
Fully Dynamic Biconnectivity and Transitive Closure

Monika Rauch Henzinger * Valerie King t

Department of Computer Science
Cornel1 University
Ithaca, NY 14850

Abstract

This paper presents an algorithm for the fully dy-
namic biconnectivity problem whose running time i s
exponentially faster than all previously known solu-
tions. It is the first dynamic algorithm that answers
biconnectivity queries in time O(log2n) in a n-node
graph and can be updated after an edge insertion or
deletion in polylogarithmic time. Our algorithm is a
Las- Vegas style randomized algorithm with the update
time amortized update time O(10g4 n). Only recently
the best deterministic result for this problem was im-
proved to 0(&log2 n).

We also give the first fu l l y dynamic and a novel
deletions-only transitive closure (i.e. directed con-
nectivity) algorithms. These are randomized Monte
Carlo algorithms. Let n be the number of nodes in the
graph and let m be the average number of edges in the
graph during the whole update sequence: The fully dy-
namic algorithms achieve (1) query time O(n/logn)
and update time 0 (h f i l o g 2 n+n); or (2) que 1 time
O(n/logn) and update time O(nfhfi-llfi)log n =
O(nma-58 log2 n), where p is the exponent for boolean
matrix multiplication (currently p = 2.38).

The deletions-only algorithm answers queries in
time O(n/ logn). Its amortized update time is
O(niog2 n).

1 Introduction

Given a graph G = (V,E) with m = / E / and n =
IVI, a f u l l y dynamic graph algorithm for a graph prop-
erty P provides three types of operations. Insert(e) :
insert the edge e , delete(e) : delete the edge e, and

*Email: mhr8cs.cornell.edu. Author's Maiden Name:
Monika H. Rauch. This research was supported by an NSF
CAREER Award, Grant No. CCR-9501712.

tEmail: val8csr.uvic.ca. This research was supported by an
NSERC Grant.

Department of Computer Science
University of Victoria

Victoria, BC

query(u,v) : test if the nodes U and v fulfill P(u,v)
in the current graph G. They are a model of dy-
namic/interactive situations occurring, for example,
in data bases, incremental compilers, and interactive
verification systems. However, they are also useful to
improve the worst-case efficiency of static graph algo-
rithms, for example of various matching algorithms [l].

Biconnectivity. Two nodes of an undirected
graph are biconnected iff they are connected by two
vertex-disjoint paths. A biconnected component or
block is a maximal set of nodes that are biconnected.
A node that belongs to more than one block is called
an articulation point. A node is an articulation point
iff its removal disconnects the graph [lo].

Our Result. This paper presents the first fully dy-
namic biconnectivity algorithm with polylogarithmic
time per operation. The algorithm is a Las-Vegas
style randomized algorithm whose amortized update
time is O(log*n) and whose worst case query time
is O(log2n). The algorithms also can output all the
nodes that belong to a block in time linear in their
number and all p articulation points that belong to a
block in time O(p1ogn).

The biconnectivity properties of a network can be
used to determine if the network can tolerate the
failure of one of its node without becoming discon-
nected. If the edges of the network change over
time, a fully dynamic algorithm for biconnectivity
is needed. Another application area are approxima-
tion algorithms for network design problems: The 3-
approximation algorithm by Ravi and Williamson [18]
for the (0,1,2}-survivable network design problem re-
peatedly adds and deletes edges from the graph and
tests its biconnectivity properties in between. Our
new fully dynamic biconnectivity algorithm improves
the time of the 3-approximation algorithm from O(n3)
to d(n2) [20].

Previous Work. Two nodes are 2-edge connected iff
they are connected by two edge-disjoint paths. In [ll]
we presented the first fully dynamic connectivity and

664
0272-5428/95 $04.00 0 1995 IEEE

http://mhr8cs.cornell.edu

2-edge connectivity algorithms with polylogarithmic
time per operation, O(10g3 n) for connectivity and
O(10g4 n) for 2-edge connectivity. The all, Jorithms are
Las-Vegas style randomized algorithm. Our algorithm
shows that 2-vertex connectivity can be maintained
fully dynamically as efficiently as 2-edge connectiv-
ity and almost as efficiently as connectivity. Note
that fully dynamic biconnectivity is at least as hard
as fully dynamic connectivity or 2-edge iconnectivity:
Fully dynamic connectivity or 2-edge con aectivity can
be reduced to fully dynamic biconnectivity [9], but
no reduction in the other direction is known. This is
also reflected in the design of efficient fiilly dynamic
algorithms: In 1992, Eppstein, Galil, ltaliano, and
Nissenzweig gave the best known deteriministic con-
nectivity and 2-edge connecitivity algorit’hms with up-
date time O(m [3, 21, but only recently Henzinger
and La PoutrC! improved the best biconnlectivity algo-
rithm to O(filog2n) per update [12]. There exists
a lower bound on the amortized time per operation
of S2(logn/loglogn) for all three problems that also
applies to randomized algorithms [SI.

