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Abstract

Remarkable breakthroughs have been made recently in obtaining approximate solutions to some
fundamental NP�Complete problems� namely Max�Cut� Max k�Cut� Max�Sat� Max�Dicut� Max�
Bisection� k Vertex Coloring� Independent Set� etc� These breakthroughs all involve polynomial
time randomized algorithms based upon Semide�nite Programming� a technique pioneered by
Goemans and Williamson����
In this paper� we give techniques to derandomize the above class of randomized algorithms�

thus obtaining polynomial time deterministic algorithms with the same approximation ratios for
the above problems� At the heart of our technique is the use of spherical symmetry to convert a
nested sequence of n integrations� which cannot be approximated su�ciently well in polynomial
time� to a nested sequence of just a constant number of integrations� which can be approximated
su�ciently well in polynomial time�

� Introduction
The application of Semide	nite Programming to obtaining approximation algorithms for NP�

Complete problems was pioneered by Goemans and Williamson���� This technique involves re�
laxing an integer program �solving which is an NP�Complete problem	 to a semide�nite program
�which can be solved with a su
ciently small error in polynomial time	� In a remarkable break�
through� Goemans and Williamson showed how this technique could be used to give a randomized
approximation algorithm for the Max�Cut problem with an approximation ratio of ����� This
must be contrasted with the previously best known approximation ratio of �
 obtained by the
simple random cut algorithm� Subsequently� semide�nite programming based techniques have
led to randomized algorithms with substantially better approximation ratios for a number of
fundamental problems�
Goemans and Williamson��� obtained a ���� approximation algorithm for Max��Sat and an

��
� approximation algorithm for Max�Sat� improving upon the previously best known bound of
��� ���� for both� They also obtain a ���� approximation algorithm for Max�Dicut� improving
upon the previously best known ratio of ��
 given by the random cut algorithm� Feige and
Goemans �
� obtained improved approximation algorithms for Max��Sat and Max�Dicut�
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Karger� Motwani and Sudan obtained an algorithm for coloring any k�colorable graph with
O�n�����k��� log n	 colors����� in particular� for ��colorable graphs� this algorithm requiresO�n��� log n	

colors� This improves upon the deterministic algorithm of Blum��� which requiresO�n��
�

k���� log
�
� n	

colors for k�colorable graphs�
Frieze and Jerrum��� obtained a ��
 approximation algorithm for Max�Bisection improving the

previous best known bound of �
 given by the random bisection algorithm� They also obtained a
�� �

k
�� lnk

k�
approximation algorithm for the Max k�Cut problem� improving upon the previously

best known ratio of � � �
k
given by a random k�Cut�

Alon and Kahale��� obtained an approximation algorithm for the independent set problem�
For any constant k � �� if the given graph has an independent set of size n�k � m� where n

is the number of vertices� they obtain an ��m
�

k�� logm	 sized independent set� improving the

previously known bound of ��m
�

k�� 	 due to Boppana and Halldorsson����
All the new developments mentioned above are randomized algorithms� All of them share

the following common paradigm� First� a semide�nite program is solved to obtain a collection
of n vectors in n dimensional space satisfying some properties dependent upon the particular
problem in question� This step is deterministic �in the Feige� Goemans paper �
�� there is another
intermediate step of generating a new set of vectors from the vectors obtained above	� Second�
a set of independent random vectors is generated� each vector being spherically symmetric� i�e��
equally likely to pass through any point on the n dimensional unit sphere centered at the origin�
Finally� the solution is obtained using some computation on the n given vectors and the random
vectors�
It is not obvious how to derandomize the above randomized algorithms� i�e�� to obtain a �good�

set of random vectors deterministically� A natural way to derandomize is to use the method of
Conditional Probabilities���� ���� The problem that occurs then is to compute the conditional
probabilities in polynomial time�

� The main contribution of this paper is a technique which enables derandomization of all the
semide�nite programming based approximation algorithms listed above� This leads to determin�
istic approximation algorithms for Max�Cut� Max k�Cut� Max Bisection� Max��Sat� Max�Sat�
Max�Dicut� k Vertex Coloring� and Independent Set with the same approximation ratios as their
randomized counterparts mentioned above�

Our derandomization uses the conditional probability technique� We compute conditional
probabilities as follows� First� we show how to express each conditional probability computation
as a sequence of O�n	 nested integrals� Performing this sequence of integrations with a small
enough error seems hard to do in polynomial time� The key observation which facilitates condi�
tional probability computation in polynomial �time is that� using spherical symmetry properties�
the above sequence of O�n	 nested integrals can be reduced to evaluating an expression with just
a constant number of nested integrals for each of the semide�nite based approximation algorithms
mentioned above� This new sequence of integrations can be performed with a small enough error
in polynomial time� A host of precision issues also crops up in the derandomization� Conditional
probabilities must be computed only at a polynomial number of points� Further each conditional
probability computation must be performed within a small error� We show how to handle these
precision issues in polynomial time�



As mentioned above� our derandomization techniques apply to all the semide�nite program�
ming based approximation algorithms mentioned above� Loosely speaking� we believe our tech�
niques are even more general� i�e�� applicable to any scheme which follows the above paradigm
and in which the critical performance analysis boils down to an �elementary event� involving
just a constant number of the n vectors at a time� For example� in the graph coloring algorithm�
only two vectors� corresponding to the endpoints of some edge� need to be considered at a time�
An example of an elementary event involving � vectors is the Max�Dicut algorithm of Goemans
and Williamson� Another example of the same is the algorithm of Kelsen� Mahajan� and Ramesh
���� for coloring ��colorable ��uniform hypergraphs approximately�
The paper is organized as follows� In Section �� we outline the Goemans and Williamson

Max�Cut algorithm and the Karger� Motwani� Sudan coloring algorithm� We then describe our
derandomization scheme� Since the Karger� Motwani� Sudan coloring algorithm appears to be the
hardest to derandomize amongst the algorithms mentioned above� our exposition concentrates
on this algorithm� The derandomization of the other algorithms is similar� Section � describes
the derandomization procedure� The following sections describe the derandomization procedure
in detail�

