4.

Step 2. In Section 5, we show how to express f(d) in terms of a function I defined as follows.
This enables the probability to be computed using integrals with just constant nesting depth.

Definition. Let b,b" be vectors of the same dimension, which is at least 2. Let a be another
vector of the same dimension whose entries are independent and normally distributed with mean
0 and variance 1. Let # < y and 2’ < y’ be in the range —oo...00. Then I(b,V, x,y,2",y)
denotes Pr((z <a-b<y)A (2’ <a- -V <y')).

Step 3. Computing the integral corresponding to [is the key question. As mentioned in
the introduction, naive computation would require a nested sequence of (n) integrals. Using
spherical symmetry properties we show how to perform this integration using just integrals with
constant nesting. This is described in Section 6.

Step 4. In order to compute x, we can afford to evaluate p(d) only for a polynomial number of
points. So we have to discretize the range —oo...o00 for 4. We must do so in a way such that
the least value of p(§) when restricted to just these discrete points is O(-5) away from the actual

minimum. This is done in Section 7.

Step 5. Finally we need to show how f(§) can be approximated within an additive O(-5) error
in polynomial time; this will ensure that p(d) can be evaluated within an O(r|E|%) = O(s5)
error, as required by Theorem 3.1. To do so, we need to show that the integrations in Section
5 which describe f(8) can be evaluated within an additive O(Z5) error. This is again done by

discretizing the range between the limits of the integration and is described in Section 8.

4 Discretizing the Input Vectors

For simplicity, we assume that v-w = —1/2 for edge ¢ = (v,w). The Karger-Motwani-Sudan
algorithm sets v-w < —1/2, but the theoretical performance of the algorithm does not change if
v-w is set to exactly —1/2. Our algorithm can be easily generalized as long as |v - w| is bounded
away from 1. Note that the above assumption is not valid for the Goemans-Williamson Max-Cut
algorithm. We show how to tackle this problem in Section 9.

Let € be a number which is @(;—3) The objective of discretizing the input vectors is the
following. All the components of v, w must be made €2(¢€) in absolute value. In addition, for each
h,1 < h < n, when the coordinate system is rotated so as to make v[h...n] = (b1,0,...,0) and
wlh...n] = (b],05,0,...,0), |b1] and |b}| are at least inverse polynomial in n. The last property
will be necessary in our proofs later, in Lemma 6.2, in particular. This discretization is achieved
as follows.

Rounding Procedure. First, all the entries in v, w are rounded upwards (in absolute value)
to the nearest non-zero multiples of €. Next, up to 2¢ is added (in absolute value) to v,_; so
that |v,_1w, — w,_jv,| > 2€%. Note that in this process 1 < |v|?, |w|* < 2, for small enough e,
i.e., for large enough n. Each component of v,w changes by at most 3¢ in this process and is
now non-zero; further, the absolute values of the components cannot decrease. Finally, we divide
each vector by its new norm so as to make it a unit vector. Then |v,_jw, — w,_1v,| = Q(€?).

Lemma 4.1 For each h, 1 < h < n, |[0']* — w)® Q(e*), where v/ = vlh...n] and W =

v’

Proof. First consider h = n — 1. (v' - w')? = (vp1wWney + vaw,)? = (V2 + v2)(w2_| + w?) —
(Vn1wp, — Wy v,)? < V20?2 — Q(e'). Therefore, |w'|* — %ﬁ = Q(et).

Next consider h < n—1. Let I = v[h,...,n—2] and m = w[h,...,n—=2]. Let ' =v[n—1...n]
and m’ = wn—1...n]. (v W) ={@-m+l'-m")?={1-m?*+{"-m)V+2(I'"-m/)(1-m) < |l|*|m]*+
(1" - m’)® + 2|I'||m'||l||m]|. By the previous paragraph, (I'- m’)? < |I'|*|m/|* — Q(e*). Therefore,
(o) < [Pl PP+ (2 l? + P2 — () < (U4)l +) — (1) =
|v'[2|w’|* — Q(€*). Therefore, ||w'|* — (U/'w/)2| = Q(et). O

lv'[?

The above rounding changes the vectors and hence the value of p(d,ni). We redefine 6,4, so
that it now corresponds to the new rounded vectors. Lemma 4.2 shows that the above rounding
changes p(dmin) by just O(1).

Lemma 4.2 p(d,in) changes by at most O(ne)|E| = O(1) due to the above rounding.

Proof. Originally v-w = —1/2 and v, w were unit vectors. The above rounding changes v -w by
some €' which is O(ne). Using Taylor series and the fact that Pr(E¢) is a function only of v - w
and not the individual vectors themselves, Pr(E®) = 322, a;(v-w)', where 3, a; = 1, a; > 0 (see
6], Lemma 3, for proof). Then, after the rounding, [APr(E®)| = |2 ai(—3 + €)' — (=3)'| <

Zoail(z — €)' = (3)]

First, suppose ¢ > 0. Then |APr(E°)| < 32, a,((%)’ — (% — e’)i) < Zfio((%)l — (l — e’)i) <
4€' /(1 + 2¢€'). Similarly for € < 0, |APr(E°)| < —4€'/(1+2¢). O

Note that we are using the fact that v-w = —1/2 only in Lemma 4.2. The proof of this lemma
will go through as long as |v - w| is bounded away from 1.