New Ideas. Our algorithm reduces the fully dy-
namic biconnectivity problem in a graph to a fully
dynamic biconnectivity problem on a chain and n fully
dynamic connectivity problems. For this reduction we
use the leveled graph decomposition of [ll] and add
three new concepts: (1) Local graphs: We store at each
node a partition of its neighbors into biconnected com-
ponents and use these local graphs to answer queries.
Since the edges of the graph are distributed over var-
ious levels, each level “inherits” the edges of the local
graph from all previous levels. To efficiently maintain
the local graphs, we reduce the maintenance of the lo-
cal graph to a connectivity (instead of biconnectivity)
problem and we build a simple dynamic connectivity
data structure to efficiently maintain the local graphs
under the inheritance law. (2) Cover data structure:
After an edge deletion we quickly need to find all newly
created articulation points in a suitablly chosen sub-
graph of G. Since all new articulation points lie on a
path of G, we use a new fully dynamic data structure
for testing biconnectivity along an (arbitrary) path.
(3) Active nodes: The above ideas give a* polylogarith-
mic deletions-only algorithm. To get an efficient fully
dynamic algorithm, we cannot afford to maintain lo-
cal graph at each node at each level. Instead we label
suitable nodes on each level as active and update only
the local graphs of active nodes at each level.

Transitive Closure. Given a directed graph G
the fully dynamic transitive closure problem is to
maintain the property P(u,v) “can the node U reach

the node U?”. The fully dynamic transitive closure
problem has applications to industrial robotics [21]
and databases [23], but no fully dynamic algorithm
better than recomputation from scratch was previ-
ously known. As pointed out by Khanna, Motwani,
and Wilson [14], the sparsification technique [3], used
in the best deterministic algorithm for the dynamic
connectivity problem in undirected graphs cannot be
used to design an efficient fully dynamic transitive clo-
sure algorithm. . ,

Our Results. We give the first fully dynamic al-
gorithms that are better then recomputation from
scratch, and also a novel deletions-only transitive clo-
sure algorithm. Let n be the number of nodes in the
graph and let riL be the average number of edges in
the graph during the whole update sequence: The fully
dynamic algorithms achieve 1 query time O(n/ log n)

O(n/ log n) and update time O(nmfi-l/fi log2 n) =
O(nriL0*58 log2 n), where p is the exponent for boolean
matrix multiplication (currently p = 2.38).

The deletions-only algorithm answers queries in
time O(n/logn). Its amortized update time is
O(n log2 n) .

Previous Work. The best insertions-only algorithm
takes amortized time O(n) per insert and 0(1) per
query [13,15], or O(m*A) for m insertions [24], where
m* is the number of edges in the transitive closure
and A is the out-degree in the final graph. The pre-
viously best deletions-only algorithm takes amortized
time O(m) for m deletions and O(1) per query, where
m is the number of edges in the initial graph [15], or
O(m*A) for m deletions [24], where m* is the number
of edges in the transitive closure and A is the out-
degree in the final graph.

We first present the biconnectivity and then the
transitive closure algorithms.

and update time O(riLfi1og U n+n); or (2) query time

2 Biconnectivity

2.1 A simple algorithm

Given a graph G = (V,E), we maintain (A) G in
a dynamic connectivity data structure which provides
a spanning forest F , (B) G \ x in a dynamic connec-
tivity data structure for each node x, and (C) F aug-
mented with costs at nodes in a dynamic tree data
structure [19]. In time O(1ogn) per operation, the
dynamic tree data structure supports insertions and
deletions of edges and a mincost query, that returns
the minimum cost on a path.

665

The dynamic tree data structure decomposes F into
heavy and light edges such that (1) the heavy edges
form heavy paths that are connected by light edges, (2)
each node belongs to at most one heavy path, and (3)
the path between any two nodes U and v is decomposed
into at most O(1ogn) heavy paths and O(1ogn) light
edges.

If x is incident to at most one heavy edge, we store
cost 0 at x. Otherwise, if a and b are the two nodes
connected to x by a heavy edge, we store a cost >
0 at z iff a and b are connected in G \ x. We call
the resulting dynamic tree a block-labeled dynamic tree
data structure (BDT) because of the lemma below.

We denote the tree path between two nodes U and
v by ~ (u , w).

Lemma 2.1 [16] Two nodes U and w are biconnected
iff’ no node on T(u,v), where T (U , W) consksts only of
heavy edges, has cost 0.