� The Semide�nite Programming Paradigm
It is known that any concave polynomial time computable function can be maximized �within

some tolerance	 over a convex set with a weak separation oracle in polynomial time ���� One
such convex set is the set of semide	nite matrices� i�e�� those matrices whose eigenvalues are
all non�negative� A set formed by the intersections of half�spaces and the set of semide�nite
matrices is also a convex set� Further� this convex set admits a weak separation oracle� A
semide�nite program involves maximizing a polynomial time computable concave function over
one such convex set� Semide�nite programs are therefore solvable �up to an arbitrarily small
additive error	 in polynomial time� Goemans and Williamson �rst used this fact to obtain an
approximation algorithm for Max�Cut�
The Goemans�Williamson Max�Cut Algorithm� Goemans and Williamson took a natural
integer program for Max�Cut and showed how to relax it to a semide�nite program� The solution
to this program is a set of n unit vectors� one corresponding to each vertex of the graph in
question� These vectors emanate from the origin� We call these vectors vertex vectors� These are
embedded in n dimensional space� This leads to the question as to how a large cut is obtained
from these vectors�
Goemans and Williamson choose a random hyperplane through the origin whose normal is

spherically symmetrically distributed� this hyperplane divides the vertex vectors into � groups�
which de�ne a cut in the obvious manner� The expected number E�W 	 of edges� across the
cut is

P
�v�w��E arccos�v � w	�� �

P
�v�w��E Pr�sign�v � R	 �� sign�w � R		� where E is the set of

edges in the graph and v�w denote both vertices in the graph and the associated vertex vectors�
Goemans and Williamson show that E�W 	 is at least ���� times the maximum cut�
Note that the n random variables involved above are the n coordinates which de�ne the nor�

mal R to the random hyperplane� Let R�� R�� � � � � Rn be these random variables� For R to
be spherically symmetrically distributed� it su
ces that the Ri�s are independent and identi�

�For simplicity� we consider the unweighted Max�Cut problem�



cally distributed with a mean � and variance � normal distribution� i�e�� the density function is
�p
��
e�x

��� ���� Derandomizing the above algorithm thus requires obtaining values for R�� � � � � Rn

deterministically so that the value of the cut given by the corresponding hyperplane is at least
E�W 	�

The Karger�Motwani�Sudan Coloring Algorithm� The Karger� Motwani� Sudan algorithm
shows how to color a ��colorable graph of n vertices with O�n��� log n	 colors� The authors use a
semide�nite program to obtain a set of vertex vectors such that v �w � ��

�
� for all edges �v�w	�

Note that if these vectors are somehow constrained to be in � dimensions� then there are at most
� distinct vectors� which would specify a ��coloring� However� the output to the semide�nite
program are vectors in an n�dimensional space� It remains to be described how a coloring is
obtained from these vectors� This is done as follows�
Karger� Motwani and Sudan choose r vectors� t�� � � � � tr� independently and at random� each is

spherically symmetric� These vectors are called centers� Let the jth coordinate of ti be denoted
by ti�j�� � � j � n� Spherical symmetry is obtained by the following procedure� each ti�j� is
chosen independently at random from a normal distribution with mean � and variance �� The
color that vertex v gets is simply c� where tc � v � max��i�r ti � v� In other words� the color
assigned to a vertex v corresponds to that amongst the r centers which has the largest projection
on the vector v�
To determine how good the above procedure is� it is necessary to determine the probability

that an edge is bad� i�e�� both its endpoints get the same color� Consider two vertex vectors v�w�
such that �v�w	 is an edge e in G � �V�E	� The probability that v and w get the same color in
the algorithm is given by Pr�Ee	 �

Pr
k	� Pr�E

e
k	� where E

e
k is the event that both get color tk�

Ee
k can be written as�

Ee
k� tk � v � maxft� � v� � � � � tr � vg � tk � w � maxft� � w� � � � � tr � wg
Karger� Motwani and Sudan���� show that

P
e�E Pr�Ee	 � n��� for r � d��� log��� d� where

d is the maximum degree of the graph� Thus� at the end of the above procedure� the expected
number of bad edges is less than n��� All vertices except those upon which these bad edges are
incident are discarded �the colors assigned to them are �nal	� The remaining vertices� which are
at most n�� in number� are recolored by repeating the above procedure O�log n	 times� using a
fresh set of colors each time� This gives an O�d��� log��� d log n	 coloring of a ��colorable graph�
This combined with Wigderson�s trick ���� gives an O�n��� log n	 coloring of a ��colorable graph�

Derandomizing the above algorithm entails deterministically obtaining values for ti�j��s so that
the number of bad edges is at most the expected number of bad edges above� i�e�� n��� Actually
it su
ces to obtain values for ti�j��s such that the number of bad edges is at most n�� � � � for
some constant � � This is what we will do�

Note that the Goemans�Williamson algorithm uses a random hyperplane while the Karger�
Motwani�Sudan algorithm uses a set of random centers� Although these � methods seem di�erent�
the hyperplane method can be interpreted as just the center method with � centers�

� The Derandomization Scheme
For simplicity� we restrict our exposition here to the derandomization of the Karger� Motwani�

Sudan algorithm for coloring ��colorable graphs� Our procedure easily generalizes to all other



known semide�nite programming based approximation algorithms listed in Section ��

Notation� For a vector u� we denote by u�l � � �m� the vector formed by the lth tomth coordinates
of u�

The Derandomization Scheme� The scheme is essentially to use the method of conditional
expectations to deterministically �nd values for the vectors t�� � � � � tr so that the number of bad
edges is just n�� � � � for some constant � �
We de�ne a total order � on the conditional variables as follows� t���� � � � � � t��n� �

t���� � � � � t��n� � � � � � tr��� � � � � � tr�n�� The values of these are �xed one by one� in order� So
suppose that the values
t��� � � � n�� t��� � � � n�� � � � � ti�� � � � j � �� have been determined� We will show how a value for ti�j�
is determined�

Notations� Let E be an event� Then Pr�Eji� j� �	 denotes the probability that the event E occurs
when the values for all conditional variables � ti�j� have been �xed as above and ti�j� itself is
assigned value �� So� for example� Pr�Ee

kji� j� �	 denotes the probability that event Ee
k occurs

�i�e�� that both endpoints of edge e get the color associated with center tk	� when the values for
all conditional variables � ti�j� have been �xed as above and ti�j� itself is assigned value �� For
notational brevity� sometimes we use f��	 to denote Pr�Ek

e ji� j� �	�
Let p��	 be the expected number of bad edges� when the values for all conditional variables

before ti�j� are �xed as above and ti�j� is assigned value �� p��	 �
P

e�E
Pr

k	� Pr�E
e
kji� j� �	�

Fixing ti�j�� Let �min be the value of � which minimizes p��	� �� � � � �� We would like
to �x ti�j� to �min� The question is how to compute �min� We do not actually compute �min�
However� we will show the following�

Theorem ��� A value 	 for ti�j� satisfying the following property can be computed in polynomial
time
 p��min	 � p�		 � p��min	 �O���n�	�

From the above theorem� we derive the following corollary�

Corollary ��� After all ti�j��s have been 	xed and colors assigned to vertices as in the random�
ized algorithm� the number of bad edges is at most n

�
�O��	�

Proof� Note that the number of conditional variables ti�j� is nr � n� �actually for ��colorable
graphs r is much smaller� namely d��� log��� d� where d is the maximum degree	�
Recall that the expected number of bad edges before any of the random variables was �xed

is at most n
�
� By Theorem ���� the expected number of bad edges after the �rst conditional

variable is �xed is at most n
� � O� �

n�
	� An easy inductive argument shows that the expected

number of bad edges after the lth conditional variable is �xed is at most n
� �O� l

n�
	� After all the

nr � n� conditional variables have been �xed� the expected number of bad edges �which is just
the number of bad edges since all conditional variables are now �xed	 is at most n

� �O��	� �

To show Theorem ���� we will perform the following steps�

Step �� First we discretize the vertex vectors� This ensures that derivatives of the functions
f��	 and p��	 are bounded by a polynomial in n� This� in turn� ensures that the values of the



above functions between any two nearby points will not be too di�erent from their values at
these two points� This facilitates discrete evaluation� This discretization is described in Section
��

Step �� In Section 
� we show how to express f��	 in terms of a function I de�ned as follows�
This enables the probability to be computed using integrals with just constant nesting depth�

De�nition� Let b� b� be vectors of the same dimension� which is at least �� Let a be another
vector of the same dimension whose entries are independent and normally distributed with mean
� and variance �� Let x � y and x� � y� be in the range �� � � ��� Then I�b� b�� x� y� x�� y�	
denotes Pr��x � a � b � y	 � �x� � a � b� � y�		�

Step �� Computing the integral corresponding to I is the key question� As mentioned in
the introduction� naive computation would require a nested sequence of ��n	 integrals� Using
spherical symmetry properties we show how to perform this integration using just integrals with
constant nesting� This is described in Section ��

Step 	� In order to compute 	� we can a�ord to evaluate p��	 only for a polynomial number of
points� So we have to discretize the range �� � � �� for �� We must do so in a way such that
the least value of p��	 when restricted to just these discrete points is O� �

n�
	 away from the actual

minimum� This is done in Section ��

Step 
� Finally we need to show how f��	 can be approximated within an additive O� �
n�
	 error

in polynomial time� this will ensure that p��	 can be evaluated within an O�rjEj �
n�
	 � O� �

n�
	

error� as required by Theorem ���� To do so� we need to show that the integrations in Section

 which describe f��	 can be evaluated within an additive O� �

n�
	 error� This is again done by

discretizing the range between the limits of the integration and is described in Section ��

� Discretizing the Input Vectors
For simplicity� we assume that v � w � ���� for edge e � �v�w	� The Karger�Motwani�Sudan

algorithm sets v �w � ����� but the theoretical performance of the algorithm does not change if
v �w is set to exactly ����� Our algorithm can be easily generalized as long as jv �wj is bounded
away from �� Note that the above assumption is not valid for the Goemans�Williamson Max�Cut
algorithm� We show how to tackle this problem in Section ��
Let 
 be a number which is  � �

n�
	� The objective of discretizing the input vectors is the

following� All the components of v�w must be made ��
	 in absolute value� In addition� for each
h� � � h � n� when the coordinate system is rotated so as to make v�h � � � n� � �b�� �� � � � � �	 and
w�h � � � n� � �b��� b

�
�� �� � � � � �	� jb�j and jb��j are at least inverse polynomial in n� The last property

will be necessary in our proofs later� in Lemma ���� in particular� This discretization is achieved
as follows�

Rounding Procedure� First� all the entries in v�w are rounded upwards �in absolute value	
to the nearest non�zero multiples of 
� Next� up to �
 is added �in absolute value	 to vn�� so
that jvn��wn � wn��vnj � �
�� Note that in this process � � jvj�� jwj� � �� for small enough 
�
i�e�� for large enough n� Each component of v�w changes by at most �
 in this process and is
now non�zero� further� the absolute values of the components cannot decrease� Finally� we divide
each vector by its new norm so as to make it a unit vector� Then jvn��wn �wn��vnj � ��
�	�



Lemma 	�� For each h� � � h � n� jw�j� � �v��w���

jv� j� � ��
�	� where v� � v�h � � � n� and w� �
w�h � � � n��

Proof� First consider h � n � �� �v� � w�	� � �vn��wn�� � vnwn	� � �v�n�� � v�n	�w
�
n�� � w�

n	 �
�vn��wn �wn��vn	� � jv�j�jw�j� ���
�	� Therefore� jw�j� � �v��w���

jv�j� � ��
�	�

Next consider h � n��� Let l � v�h� � � � � n��� and m � w�h� � � � � n���� Let l� � v�n�� � � � n�
and m� � w�n�� � � � n�� �v� �w�	� � �l �m�l� �m�	� � �l �m	���l� �m�	����l� �m�	�l �m	 � jlj�jmj��
�l� � m�	� � �jl�jjm�jjljjmj� By the previous paragraph� �l� � m�	� � jl�j�jm�j� � ��
�	� Therefore�
�v� �w�	� � jlj�jmj�� jl�j�jm�j�� jl�j�jmj�� jlj�jm�j����
�	 � �jlj�� jl�j�	�jmj�� jm�j�	���
�	 �
jv�j�jw�j� � ��
�	� Therefore� jjw�j� � �v��w���

jv�j� j � ��
�	� �
The above rounding changes the vectors and hence the value of p��min	� We rede�ne �min so

that it now corresponds to the new rounded vectors� Lemma ��� shows that the above rounding
changes p��min	 by just O��	�

Lemma 	�� p��min	 changes by at most O�n
	jEj � O��	 due to the above rounding�

Proof� Originally v �w � ���� and v�w were unit vectors� The above rounding changes v �w by
some 
� which is O�n
	� Using Taylor series and the fact that Pr�Ee	 is a function only of v � w
and not the individual vectors themselves� Pr�Ee	 �

P�
i	
 ai�v �w	i� where

P
i ai � �� ai � � �see

���� Lemma �� for proof	� Then� after the rounding� j!Pr�Ee	j � jP�
i	
 ai���

�
� 
�	i � ���

�
	ij �P�

i	
 aij��� � 
�	i � ��
�
	ij

First� suppose 
� � �� Then j!Pr�Ee	j � P�
i	
 ai��

�
�	

i � ��� � 
�	i	 � P�
i	
��

�
�	

i � ��� � 
�	i	 �
�
���� � �
�	� Similarly for 
� � �� j!Pr�Ee	j � ��
���� � �
�	� �
Note that we are using the fact that v �w � ���� only in Lemma ���� The proof of this lemma

will go through as long as jv � wj is bounded away from ��
� Computing Conditional Probabilities
We are required to compute p��	� i�e��

P
e�E

Pr
k	� Pr�E

e
kji� j� �	� For e � �v�w	 and some �xed

k� we show how to express f��	 � Pr�Ee
kji� j� �	 in terms of the integrals I�	 de�ned earlier�

Recall that Pr�Ee
kji� j� �	 is the probability that both v�w are assigned the color corresponding

to center tk� when the values for all conditional variables before ti�j� have been determined and
ti�j� is assigned ��

Notation� For vectors a� b� let a � b�l�m� denote a�l � � �m� � b�l � � �m� � Pm
h	l a�h�b�h�� Let �

� �
ti � v�� � � � j � �� and Let 
� � ti � w�� � � � j � ���
Fact �� Note that ti��� ti��� � � � � tr are all completely undetermined� independent� mutually
and of t�� � � � � ti� and identically distributed in a spherically symmetric manner in n dimensions�
ti�j�� � � � n� is also undetermined and is spherically symmetrically distributed in n�j dimensions
and is independent of ti��� � � � tr and of all the previously �xed components of ti�

There are � cases� depending upon whether k � i� k � i� or k � i� Each case has � subcases�
depending upon whether j � n � �� j � n � � or j � n� We have to consider these � subcases
separately for the following reason� When j � n��� we will express the above probability in terms



of the integral I�	� For j � n � � and j � n� we cannot express the above probability in terms
of I�	 �recall that I�	 was only de�ned when its argument vectors are at least ��dimensional	�
Therefore� in these � subcases� we have to express the probability directly� These � subcases
themselves need to be separated because the derivative of f��	 behaves di�erently in these �
subcases� and the behaviour is crucial to the analysis� especially the discretization of Section ��
Note from Section � that v�n�� w�n� are non�zero� We will need to divide by these quantities

at points�

Case �� k � i� In this case� the center tk has been already determined� Let tk � v � � and
tk � w � 
� Centers t�� � � � � ti�� have also been determined� If one of t� � v� � � � � ti�� � v is greater
than � or if one of t� � w� � � � � ti�� � w is greater than 
 then Pr�Ee

kji� j� �	 is �� Otherwise� it is�
f��	 � Pr��r

l	i�tl � v � � � tl � w � 
	ji� j� �	
Note that the events tl � v � � � tl � w � 
� i � l � r� are all independent�

Case ���� j � n� �� By Fact ��
f��	 � Pr�ti � v � � � ti � w � 
ji� j� �		 Pr�tr � v � � � tr �w � 
	r�i

� Pr��� � �v�j� � ti � v�j � � � � � n� � � � 
� � �w�j� � ti � w�j � � � � � n� � 
		
Pr�tr � v � � � tr �w � 
	r�i

� Pr�ti � v�j � � � � � n� � �� �� � �v�j�� ti � w�j � � � � � n� � 
 � 
� � �w�j�		
Pr�tr � v � � � tr �w � 
	r�i

� I�v�j � � � � � n�� w�j � � � � � n����� �� �� � �v�j����� 
� 
� � �w�j�		
Ir�i�v�w���� ����� 
	

Case ���� j � n � �� We assume that both v�n� and w�n� are positive� The other cases are
similar� By Fact � and the fact that ti�n� is normally distributed�

f��	 � Pr�ti � v � � � ti � w � 
ji� n� �� �		 Pr�tr � v � � � tr � w � 
	r�i

� Pr�ti�n�v�n�� �� �� � �v�n� �� � ti�n�w�n� � 
 � 
� � �w�n� ��		
Pr�tr � v � � � tr �w � 
	r�i

� Pr�ti�n� � minf������v�n���v�n� � ���
���w�n���
w�n� g		 Pr�tr � v � � � tr � w � 
	r�i

� � �p
��

Rminf�����v�n��	�
v�n	 �

�����w�n��	�
w�n	 g

�� e�z
���dz		 Ir�i�v�w���� ����� 
	

Note that the derivative of f��	 with respect to � is unde�ned at only one point� namely� the

value of � for which �����v�n����
v�n�

� �����w�n����
w�n�

�

Case ���� j � n� If ti � v � �� � v�n�� � � or ti � w � 
� � w�n�� � 
� then ti has a bigger dot
product than tk with at least one of v or w� and therefore� Pr�Ee

kji� j� �	 � �� Otherwise�
f��	 � Pr�ti � v � � � ti � w � 
ji� j� �	Pr�tr � v � � � tr � w � 
	r�i

� Pr�tr � v � � � tr �w � 
	r�i

� Ir�i�v�w���� ����� 
	

Note that the derivative of f��	 with respect to � is unde�ned only for two values� namely�
when � � �� � v�n�� and 
 � 
� � w�n���

Case �� k � i� Let maxft� � v� � � � � ti�� � vg � � and maxft� � w� � � � � ti�� � wg � 
� tk � v � �
and tk � w � 
 for tk to be the color assigned to both v and w� Then� let A be the event
tk � v � � � tk � w � 
 and Bl be the event tl � v � tk � v � tl � w � tk � w� l � i� l �� k�



Note that the events Bl in this case are not independent� However� they are independent for
�xed values of tk � v and tk � w� In what follows� we will� at appropriate points� �x tk � v and
tk � w to be in some in�nitesimal intervals� and then integrate over these intervals� Within such
an integral� the values of tk � v and tk � w may be treated as �xed� and therefore� the events
corresponding to the Bl�s with the above values �xed become independent�

Case ���� j � n� ��
f��	 � Pr�A � Bi � � � � Bk�� � Bk�� � � � � Brji� j� �	

�
R�
x	�

R�
y	��Pr��x � tk � v � x� dx	 � �y � tk � w � y � dy		

Pr�ti � v � x � ti � w � yji� j� �		Q
l	i������k���k������r Pr�tl � v � x � tl � w � yji� j� �		

�
R�
x	�

R�
y	��I�v�w� x� x� dx� y� y� dy	

Pr��� � �v�j� � ti � v�j � �� n� � x � 
� � �w�j� � ti � w�j � �� n� � y	
Ir�i���v�w���� x���� y		

�
R�
x	�

R�
y	��I�v�w� x� x� dx� y� y� dy	

I�v�j � � � � � n�� w�j � � � � � n����� x� �� � v�j������ y� 
� � w�j��	
Ir�i���v�w���� x���� y		