5 Computing Conditional Probabilities

We are required to compute p(d), i.e., Yoccp iy Pr(Ef]i, j,0). For e = (v,w) and some fixed
k, we show how to express f(§) = Pr(E;|i,7,d) in terms of the integrals () defined earlier.
Recall that Pr(Ef|i,,0) is the probability that both v,w are assigned the color corresponding
to center tg, when the values for all conditional variables before ¢,[j] have been determined and
t:[7] is assigned §.

Notation. For vectors a,b, let a - b[l, m] denote a[l...m]-b[l...m] = Y7, a[h]blh]. Let o' =
ti-v[l...j—1]and Let ' =¢,-w[l...57 —1].

Fact 1. Note that ¢;11,%;12,...,t, are all completely undetermined, independent, mutually
and of t{,...,t;, and identically distributed in a spherically symmetric manner in n dimensions.
t:[74+1...n]is also undetermined and is spherically symmetrically distributed in n— 7 dimensions
and is independent of ¢;14,...¢, and of all the previously fixed components of ¢,.

There are 3 cases, depending upon whether & < 12, k = ¢, or £ > 1. Each case has 3 subcases,
depending upon whether 7 <n—1, 5 =n —1 or j = n. We have to consider these 3 subcases
separately for the following reason. When j < n—1, we will express the above probability in terms

of the integral I(). For j =n — 1 and j = n, we cannot express the above probability in terms
of I() (recall that I() was only defined when its argument vectors are at least 2-dimensional).
Therefore, in these 2 subcases, we have to express the probability directly. These 2 subcases
themselves need to be separated because the derivative of f(d) behaves differently in these 2
subcases, and the behaviour is crucial to the analysis, especially the discretization of Section 7.

Note from Section 4 that v[n],w[n] are non-zero. We will need to divide by these quantities
at points.

Case 1. k < 1. In this case, the center ¢; has been already determined. Let ¢} - v = « and
tr - w = (. Centers tq,...,t;_; have also been determined. If one of #; - v,...,¢,_1 - v is greater
than « or if one of #; - w,...,t,_1 - w is greater than [then Pr(Ef|i,j,0) is 0. Otherwise, it is:
F(8) = Pr(Aisi(ti-v < a At w < B, j,)

Note that the events t;-v < aAt;-w < 3,1 <[< r, are all independent.
Case 1.1. 3 <n — 1. By Fact 1:

f(6) = Prti-v<aAt;-w<Bi,7,0)x Pr(t, - v<aAt,-w<p)
o +ov[jl+ti-vlj+1.n] <aAB + w4+t wli+1...n] < B)X
trrv<aAt,-w < B)
ti-vj+l...n)<a—o =dv[j]Ati-wj+1...n] <8 =5 —dwlj])x
trv<alAt, w3
= Iwjj+1...nJ,wj+1...n],—00,a—a —dv[j], —o0, 8 — 3 — dw[y])x

Ir_i(v, w, —00, a, —00, [3)

Pr(
Pr(
Pr(
Pr(

Case 1.2. j = n — 1. We assume that both v[n] and w[n] are positive. The other cases are
similar. By Fact 1 and the fact that ¢,[n] is normally distributed:

f(6) = Prti-v<aAt;-w<Bli,n—1,8)xPr(t, - v<aAt,-w<p)"
Pr(t;[n]v[n] < a— o = dv[n — 1] At;[n]w[n] < 6 — 3 — dwn — 1])x
Prt, - v<aAt,-w< By
= Pr(tjn] < min{a_a/_év[n_l] B_ﬁ/_éw[n_l]}) X Pr(t, - v<aAt,-w<3)

v[n] ’ wln]
! !
_ min{a—a ;[1;7([]77,—1](57,6—,6 ;'F;l[]n—lw}

= (\/% oo e 2dz) x I (v, w, —o0, a, —00, 3)

Note that the derivative of f(§) with respect to ¢ is undefined at only one point, namely, the

value of ¢ for which a_o‘/;[i;[]”_l]‘s = 5—5';1[075]”—1]5‘

Case 1.3. j=n. Ift,-v=0a"4+v[n]d >aort,-w= 0+ wn]d > 3, then ¢; has a bigger dot
product than t; with at least one of v or w, and therefore, Pr(Efl|i, j,) = 0. Otherwise:
f(8) = Prti-v<aAt;-w<Bi,7,0)Pr(t, - v<aAt,-w<[)
= Prit,-v<aAt,-w< B
= I""(v,w, —o0,a, —00, 3)

Note that the derivative of f(J) with respect to ¢ is undefined only for two values, namely,
when a = o + v[n]éd and 8 = '+ wln]é.
Case 2. k > i. Let max{t; -v,....t;_1 - v} = @ and max{t; - w,...,t,1 - w} = 6. tx v >«
and t; - w > [for t; to be the color assigned to both v and w. Then, let A be the event
tp-v>aAty-w> [and By be theevent ¢;-v <t -v At - w < tp-w, 1 >0, #Ek.