This lemma implies that to determine if two nodes U
and w are biconnected, it suffices to transform the path
from U to w to a path consisting of heavy edges only.
The dynamic tree data structure implicitly allows for
such a transformation, by rooting the tree first at U
and then at U. This takes time O(1ogn) if no costs are
updated. However, our data structure has to update
the cost of a node if an incident light edge becomes
heavy.

When converting a light edge incident to x into a
heavy edge, we test in G \ x if the two (new) heavy
neighbors of x are connected and set the cost of z
appropriately at a cost of O(log n).

Since there are only O(1ogn) light edges on any
simple tree path, only O(1ogn) costs of nodes have to
be updated when the tree is rooted at U and then at U.
Thus, determining if two nodes are biconnected takes
time o (log2 n) .

Each insertion or deletion of an edge in G requires
an update in possibly ad dynamic connectivity data
structures. Thus, an update takes time O(nlog3 n).

The idea of the p-olylogarithmic algorithm is to
(1) store information about each G \ x more com-
pactly; and (2) use sampling and the BDT to deter-
mine quickly which of the G \ x’s have become discon-
nected or have small cuts; (3) move edges across small
cuts to a sparser “higher level” graph and update the
G \ z’s. This leads to a polylogarithmic expected time
fully dynamic algorithm. We describe first a deletions-
only algorithm and extend it then to a fully dynamic
algorithm.

2.2 A polylogarithmic deletions-only al-
gorithm

We present an algorithm whose amortized time per
deletion is O(lo n). The deletion time can be im-

abstract.
Data structure. The edges of G are partitioned

into 1 = logm levels El, . . . , El such that UiEi = E ,
following ideas of [ll]. Initially E1 = E and Ei = 0
for i > 1. We define Hi = (V, Uj<i Ej).

For each i, we keep a forest Fi of tree edges such
that Fi is a spanning forest of Hi, Fi-1 Fi and
Fi \ Fi-1 C Ei- We set F , a spanning forest of G to
FZ and maintain F in a dynamic tree data structure.

For nodes z and U, n,(x) denotes the neighbor of
x on T(u,x). The weight w (T) of a tree T of F is the
number of nontree edges incident to the nodes of T,
where edges whose both endpoints lie in T are counted
twice. The size s i z e (T) is the number of nodes in T.

A block is a maximal set of nodes that are bicon-
nected. A node that belongs to more than one block is
called an articulation point. A node is an articulation
point 8 its removal disconnects the graph [lo]. An
edge is said to be in a given block if both its endpoints
are in the block. Every nontree edge is in exactly one
block.

For every level i with 1 5 i 5 1 we keep the follow-
ing data structures: (1) a dynamic connectivity data
structure of (V, Ei U Fi-l), (2) an ET-tree storing the
(nontree) edges of Ei \ Fi, (described below), (3) a
BDT of Fi, (described above), (4) a partition of the
set of neighbors, (“neighbor partition”) of x in Hi, de-
noted Hi(x), such that y and z are in the same subset
of Hi(x) iff they are connected in Hi \ x. This parti-
tion is stored in a disjoint-set data structure, which al-
lows find-set, join, backtrack from a sequence of joins,
split, and list operations. (The list operation lists all
elements of a subset.) (5) for each nontree edge of Ei,
its block in Hi.

Queries. Since HZ = G, we use Ht(z) together
with the BDT of F to answer biconnectivity queries
in time O(10g2 n) as described in the simple algorithm.

Main Idea. The edges of G are partitioned into
O(1og n) levels such that edges in highly-connected
parts are on lower levels than those in loosely-
connected parts. When an edge {U, v } of Ei is deleted,
Hj(x) with j 2 i may require updating. The nodes x
whose neighbor partitions have to be updated are ex-
actly the new articulation points of Hi, i.e. the nodes x
on T(U, U) such that U and w are disconnected in Hi \z.
We randomly select a set Sampled of O(log2 n) edges
of a subset of Ei and determine the articulation points

proved to O(1og P n), but we omit these details in this

666

in Hi-lUFiUSampZed. (1) If there exists no such artic-
ulation point, then no articulation point has been cre-
ated in Hi and we are done. (2) If no suitable articula-
tion point is found in Hi-1 U Fi U Sampi‘ed, we repeat
the sampling with a new subset of Ei. (3) If a suitable
articulation point z is found in Hi-1 U U Sampled,
with high probability there is a cut in Hi\z separating
U and v that is too sparse for level i. First we move
{u,v} to Ei+l. Then we move all edges on the cut
to Ei+l by recursively deleting these edges from Ei.
Finally we recursively delete {U, v} from Ei+1.