Case ���� j � n� �� Assume that v�n� and w�n� are positive� The remaining cases are similar�

f��	 � Pr�A �Bi � � � � Bk�� � Bk�� � � � �Brji� n� �� �	
�

R�
x	�

R�
y	��Pr��x � tk � v � x� dx	 � �y � tk � w � y � dy		Q

l	i����k���k������r Pr�tl � v � x � tl � w � yji� n� �� �		
�

R�
x	�

R�
y	��I�v�w� x� x� dx� y� y� dy	

Pr��� � �v�n� �� � ti�n�v�n� � x � 
� � �w�n� �� � ti�n�w�n� � y	Q
l	i������k���k������r Pr�tl � v � x � tl � w � y		

�
R�
x	�

R�
y	��I�v�w� x� x� dx� y� y� dy	�

�p
��

Rminfx����v�n��	�
v�n	 �

y����w�n��	�
w�n	 g

z	�� e�z
���dz	

Ir�i���v�w���� x���� y		
� �p

��

R�
z	��

R�
x	maxf�����v�n�z�v�n����g

R�
y	maxf�����w�n�z�w�n����g�I�v�w� x� x� dx� y� y � dy	

Ir�i���v�w���� x���� y	e�z
���	dz

�

Note that the derivative of f��	 with respect to � is unde�ned only when �����v�n����
v�n�

�
�����w�n����

w�n� � We see this by the following argument� Consider the values of � for which
�����v�n����

v�n� � �����w�n����
w�n� � The above expression for f��	 can then be split up into a sum

of three terms described below� From the resulting expression� it is clear that it is di�erentiable
for all values of � such that �����v�n����

v�n�
� �����w�n����

w�n�
� A similar argument shows that f��	 is is

di�erentiable for all values of � such that �����v�n����
v�n� � �����w�n����

w�n� �



f��	 �

�p
��

R �����v�n��	�
v�n	

z	��
R�
x	�

R�
y	��I�v�w� x� x� dx� y� y � dy	

Ir�i���v�w���� x���� y	e�z
���dz	

� �p
��

R �����w�n��	�
w�n	

z	
�����v�n��	�

v�n	

R�
x	���v�n�z�v�n����

R�
y	��I�v�w� x� x� dx� y� y � dy	

Ir�i���v�w���� x���� y	e�
z�

� dz	
� �p

��

R�
z	

���� �w�n��	�
w�n	

R�
x	���v�n�z�v�n����

R�
y	���w�n�z�w�n�����I�v�w� x� x� dx� y� y � dy	

Ir�i���v�w���� x���� y	e�
z�

� dz	

Case ���� j � n� Since ti�n� is assigned to � and all other components of ti are �xed� tk � v �
maxf����� v�n��g and tk �w � maxf
� 
��w�n��g for tk to be the color assigned to both v and
w�

f��	 � Pr�A � Bi � � � � Bk�� � Bk�� � � � � Brji� n� �	
�

R�
y	maxf�����w�n��g

R�
x	maxf�����v�n��g�Pr��x � tk � v � x� dx	 � �y � tk � w � y � dy		Q

l	i������k���k������r Pr�tl � v � x � tl � w � yji� n� �		
�

R�
y	maxf�����w�n��g

R�
x	maxf�����v�n��g�Pr��x � tk � v � x� dx	 � �y � tk � w � y � dy		Q

l	i������k���k������r Pr�tl � v � x � tl � w � y		
�

R�
maxf�����w�n��g

R�
maxf�����v�n��g�I�v�w� x� x� dx� y� y � dy	

Ir�i���v�w���� x���� y	

Note that the derivative of the above expression with respect to � is unde�ned only for two
values� namely� when � � �� � v�n�� and 
 � 
� � w�n���

Case �� k � i� Let maxft� � v� � � � � ti�� � vg � � and maxft� � w� � � � � ti�� � wg � 
� ti � v � �
and ti � w � 
� for ti to be the color assigned to both v and w� Then� let A be the event
ti � v � � � ti � w � 
 and Bl be the event tl � v � ti � v � tl � w � ti � w� l � i�
Again� note that the eventsBl in this case are not independent� However� they are independent

for �xed values of ti � v and ti � w� Then� as in Case ��
Case ���� j � n� ��

f��	 � Pr�A � Bi�� � � � � �Brji� j� �	
�

R�
x	�

R�
y	��I�v�j � � � � � n�� w�j � � � � � n�� x� �� � v�j��� x� dx� �� � v�j���

y � 
� � w�j��� y � dy � 
� � w�j��	
Ir�i�v�w���� x���� y		

Case ���� j � n� �� Assume that v�n� and w�n� are positive� The other cases are similar�

f��	 � Pr�A � Bi�� � � � � �Brji� n� �� �	
� �p

��

R�
z	maxf�����v�n��	�

v�n	
�
�����w�n��	�

w�n	
g

�Ir�i�v�w���� ��� v�n� ��� � v�n�z���� 
�� w�n� ��� � w�n�z	e�z
���dz	

�

Note that the derivative of the above expression with respect to � is unde�ned only when
�����v�n����

v�n� � �����w�n����
w�n� �

Case ���� j � n� If v�n��� �� � � or w�n�� � 
� � 
 then this probability is �� Otherwise�



f��	 � Pr�A �Bi�� � � � � �Brji� j� �	 � Ir�i�v�w���� �� � v�n������ 
 �� w�n��	

Note that the derivative of the above expression with respect to � is possibly unde�ned only
for two at most � values� namely� when � � �� � v�n�� and 
 � 
� � w�n���

� Computing I	b� b�� x� y� x�� y�

Recall that I�b� b�� x� y� x�� y�	 denotes Pr��x � a � b � y	� �x� � a � b� � y�		� where a is a vector

whose entries are independent and normally distributed with mean � and variance �� We show
how to compute this probability�
Let b and b� be h dimensional� Note that h � �� Consider the h dimensional coordinate system

with respect to which b� b� are speci�ed� Note that a naive way to compute I is to perform a
sequence of h nested integrals� This seems hard to do in polynomial time with the required error�
We use the following method instead�
Note that since each coordinate of a is normally distributed with mean � and variance �� a has

a spherically symmetric distribution� We rotate the coordinate system so that b � �b�� �� � � � � �	
and b� � �b��� b

�
�� � � � � � �	� where b�� b

�
� � �� As we will show shortly� both b�� b

�
� will be strictly

positive for all our calls to I� Let a� � �a��� ���� a
�
n	 be the coordinates of a under the rotated

coordinate system� The following lemma is key�

Lemma ��� The probability distribution of a� is identical to that of a� That is all the coordinates
of a� are independently distributed according to the normal distribution with mean � and variance