Note that the events B; in this case are not independent. However, they are independent for
fixed values of t; - v and #; - w. In what follows, we will, at appropriate points, fix #; - v and
tr - w to be in some infinitesimal intervals, and then integrate over these intervals. Within such
an integral, the values of #; - v and ¢} - w may be treated as fixed, and therefore, the events
corresponding to the B;’s with the above values fixed become independent.

Case 2.1. j <n—1.

f((S) == PT(A/\B,’/\...Bk_l/\Bk+1/\...BT|i,j,(S)

= Joma Jymp(Pr((z <tp-v <o+ da) A (y < tp-w <y +dy))
Pr(t-v<azAti-w<yli,j,90))
Hl:i+1,...k—1,k+1,...r Pr(tl v ST At -w S y|i7.j7 5))

= f;iafyoiﬁ(](v,w,w,x—l—dx,y,y—l—dy)
Pria’ +dvj]+t;-0[j + Ln] Sa AB +owlj] +ti - w[j +1,n] < y)
I'*Y(v,w,—oco0,z,—00,y))

= f;iafyoiﬁ(](v,w,w,x—l—dx,y,y—l—dy)
I(v[j+1...n],w[j—|—1...n],—oo,:1;—o/—v[j](s,—oo,y—ﬁ’—w[j](S)
I'"Yv,w, —o0o0,z,—00,y))

Case 2.2. j =n — 1. Assume that v[n] and w[n] are positive. The remaining cases are similar.

f((S) == PT(A/\B,’/\...Bk_l /\Bk-l—l A ...Br|i,n—1,5)
= f;iafyoiﬁ(Pr((x <tp-v<az+de)AN(y <ty -w<y+dy))
=i ketgrr, . Priti-v <azAtp-w < yli,n —1,0))
= f;ioz fyoiﬁ(j(vv w,z,x+dr,y,y + dy)
Pr(o' 4 dv[n — 1] 4+ ti[n]v[n] < a A §' + dw[n — 1] + ti[n]w[n] < y)
[hi=it1, k=141, Priti-v<aAnti-w<y))

mln{ z—a/;['z;l[]n—lw) y—ﬁll—yiui]n—l](?}

= JoZa [Zs(I(v,w, 2,2+ doyy, y + dy) (= o= e " /2dz)
I'"=Y(v,w, —co,x,—0c0,y))
= \/% foi—oo fa;.imax{oz,oz’il—v[n]z+v[n—1]5} fyoimax{ﬁ,ﬁ’—l—w[n]z—l—w[n—1]5} (‘[(U7 W, T, T+ dl’, Y,y + dy)
I'*Y(v,w,—o0,z,—00, y)e_z2/2)dz

a—a'—v[n-1]8
v[n]

Note that the derivative of f(d) with respect to ¢ is undefined only when
B=fowln=1P We see this by the following argument. Consider the values of ¢ for which

wln]

a_a/;[z[]n_l]é < 5_5/;1[‘;[]”_1]5. The above expression for f(J) can then be split up into a sum

of three terms described below. From the resulting expression, it is clear that it is differentiable

for all values of § such that a_a/;[z[]n_l]é < B_Bl;q[‘;l[]n_l]é. A similar argument shows that f(J) is is

differentiable for all values of § such that a_a/;[z[]n_l]é > 5_5/;1[‘;}]”_1]5.

f(6)
a—a'—v[n—1]8
= =" L LI (v w4 deyy,y 4 dy)
I~ (v,w, —o0, &, —o0, y)e~* /2dz)
. /3—/3'—?1[]”—1]5
—I_\/? fZ:a—Z’n—v[n—l](? x:a’+v[n]z+u[n—1]5 y:ﬁ(‘[(v7 w,x,T —I_ d$7 Y,y —I_ dy)

v[n]
. 22
I'*Y(v,w,—oo,z,—00,y)e” 7dz)
—I_\/? fzoi =5'—w[n—-1]8 f;ioz’—l—v[n]z—l—v[n—l]é yoiﬁ’—l—w[n]z+w[n—1]5(‘[(v7 w,r,x + dl’, vy + dy)

. 22
I'*Y(v,w,—o0o,z,—00,y)e” T dz)

Case 2.3. j = n. Since t;[n] is assigned to ¢ and all other components of ¢; are fixed, ¢ - v >
max{a, o’ +v[n]d} and t - w > max{3, '+ w[n]d} for t; to be the color assigned to both v and
w.