�

Proof� Follows from the fact that a is spherically symmetric and a� is a rotation of a� �

Note that a� � b � a�b� and a� � b� � a�b
�
�� a�b

�
�� Now I�b� b�� x� y� x�� y�	 denotes Pr��x � a�b� �

y	 � �x� � a�b
�
� � a�b

�
� � y�		� This equals

Pr�� x
b�
� a� � y

b�
	 � �x��a�b��

b��
� a� � y��a�b��

b��
		 � �

��

R y�b�
x�b�

e�
z�

� �
R �y��zb����b��
�x��zb����b�� e

� z�
�

� dz�	 dz

Lemma ��� jb�j � ��
	 � �� �
n�
	 and jb��j � ��
�	 � �� �

n

	�

Proof� Recall that by the rounding in Section �� jb�j � jbj � ��
	� jb��j �
r
jjb�j� � �b�b���

jbj� j� since
b�� is just the projection of b

� on the line orthogonal to b in the plane containing b and b�� By
Lemma ��� and the fact that b� b� are of the form v�h � � � n�� w�h � � � n� in all the calls we make to
I�	� jb��j � ��
�	� �
� Discretizing ti�j�
For the purpose of this section� assume that integrations can be performed exactly� This will

be dealt with in Section ��
The values � we choose for ti�j� will be multiples of  ���n��	 in the range �n��� � � � n���� We

need to show that restricting and discretizing the range of � causes O� �
n�
	 error for each of the

conditionality variables� This is shown in the rest of this section�

Lemma ��� shows that considering values between �n��� � � � n��� only causes an error of O� �
n�
	

for each of the conditionality variables�



Lemma ��� min� p��	 can be estimated within an additive jrjEj �
n�
j � j �

n�
j while only considering

values between �n��� � � � n��� for ��

Proof� Note that Pr�Ee
kjt���� � � � ti�j � ��	 �� �p

��

R�
�� f��	e�

��

� d�

� �p
��
�
R n���
�n��� f��	e

� ��

� d� � �
R�
n��� e

� ��

� d�	� since � � f��	 � �� Now�
�p
��

R�
n��� e

� ��

� d� � �
n�
� by Chebyschev�s inequality� �

Next� we show that the discretization � in the above range causes O� �
n�
	 error for each of the

conditionality variables� We consider the three cases� j � n� j � n� � and j � n� �� separately�
Lemma ��� proves the above when j � n � �� Note that for j � n � �� f ���	 is always de�ned�
For j � n�� and j � n� a similar proof holds with the following di�erence� As shown in Section

� f ���	 is unde�ned at at most two values of � when j � n� � or j � n� so when j � n � �� n�
p���	 is unde�ned only at O�rjEj	 � O�n�	 values of �� We add these points to our discretization�
These divide the range �n��� � � � n��� into O�n�	 subranges� in each of which f ���	 and p���	 are
de�ned� In each of these ranges� a proof similar to that of Lemma ��� shows the needful�

Lemma ��� Suppose j � n��� Then jdPr�Ee
kji�j���

d� j � jf ���	j � O�n
	� Therefore jf��
O� �
n��
		�

f��	j � O� �
n��
	O�n
	 and jp�� 
O� �

n��
		� p��	j � O� �

n��
	O�n
	rjEj � O� �

n�
	�

Proof� Note that the function f depends upon which of Cases ���� ���� ��� hold in Section 
�
We show for one representative case� i�e�� Case ���� The other cases can be shown similarly�

For Case ���� f��	 �
R�
�

R�
� g�x� y	h�x� y� �	dydx�

where g�x� y	dydx � I�v�w� x� x� dx� y� y � dy	Ir�i���v�w���� x���� y	 and
h�x� y� �	 � I�v�j�� � � � n�� w�j� � � � � n����� x� ti � v�� � � � j � ��� v�j������ y� ti �w�� � � � j �
��� w�j��	�

jf ���	j � R�
�

R�
� jg�x� y	jj�h�x�y���

��
jdydx � maxx�y j�h�x�y�����

j� since R�� R�
� g�x� y	dydx is a probabil�

ity and therefore � ��
We show that jf ���	j � O�n
	 by estimating maxx�y j�h�x�y�����

j�
Let c�x� �	 � x� ti � v�� � � � j � ��� v�j�� � c� � v�j�� and
d�y� �	 � y � ti � w�� � � � j � ��� w�j�� � d� � w�j���
From Section ��

h�x� y� �	 � �
��

R c�x����b�
�� e�

z�

� �
R �d�y����zb����b���� e�

z�
�

� dz�	 dz� where b�� b
�
�� b

�
� are the obtained by

rotating the coordinates� as in Section ��

Let G�y� �� l	 � �p
��

R
e�

l�

� H�y� �� l	dl� where H�y� �� l	 � �p
��

R �d�y����lb����b���� e�
z�
�

� dz��

Then j�h
��
j � jA�Bj � jAj� jBj� where A � �p

��

R c�x����b�
�� e�

l�

�
�H�y���l�

��
dl

and B � �G
�l l	c�x����b�

�l
�� l	c�x����b�

�

Note that j�G
�l
j � � for all l� since H�y� �� l	 � ��

Further� j �l
�� l	c�x����b�

j � jv�j��b�j � O�n�	� by Lemma ��� and the discretization of the input



vectors in Section ��
Therefore� jBj � O�n�	�

jAj is bounded as follows�
jAj � j �p

��

R c�x����b�
�� e�

l�

�
�H�y���l�

��
dlj � maxy���l j�H�y���l�

��
j�

It remains to bound maxy���l j�H�y���l�
��

j� This is done below using the same technique as above�
Recall that�

H�y� �� l	 � �p
��

R �d�y����lb����b���� e�
z�
�

� dz��

Let J�m	 � �p
��

R
e�

m�

� dm� Then

j�H
��
j � j dJdmm	�d�y����lb����b��

jj�m
�� m	�d�y����lb����b��

j � jw�j��b��j � O�n
	� by Lemma ��� and the dis�

cretization of the input vectors in Section ��

Therefore� jf ���	j � jAj� jBj � O�n
	� The lemma follows� �

From the above � lemmas�

Corollary ��� min� p��	 can be estimated within an additive jO� �
n�
	j error while considering only

multiples of O� �
n��
	 between �n� � � � n� and only O�n�	 other points in this range for �� provided

integrations can be performed exactly�

	 Performing Integrations
We show how to perform the integrations required to evaluate f��	 �see Section 
	 in polynomial

time with just O� �
n�
	 error� This implies that the error involved in computing p��	 is O�rjEj �

n�
	 �

O� �
n�
	 as required by Theorem ����

The following lemmas will be used� The �rst of these lemmas describes the general form of
each function we need to integrate�

Lemma 
�� Each integration we perform can be expressed in the following form

Z m

l

�p
��

e�
h�

� H�G�h		dh

for some function G�h	� where H�	 is such that � � H�e	 � �� for all e�
Proof� This is easily veri�ed by an inspection of the expressions to be integrated in Section 

and the integral for I�	 in Section �� The functions H�	 are always probabilities� The only fact
to be noted is that I�v�w� x� x�dx� y� y�dy	 which appears in the integrals in Case � of Section

 equals�

�

��

Z �x�dx��b�

x�b�
e�

z�

� �
Z �y�dy�zb����b��
�y�zb����b��

e�
z�
�

� dz�	 dz

�
�p
��

�

b�
e
� x�

�b�
�
�p
��

�

b��
e
�

�y�x
b��
b�

��

��b�
�
�� dydx �

�p
��
e�

h�

�
�p
��
e�

�h���

� dh�dh



where v � �b�� �� � � � � �	 and w � �b��� b
�
�� �� � � � � �	 in the rotated coordinate system as in Section

� and the last equality is obtained by a change of variables h � x
b�
and h� �

y�xb��
b�

b��
� This change

of variables a�ects the limits of the integration� but we are not claiming any special properties
for the limits�
Similarly�

I�v�j�� � � � n�� w�j�� � � � n�� x���� v�j��� x�dx���� v�j��� y�
��w�j��� y�dy�
��w�j��	

which appears in the integrals in Case � of Section 
 equals

�p
��
e�

h�

�
�p
��
e�

�h���

� dh�dh

where v�j �� � � � n� � �b�� �� � � � � �	 and w�j � � � � � n� � �b��� b
�
�� �� � � � � �	 in the rotated coordinate

system as in Section �� and the last equality is obtained by a change of variables h � x����v�j��
b�

and h� �
y����w�j��� �x����v�j	��b��

b�

b��
� �

The next lemma shows that limits of each integration we perform can be clipped to some
polynomial range�

Lemma 
��

Z minfm�nag

maxfl��nag
�p
��

e�
h�

� H�G�h		dh �
Z m

l

�p
��

e�
h�

� H�G�h			dh

�
Z minfm�nag

maxfl��nag
�p
��

e�
h�

� H�G�h		dh�O�
�

n�a
	

for all a � ��

Proof� The �rst inequality is obvious� The second is derived using Chebyschev�s inequality as
follows�Rm
l

�p
��
�e�

h�

� H�G�h			dh
� Rminfm�nag

maxfl��nag
�p
��
�e�

h�

� H�G�h			dh� R�na��
�p
��
�e�

h�

� H�G�h			dh� R�na �p
��
�e�

h�

� H�G�h			dh
� Rminfm�nag

maxfl��nag
�p
��
�e�

h�

� H�G�h			dh� R�na��
�p
��
�e�

h�

� 	dh�
R�
na

�p
��
�e�

h�

� 	dh

� Rminfm�nag
maxfl��nag

�p
��
�e�

h�

� H�G�h			dh� � R�na �p
��
�e�

h�

� 	dh

� Rminfm�nag
maxfl��nag

�p
��
�e�

h�

� H�G�h			dh�� �
n�a
� Chebyschev�s inequality is used in the last step above�

The fact that � � H�e	 � � for all e is used in the second step� �

The next lemma is classical and will be used to show that each integration can be converted
to a summation by discretizing the range between the limits of integration�

Lemma 
�� j R l�	l
�p
��
�e�

h�

� H�G�h			dh� �p
��
e�

l�

� H�G�l		�j �M�� where M upper bounds the

derivative of �p
��
�e�

h�

� H�G�h			 with respect to h�



Algorithm for Performing Integrations� The above three lemmas lead to the following

algorithm for performing integrations� Consider a particular integral
Rm
l

�p
��
�e�

h�

� H�G�h			dh�
We �rst replace the above integral by

Z minfm�nag

maxfl��nag
�p
��
�e�

h�

� H�G�h			dh

Here a will be �xed later� Next� we convert this integral to a sum by dividing the range between
the limits of integration into steps of size �

nb
� for some b to be �xed later�

Suppose the derivative of �p
��
�e�

h�

� H�G�h			 is bounded by O�ne	� This is yet to be shown�
we will do so shortly� First� we compute the total error incurred above�
By Lemma ���� clipping the limits of integration incurs an error of O� �

n�a
	� By Lemma ���� the

error incurred in each step of the summation is O� n
e

n�b
	� assuming there is no error in computing

�p
��
e�

l�

� H�G�h		� However� H�	 itself may have been obtained as a result of performing a nested
integration or as a product of O�n	 distinct integrations nested one level deeper �as in Case ���
of Section 
� for example	� This implies that the value of H�	 computed itself will have some
error� So suppose we have computed each of these nested integrations within an error of O� �

nf
	�

Then the error in H�	 is O� �
nf�� 	� Therefore� the error incurred in each step of the summation

is O� n
e

n�b
� �

nf��nb
	� this sums to O�n

e�a

nb
� na

nf�� 	 over all �n
anb steps� The total error is thus

O� �
n�a
� ne�a

nb
� na

nf�� 	 and the time taken for this integration �ignoring the time taken for the
nested integrals in H�		 is O�na�b	�
Finally� note that the depth of nesting in our integrals is at most 
 �in Case ��� of Section 
�

it is 
	� It can be easily seen that starting with the innermost integral and working outwards�
values a� b can be chosen for these successive integrals based upon the respective e� f values so
that the �nal error is O� �

n�
	� This ensures that these integrations can be performed with O� �

n�
	

error in polynomial time�
It now su
ces to show that the derivatives of all integrands are bounded by O�ne	� for some

e�

Bounding Derivatives of Integrands in I�	� Recall that

I�b� b�� x� y� x�� y�	 �
�p
��

Z y�b�

x�b�
e
�z�

� �
Z �y��zb����b��
�x��zb����b��

�p
��
e
�z��

� dz�	dz�

Here b� b� have been rotated so that b � �b�� �� ���� �	 and b� � �b��� b
�
�� �� ���� �	