f((S) == PT(A/\ B, A ---Bk—l A Bk-l—l A BT|Z,n,(S)
= max{8,8 4w} Jremax{aa sy (Pr((@ Stp-v <ot da) Ay <t w <y +dy))
it ket g1, Priti-v <a Atp-w < yliyn, d))
= JZmaxi8,8+wins} Jremax{aa sy (Pr((@ Stp-v <ot da) Ay <t w <y + dy))
ivt ki, Priti-v<aAtp-w < y))
fnﬁx{ﬁﬁ’—l—w[n]é} fnﬁx{a,a’—l—v[n]é}(‘[(v? w,z,x+dr,y,y + dy)
I'*Y(v,w,—oco,z,—00,y)
Note that the derivative of the above expression with respect to ¢ is undefined only for two
values, namely, when a = o/ + v[n]d and § = ' + w[n]d.

Case 3. k = ¢. Let max{t; -v,...,t;_1 - v} = o and max{t; - w,...,t,_1 - w} =0. t;-v >«
and t; - w > [, for t; to be the color assigned to both v and w. Then, let A be the event
tirv>aAt;-w > B and By be theevent t;-v <t;- v Atj-w <t;-w, >1.

Again, note that the events B; in this case are not independent. However, they are independent
for fixed values of ¢; - v and t; - w. Then, as in Case 2:

Case 3.1. j <n—1.

f(6) = Pr(AANB1N...NB,i,j,0)
= [oto J2sUy+ 1. nlw[j+1...n],z —a' —v[j]d,z + do — o' — v[j]é,
y— B —wljléy+dy — 8" —wj]é)

I"(v,w, —00, z,—0,y))
Case 3.2. j =n — 1. Assume that v[n] and w|[n] are positive. The other cases are similar.

f(8) = Pr(AABigi A...ABJi,n—1,6)
1 o)

T Vzr) immax{emelmulnmlld pop —uinoi]dy

(I (v,w, —o0, o/ + v[n — 1]6 + v[n]z, —o0, ' + wn — 1]6 + wn]z)e™ " /2dz)

Note that the derivative of the above expression with respect to ¢ is undefined only when
a—a’'—v[n—1]§ p-—p'—w[n—1]s

v[n] wln]

Case 3.3. j =n. [f v[n]d + o < a or w[n|éd + ' < 3 then this probability is 0. Otherwise,

f(8)=Pr(AANBiyi A...AB,|i,7,8) = I""'(v,w, —0c0, o + v[n]d, —oo, B + w[n]d)

Note that the derivative of the above expression with respect to ¢ is possibly undefined only
for two at most 2 values, namely, when a = o' 4+ v[n]é and 3 = 3’ + w[n]é.

6 Computing [(b,V,z,y,2',y)

Recall that 1(b,0,x,y,2’,y") denotes Pr((x < a-b<y)A(z' <a-V <y')), where a is a vector
whose entries are independent and normally distributed with mean 0 and variance 1. We show
how to compute this probability.

Let b and &' be h dimensional. Note that 2 > 2. Consider the h dimensional coordinate system
with respect to which b,b" are specified. Note that a naive way to compute I is to perform a
sequence of h nested integrals. This seems hard to do in polynomial time with the required error.
We use the following method instead.

Note that since each coordinate of @ is normally distributed with mean 0 and variance 1, a has
a spherically symmetric distribution. We rotate the coordinate system so that b = (b1,0,...,0)
and b = (b7,0,,0...,0), where by,b, > 0. As we will show shortly, both by,b, will be strictly
positive for all our calls to I. Let «' = (al,...,al,) be the coordinates of a under the rotated
coordinate system. The following lemma is key.

Lemma 6.1 The probability distribution of a' is identical to that of a. That is all the coordinates
of @' are independently distributed according to the normal distribution with mean 0 and variance

1.

Proof. Follows from the fact that a is spherically symmetric and «’ is a rotation of a. O

Note that a’-b = a1by and @' -V = a1} + axbl,. Now I(b, 0, x,y, 2’ y") denotes Pr((x < a1by <
y) A (2" < ard) 4 azby < y')). This equals

T < Y x/—albi < < y’—alb{ 1 ry/b _22 (y/—zbi)/b/ _ﬁ d P d
PT((E_CH_E)/\(5] S Gy S o)):ﬁfx/ble 2(f(x'—zbi)/bée 2 Z) z

Lemma 6.2 |b;| = Q(e) = (L) and |b)| = Q(e?) = Q).

Proof. Recall that by the rounding in Section 4, by = |b| = Q(e). |by| = /][V|? — %EL since

b, is just the projection of b’ on the line orthogonal to b in the plane containing b and b'. By
Lemma 4.1 and the fact that b, are of the form v[h...n],w[h...n] in all the calls we make to
I(), [by] = Q(e”). O

7 Discretizing t;[j]

For the purpose of this section, assume that integrations can be performed exactly. This will
be dealt with in Section 8.

The values § we choose for ¢;[j] will be multiples of ©(1/n'') in the range —n?%...n?*. We
need to show that restricting and discretizing the range of § causes O(n%) error for each of the
conditionality variables. This is shown in the rest of this section.

Lemma 7.1 shows that considering values between —n*®...n?? only causes an error of O(n%)

for each of the conditionality variables.

Lemma 7.1 mins p(d) can be estimated within an additive |r|E|2| < |25 | while only considering

values between —n*>...n%5 for 4.

Proof. Note that Pr(Ef[t[L]...t,[j — 1]) == S [, f(§)e~> s

< \/L—(f:i; f(é)e—§d5 +2[7%s e_gdcs) since 0 < f(§) < 1. Now,
\/— J5se” Tdé < 5, by Chebyschev’s inequality. O

Next, we show that the discretization ¢ in the above range causes O(n%) error for each of the
conditionality variables. We consider the three cases, 7 =n, j =n—1 and j < n — 1, separately.
Lemma 7.2 proves the above when j < n — 1. Note that for j < n — 1, f(§) is always defined.
For j = n—1 and j = n, a similar proof holds with the following difference. As shown in Section
5, f'(§) is undefined at at most two values of § when j = n —1 or j = n; so when j =n — 1,n,
p'(8) is undefined only at O(r|E|) = O(n?) values of §. We add these points to our discretization.
These divide the range —n*?...n*? into O(n?) subranges, in each of which f'(J) and p'(d) are
defined. In each of these ranges, a proof similar to that of Lemma 7.2 shows the needful.

Lemma 7.2 Suppose j <n—1. Then |dPT (Eli.s9) | = [f'(6)] = O(n®). Therefore |f(0£0(=7))—
FOI < 0(;)0(n®) and |p(é £ O(57)) — ()| < OGr)0(n®)r|E| = O(57)-

Proof. Note that the function f depends upon which of Cases 1.1, 2.1, 3.1 hold in Section 5.
We show for one representative case, i.e., Case 2.1. The other cases can be shown similarly.

For Case 2.1: f(0) = [° [5~ g(x,y)h(x,y,d)dydz,

where g(z,y)dydz = (v, w,z,z + dx,y,y + dy) """ (v,w, —c0, ¥, —c0, y) and
h(x,y,0)=I(v[j+1...nJ,w[j+1...n],—cc,a—t,-v[l...7 —1] —v[y]d,—o0,y—t;-w[l...J —
1] — w[j]é).

FO] < L2 157 Mg) |25 dyde < max, o | 24522, since %[5 (e, y)dyda is a probabil-
ity and therefore < 1.

We show that |f/(§)| = O(n®) by estimating max, , |L =Y 5)|

Let ¢(z,0) =a —t;-v[l...5 — 1] —v[j]0 = ¢ — v[j]é and

dy.8) =y —ti-wll...j 1] —w[jls = & —wljld.

From Section 6,

h(x,y,d) = i f(;’é)/bl e_%(fi(iiy’é)_zm/bé e~ T dz’) dz, where by, b, b, are the obtained by
rotating the coordinates, as in Section 6.

—b) /by 2

Let G(y,d,1) = fe T H(y,5 l)dl, where H(y,d,1) = e~z d7.

g
Then |35 =14+ B| < |4] |B], where A = JelEdon o=t OHusn g

ol
and B = all c(x,8) /by D8 I=c(x,8) /by’

\/ﬁ

Note that |6G| <1 for all {, since H(y,d,l) < 1.

Further, 651 oo, 6)/61| = |v[j]/b1] = O(n?®), by Lemma 6.2 and the discretization of the input

vectors in Section 4.

Therefore, |B| = O(n?).
|A| is bounded as follows.

141= 5y M e < 280
It remains to bound max,s; |%|. This is done below using the same technique as above.
Recall that:
1) = o JEOO R g
Let J(m) = \/Lz—ﬂfe_mT2 dm. Then
98| = |dmm)—lb{)/b§| %—’;m:(d(0.5)—1b] /b,| < |w[j]/by] = O(n®), by Lemma 6.2 and the dis-

cretization of the 1nput vectors in Section 4.
Therefore, | f'(§)| < |A| + |B| = O(n®). The lemma follows. O

From the above 2 lemmas,

Corollary 7.3 ming p(8) can be estimated within an additive |O(Z5)| error while considering only
maultiples of O(=ir) between —n®...n® and only O(n®) other points in this range for &, provided

integrations can be performed exactly.

8 Performing Integrations

We show how to perform the integrations required to evaluate f(§) (see Section 5) in polynomial
time with just O(-5) error. This implies that the error involved in computing p(d) is O(r|E|%) =
O(Z%) as requlred by Theorem 3.1.

The following lemmas will be used. The first of these lemmas describes the general form of
each function we need to integrate.