The derivative of �p
��
e
�z��

� with respect to z� is � �p
��
z�e

�z��

� which is bounded in absolute value

by �p
��
e
��
� � a constant�

Next� we compute the derivative of the outer integrand� We �rst denote the inner integral by

h�z	� Then the derivative of the function to be integrated� that is� �p
��
h�z	e

�z�

� is

�p
��
��ze�z

�

� h�z	 �
�

��
e
�z�

� ��b���b��	�e
��
� �

y��zb��
b�
�

�� � e�
�
� �

x��zb��
b�
�

��

		

The �rst term in this sum is bounded in absolute value by a constant as h�z	 � � and the second
term is bounded by O�n
	 by Lemma ���� Hence the derivative is bounded by O�n
	�



Bounding the Derivatives of other Integrands� We bound the derivatives for the integrands
in Case ��� of Section 
� This is the most complicated case� For other cases� a similar procedure
works�
Recall that in this case� the conditional probability f��	 can be split into three terms� We show

how the derivatives of the integrands involved in the �rst term can be bounded by polynomial
functions of n� The remaining two terms are similar�
The �rst term is�

g��	 �
�p
��

Z �����v�n��	�
v�n	

��

Z �

x	�

Z �

y	�
I�v�w� x� x� dx� y� y � dy	Ir�i���v�w���� x���� y	e

�z�

� dz�

To simplify notation� we denote by c the value �����v�n����
v�n�

� As in Section �� let the coordinate

system be so rotated that the new coordinates of v are �b�� �� ���� �	 and the new coordinates of
w are �b��� b

�
�� �� ���� �	 where b�� b

�
� � �� Recall from Section � that�

I�v�w� x� x� dx� y� y � dy	 �
�p
��

�

b�
e
�x�

�b�
�
�p
��

�

b��
e
� �

�
�
y� x

b�
b��

b�
�

��

dydx

Therefore

g��	 �
Z c

z	��

Z �

x	�

Z �

y	�
Ir�i���v�w���� x���� y	

�q
���	b�

e
�x�

�b�
�

�p
��b��

e
� �

� �
y� x

b�
b��

b�
�

�� �p
��
e�z

���dydxdz

We �rst consider innermost integral� that is with respect to y� The term to be integrated is�

Ir�i���v�w���� x���� y	
�p
��b��

e
� �

� �
y� x

b�
b��

b�
�

��

The other terms are independent of y� Its derivative with respect to y is�

�p
��b��
�r � i� �	Ir�i���v�w���� x���� y	�I�v�w����x����y�

�y
e
�����

y� x
b�

b��

b�
�

��

� �p
��b��

Ir�i���v�w���� x���� y	�
y� x

b�
b��

b��
� 	e

�����
y� x

b�
b��

b�
�

��

Now
�I�v�w���� x���� y	

�y
�

�

��b��

Z x
b�

��
e�

�
� z

�
e
� �

�
�
y�b��z

b�
�

��

dz � O�
�

b��
	

Observe that as the functions I� xe�x
��� are all bounded by constants� the value of the above

derivative is bounded in absolute value by O� �r�i����b���
� � �

�b���
� 	� Since� r� i� � � n� b� � ��

�
n�
	� b��

is �� �
n

	 by Lemma ���� the above derivative is bounded by O�n��	�

The second innermost integral� i�e�� the one with respect to x is considered next� The function

inside the integral is h�x	 �p
����b�

e
�x�

�b�
� � where

h�x	 �
Z �

y	�
Ir�i���v�w���� x���� y	

�p
��b��

e
� �

� �
y� x

b�
b��

b�
�

��

dy



Since � � I�	 � �� h�x	 � O��	� The derivative with respect to x is�

� xp
��b��
e
� x�

�b�
� h�x	

� �p
��b�
e
� x�

�b�
�
R�
� �r � i� �	Ir�i���v�w���� x���� y	�I�v�w����x����y�

�x
�p
��b��

e
� �

� �
y� x

b�
b��

b�
�

��

dy

� �p
��b�
e
� x�

�b�
�
R�
� Ir�i���v�w���� x���� y	 �p

��b��

b���y�
xb��
b�

�

�b���
�b�

e
� �

� �
y� x

b�
b��

b�
�

��

dy

Here�

�I�v�w���� x���� y	

�x
�

�

��b�
e
� x�

�b�
�

Z y�xb���b�

b�
�

��
e�

�
� �z

���dz� � O�
�

b�
	

Since xe�
x�

� � h�x	� I�	 are all O��	� r � i� � � n� and

Z �

�

�

b��
e
� �

� �
y� x

b�
b��

b�
�

��

dy � O��	�
Z �

�

b���y � x
b�
b��	

b��b��	�
e
� �

� �
y� x

b�
b��

b�
�

��

dy � O�
b��
b�b

�
�

	 � O�
�

b�b
�
�
� 	

the above derivative is bounded by O� n
b�

� �
�

b��
�b��
	 � O�n��	� by Lemma ����

This leaves only the outermost integration� where the integrand is �p
��
e�

�
� z

� R�
x	� h�x	

�p
��b�

e
� x�

�b�
� dx�

whose derivative with respect to z is O��	�

From the above� it follows that Theorem ��� is true�


 Comments on Derandomizing the Max�Cut Algorithm�
Recall that Lemma ��� of Section � works only when jv � wj is bounded away from �� This

may not be true for the case of Max Cut� However in this case� it can be easily seen that all the
input vectors can be simultaneously discretized using a procedure analogous to that in Section
�� so that the following are achieved�

�� Each component of each vector is at least some inverse polynomial in absolute value�

�� The dot product of any pair of vectors changes only by an inverse polynomial in absolute
value and is at most �� �

poly�n� in absolute value�

�� For each pair of vectors v�w and every h� � � h � n� when the coordinate system is
rotated so that v�h � � � n� � �b�� �� � � � � �	 and w�h � � � n� � �b��� b

�
�� �� � � � � �	� b� and b�� are at

least some inverse polynomial in absolute value�

To compensate for Lemma ���� we only need to observe that the value of the Goemans and
Williamson objective function �that is�

P
i�j wij

��vi�vj
� 	 for the discretized vector con�guration is

at least �� � �

poly�n�	 times that for the initial vector set �this is because� the sum of the edges

weights is at most twice the value of the objective function for the initial vector set	� The rest
is just a matter of choosing the appropriate inverse polynomial terms�



�
 Conclusions
We believe that the techniques used here can be used to derandomize a general class of ran�

domized algorithms based on Semide�nite Programming� Loosely speaking� this class would
comprise of those whose expected value calculations involve just a constant number of vectors in
each �elementary� event� This class contains all randomized Semide�nite Programming based
algorithms known so far� It would be nice to obtain a general theorem to this e�ect�
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