Lemma 8.1 FEach integration we perform can be expressed in the following form:

~5 H(G(h))dh

U 2w ‘
for some function G(h), where H() is such that 0 < H(e) <1, for all e.

Proof. This is easily verified by an inspection of the expressions to be integrated in Section 5
and the integral for I() in Section 6. The functions H() are always probabilities. The only fact
to be noted is that [(v,w,x, x4+ dz,y, y+ dy) which appears in the integrals in Case 2 of Section

5 equals:
1 pletdaybr o purdy—zb))ey e
Lot 2)
2m Ja/b (y—=b})/b,
b/
(y—=3h)?
11 -2 1 o 1 w1
= ——¢ 1] ———e 2 d dx: c 2 dh dh
V2 by 27 09 Y 2T V2T

where v = (by,0,...,0) and w = (b],05,0,...,0) in the rotated coordinate system as in Section

'
a:bl

6 and the last equality is obtained by a change of variables h = m and b’ = =

of variables affects the limits of the integration, but we are not claiming any special properties
for the limits.
Similarly,

Iwj+1...nwj+1...n],x —a’ —v[j]d,x +dz — o' —v[j]d,y — ' — w[j]é,y + dy — ' — w][j]d)
which appears in the integrals in Case 3 of Section 5 equals
1 _»2 1 _
—e" 2 e
V2T 2T
where v[j+1...n] = (b1,0,...,0) and w[j+1...n] = (b],05,0,...,0) in the rotated coordinate

z—a'—v[j]8

system as in Section 6, and the last equality is obtained by a change of variables h =
(a—al —o[15)b]

y—B' —w[jlé— by
by

by

and A = . O

The next lemma shows that limits of each integration we perform can be clipped to some
polynomial range.

Lemma 8.2

min{m,n®} 12 mo1 g2
Sy T3¢ THGUN A < [T e THG()dh

min{m,n%}] n2
< 2 H(G(h))dh + O
acttney oz HG(0R) =

)

n2a

for all a > 0.

Proof. The first inequality is obvious. The second is derived using Chebyschev’s inequality as
follows.
2

" e H(G(R)

< it :13} Gl THGM)dh + [70 Ao T HGh)dh + [A=(e”= H(G(h))dh
min4ym,n _ﬁ -1 _ﬁ o0 R L
< Doy (™ T HGM))AR + 72 (o™)dh 4 [3% F(e™ 7)b
min4ym,n _ﬁ —
< Jriicone) (€™ H(GR))Ab + 2 ¥ (e)dn
< E;E%?_Za}} \/%(e_h?H(g(h)))dh +2—-. Chebyschev’s inequality is used in the last step above.
The fact that 0 < H(e) < 1 for all e is used in the second step. O

The next lemma is classical and will be used to show that each integration can be converted
to a summation by discretizing the range between the limits of integration.

Lemma 8.3 | [/** \/Lz—ﬁ(e_éﬂ(g(h)))dh — \/Lz—ﬂe_éﬂ(g(l))ﬂ < Mp? where M upper bounds the

derivative of \/%(e_héﬂ(g(h))) with respect to h.

Algorithm for Performing Integrations. The above three lemmas lead to the following

algorithm for performing integrations. Consider a particular integral f™ \/7(—@iH(g(h)))dh
We first replace the above integral by

[e)
— (e 2
max{l,—no} /27
Here a will be fixed later. Next, we convert this integral to a sum by dividing the range between
the limits of integration into steps of size #, for some b to be fixed later.

Suppose the derivative of \/%(e_héﬂ(g(h))) is bounded by O(n¢). This is yet to be shown;
we will do so shortly. First, we compute the total error incurred above.

By Lemma 8.2, clipping the limits of integration incurs an error of O(n%) By Lemma 8.3, the
error incurred in each step of the summation is O(:—;b), assuming there is no error in computing

\/%e_éﬂ(g(h)). However, H() itself may have been obtained as a result of performing a nested
integration or as a product of O(n) distinct integrations nested one level deeper (as in Case 2.2
of Section 5, for example). This implies that the value of H() computed itself will have some
error. So suppose we have computed each of these nested integrations within an error of O(nif)
Then the error in H() is O(—=). Therefore, the error incurred in each step of the summation
is O(s+ L —=r5); this sums to O(" 4 note
O(== + % + ;) and the time taken for this integration (ignoring the time taken for the
nested integrals in H()) is O(n*?).

Finally, note that the depth of nesting in our integrals is at most 5 (in Case 2.2 of Section 5,
it is 5). It can be easily seen that starting with the innermost integral and working outwards,
values a,b can be chosen for these successive integrals based upon the respective e, f values so
that the final error is O(=5). This ensures that these integrations can be performed with O(-5)

+ n?—il) over all 2nn® steps. The total error is thus

error in polynomial time.
It now suffices to show that the derivatives of all integrands are bounded by O(n¢), for some
€.

Bounding Derivatives of Integrands in /(). Recall that

I(b,V e /(TR L
(0.8, 2,y.2'4) = V2 o © (= =b))/} N <)dz
Here b,V have been rotated so that b = (b1,0,...,0) and &' = (b’l,b’z,(), ety 0)

—2/2 . . .
The derivative of \/Lz—ﬁeT with respect to 2’ is —\/%Z e Wthh is bounded in absolute value

by \/%6_71, a constant.
Next, we compute the derivative of the outer integrand. We first denote the inner integral by

—z

h(z). Then the derivative of the function to be integrated, that is, \/Lz—ﬂh(z)e 2 s

2 2 —1 ¥’ =zt o 1,2 =2
1 = 1 = TG 5

(—ze 7 h(z) + e (=h/by)(e® % T —e P % 1)

The first term in this sum is bounded in absolute value by a constant as h(z) < 1 and the second
term is bounded by O(n®) by Lemma 6.2. Hence the derivative is bounded by O(n®).

Bounding the Derivatives of other Integrands. We bound the derivatives for the integrands
in Case 2.2 of Section 5. This is the most complicated case. For other cases, a similar procedure
works.

Recall that in this case, the conditional probability f(d) can be split into three terms. We show
how the derivatives of the integrands involved in the first term can be bounded by polynomial
functions of n. The remaining two terms are similar.

The first term is:

a— a—v[n 116

G > r—i—1 =z
I(v,w,z,x+de,y,y +dy)l v, W, —00, T, —00,yle 2 dz.
g(é \/ﬂ/ /x /y (v,y +dy) (y)

= :ﬁ
To simplify notation, we denote by ¢ the value W, As in Section 6, let the coordinate
system be so rotated that the new coordinates of v are (b1,0,...,0) and the new coordinates of

w are (b,0,,0,...,0) where by, b, > 0. Recall from Section 6 that:

1= 115 it
Iv w2+ de,y,y + dy) = ——e2b1 7)

Varb \amby

l\)\

Therefore

[L e e
= I'" (v, w,—o0, x,—00,Y e2b1’ e % e ¥ “dydadz
F==o0 Jo=a Jy=p (2m)by V2mb, V2

We first consider innermost integral, that is with respect to y. The term to be integrated is:

y—Zb]

) 1 _%(
—C
Y o,

The other terms are independent of y. Its derivative with respect to y is:

v
~1/2()

I' v, w, —oc0,x, —00

r—1—2 Al (vw,—o0,x,—00,y)
I (v, w0, —00, x, —00,Y) 5o e

y=gt
i y—yb | —1/2(——)?
\/ﬁ’j Yo, w, —o0, 2, —00, y)(6212 ~)e %
Now)
—blz
0I(v,w, —oo,x, — /q 6_15226_% ybél)2d220(i)
Jy 27Tb bl
Observe that as the functions I, xe ~7*/2 are all bounded by constants, the value of the above

derivative is bounded in absolute value by O(L);) + (b,) 5). Since, 7 —1—1 < n, by = Q(5), V)
is (=) by Lemma 6.2, the above derivative is bounded by O(n'?).

The second innermost integral, i.e., the one with respect to = is considered next. The function

—x

inside the integral is h(x) (21 I e | where
)by
o] 1 1 _%(y_ﬁbi)2
h(zx :/ I'""Hv,w,—o0, 2, —00,Y)———¢ nod
o= [T e y

Since 0 < I() <1, h(x) = O(1). The derivative with respect to x is:
e P h(a)

Vo ©
i | _pEhy
—I_\/%ble P (r =i 1)Ir_l_2(v,w,—oo,:z:,—ooay)al(v’w’_gix’_oo’y)\/%,e T dy
_ a2 b (y zbi) 1(3,—%%)2 i
2 0O Tr—i— T /) T2 7
—|—\/%ble M1 l(v,w,—oo,x,—oo,y)\/z,—l—ﬂéﬁe 2 dy
Here,
0I(v,w, —o0,x,—00,Y) 1 -2 % 1/ne 1
- - = e 1 2 ey = O(=)
Ox 2mhy —oo by
1'2 .
Since xe” 7 h(x), () are all O(1), r —i — 1 < n, and
o 1 _L y‘ﬁbi 2 o Uy — &) 1 y‘ébl 5 b 1
77 € el b)dy:O(7/ 1(y /6131) 3 K)dy:O(1/): (2)
B Uy B bl(bz) b1 b1

the above derivative is bounded by O(bll2 + ﬁ) = O(n'®), by Lemma 6.2.

22

This leaves only the outermost integration, where the integrand is \/%e_ 5 fo2 h(x) \/%bl e_ﬁdx,

whose derivative with respect to z is O(1).

From the above, it follows that Theorem 3.1 is true.

9 Comments on Derandomizing the Max-Cut Algorithm.

Recall that Lemma 4.2 of Section 4 works only when |v - w| is bounded away from 1. This
may not be true for the case of Max Cut. However in this case, it can be easily seen that all the
input vectors can be simultaneously discretized using a procedure analogous to that in Section
4, so that the following are achieved:

1. Each component of each vector is at least some inverse polynomial in absolute value.

2. The dot product of any pair of vectors changes only by an inverse polynomial in absolute

value and is at most 1 — in absolute value.

1
poly(n)

3. For each pair of vectors v,w and every h, 1 < h < n, when the coordinate system is
rotated so that v[h...n] = (b1,0,...,0) and w[h...n] = (b],05,0,...,0), by and b}, are at

least some inverse polynomial in absolute value.

To compensate for Lemma 4.2, we only need to observe that the value of the Goemans and

Williamson objective function (that is, Y7, ; w,'jl_gi'vj) for the discretized vector configuration is
at least (1 — ——) times that for the initial vector set (this is because, the sum of the edges

poly ()
weights is at most twice the value of the objective function for the initial vector set). The rest

1s just a matter of choosing the appropriate inverse polynomial terms.

10

Conclusions

We believe that the techniques used here can be used to derandomize a general class of ran-
domized algorithms based on Semidefinite Programming. Loosely speaking, this class would

comprise of those whose expected value calculations involve just a constant number of vectors in
each “elementary” event. This class contains all randomized Semidefinite Programming based
algorithms known so far. It would be nice to obtain a general theorem to this effect.

Acknowledgments

We thank Naveen Garg, Kurt Mehlhorn, David Williamson, Michel Goemans and Madhu
Sudan for comments. We also thank Aravind Srinivasan for reading a draft of the manuscript
and for his detailed comments.

References

[1] N. Alon, N. Kahale, Approzimating the Independence Number wvia the 6-Function,
Manuscript.

[2] A. Blum, New Approzimation Algorithms for Graph Coloring, JACM, 41, 470-516, 1994.

[3] R. Boppana, M. Halldorsson, Approzimating Mazimum Independent Sets by Excluding Sub-
graphs, BIT, 32:180-196, 1992.

[4] W. Feller, Introduction to Probability Theory and its Applications, Vol. 1, Wiley Eastern
Edition.

[5] U. Feige, M. Goemans, Approzimating the Value of Two Prover Proof Systems, with Ap-
plications to Maz-2Sat and Maz-Dicut, 3rd Israeli Symposium on Theory and Computing
Systems, pp. 182-189, 1995.

[6] A. Frieze, M. Jerrum, Improved Approzimation Algorithms for Maz k-Cut and Maz Bisec-
tion, Integer Programming and Combinatorial Optimization, 1995.

[7] M. Grotschel, L. Lovész, A. Schrijver, Geometric Algorithms and Combinatorial Optimiza-
tion, Springer-Verlag, 1987.

[8] M. Goemans, D. Williamson, 0.878 Approzimation Algorithms for Maz CUT and Max 2SAT,
26th Annual Symposium on the Theory of Computing, pp. 422-431, 1994. Also in Journal
of the ACM, Vol. 42, No. 6, 1996, pp. 1115-1145.

[9] M. Halldorsson, A Still Better Performance Guarantee for Approzimate Graph Colouring,
IPL 45, 19-23, 1993.

.>. Johnson orst Case Behaviour of Gra olorin orithms, Proceedings, 5th South-

[10] D.S. Joh , W Case Behavt f Graph Coloring Algorithms, P dings, 5th South

Eastern Conference on Combinatorics, Graph Theory and Computing, Congressus Numer-
atium X, 513-527, 1974.

[11] D. Karger, R. Motwani, M. Sudan, Approzimate Graph Coloring by Semidefinite Program-

ming, 35th IEEE Symposium on Foundations of Computer Science, pp. 1-10, October 1994.

[12]

[13]

[14]

[15]

[16]
[17]

18]

P. Kelsen, S. Mahajan, H. Ramesh, Approzimately Coloring 2-Colorable 3-Uniform Hyper-
graphs, To appear, Scandinavian Workshop on Algorithm Theory, 1996.

S. Khanna, N. Linial, S. Safra, On the Hardness of Approzimating The Chromatic Number,
2nd Israeli Symposium on Theory and Computing Systems, pp. 250-260, 1992.

P. Raghavan, Probabilistic Construction of Deterministic Algorithms: Approzimating Pack-
ing Integer Programs, JCSS 37, 130-143, 1988.

P. Raghavan, Randomized Rounding, Foundations of Theoretical Computer Science and
Software Technology, 1994.

J. Spencer, Ten Lectures on the Probabilistic Method, STAM, Philadelphia, 1987.

A. Wigderson, Improving the Performance Guarantee of Approrimate Graph Coloring,
JACM, 30, 729-735, 1983.

M. Yannakakis, On the Approzimation of Mazimum Satisfiability, 3rd Annual ACM-SIAM
Symposium on Discrete Algorithms, 1-9, 1992.