We initialize all neighbor .partitions Hi(x) and
maintain them as follows: Whenever a set S of edges
is moved from Ei to Ei+l, we test for each edge
{u,v} E S if n,(x) and n,(z) are connected in (the
new) Hi \ x. (I) If yes, the connected components of
Hi \ x are unchanged and, we do not modify Hi(x) .
(11) If nu($) and n,(x) are not connected in Hi \ x ,
let B be the old block containing {u,v}, and let B1
and Bz be the new blocks incident to x . We split the
subset of &(x) contained in B into two subsets, those
nodes contained in B1 and those contained in B2.

2.3 The deletions-only algorithm

When an edge {u,v} in some Ei is deleted or re-
moved from Ei, the nodes on the path 7r(u,v) may
become articulation points in Hi. The algorithm
Test-Path below determines those poiints which are
articulation points in certain randomly chosen sub-
graphs of &, of the form H: = (V‘,E+l U Fi U
Sampled), where Sampled is a randomly chosen set
of edges described below. For a given set Sampled,
we may accordingly define for any node: x , the neigh-
bor partition Hi($).

In addition, Test-Path decides that a set S’ of edges
has to be moved up from Ei to Ei+l which in turn
may create new articulation points on Hi. Hence a
single edge deletion may result in numerous calls to
Test-Path. The call Test-Path(u,v,i) removes {U, v}
from Hi and the data structure of level :i. At termina-
tion of the call Test-Path(u,v,i) the neighbor partition
of x is

0 Hr(x) , where HY = Hi \ SI, for every node x on

0 Hi($) for every node x not on 7r(ul,v).

We first present Test-Path and then the delete al-
gorithm which uses Test-Path as a subroutine.

Definitions. An edge e in a graph H covers a node
z on a path 7r(u,v) if it is connected to n,,(z) and n,(z)
in H \ z . A node is uv-covered iff there is an edge e

7r(u,v), and

667

which covers it on ?~(u ,v) . A node is covered in H if
it is not an articulation point of H .

If T contains the vertices U and x , let T, \ x denote
the subtree of T \ x which contains U.

A vertex 2 on a path ~ (u , v) of tree T is a weighted
midpoint of the path if w(T, \ x) 5 (1/2)w(T) and

In the algorithm Test-Path below, ~ (u , v) is a path
w(Tu \ % J (x)) I (1/2)w(T).

in a tree T E Fi. Initially, Sampled = S’ = 8.
Test_Path(u,v,i):

0 Split path Determine the mid-edge (y,z) of
7r(u,w). Wlog y E 7r(u,z).
If size(T, \ y) 5 size(T, \ z)
then 2’ t y, z’ t z , U’ t U, U’ t v
else y’ t z, z’ t y, U’ t v, U’ t U.

0 Sample: If U‘ = y’, stop. Let TI t Tu# \ z’. Let
x be the weighted midpoint of 7r(u’,y‘). Sample
2clog’ m edges from Ei which are incident to TI
for some appropriate constant c. Call this set
Sampled.

0 Determine and mark the nodes in ~ (u ‘ , y’) which
are covered in Hl t (V, UEj<i U Fi U Sampled);

0 If all the nodes in ~ (x , y’), inclusive y’ and exclu-
sive x , are covered, then set y’ t nut(x), z’ t x
and goto Sample step.

0 Else let w E ~ (x , y ‘) be a node which is not cov-
ered. Let (a1 , . . . ,ad} be the set of all neighbors
of w that are connected to n,#(w) in H:(w). Let
Tz t U15j<dTaj (w). Search all nontree edges in-
cident to T2 to determine the S t{edges with
only one endpoint in Tz}.

- If 0 5 IS/ 5 w(Tz)/2c’logm then label each
edge in S by {U‘, w} and set S’ t S U S’.

- Determine the nodes in 7r(uf,w) which are
covered in Hi \ S’.

- Update data structures: Each node on
7r(u’,w) that is not covered is a new articu-
lation point in Hi \ S‘. For each new artic-
ulation point s, update Hi(s) such that two
neighbors of s lie in the same subset of Hi(s)
iff they are connected in (Hi \ S) \ s. Update
the ET-tree of the block of Hi \ S at the new
articulation points.

0 Repeat for second half of path: Let U t y’ and let
w c v’; goto Split path step.

We can now describe the deletion algorithm.
T h e Deletion Algorithm. If e = (u,v) E Gi is

deleted, we denote for all j by Hj the graph Hj before
and by H; the graph Hj after the deletion of e .
Delete(e, i)
Case A: e E F : If the removal of e disconnects G,
then remove e from Gi and F and stop. Otherwise,
find the replacement edge e’ from the lowest-numbered
possible level. Remove e from F, add e’ to F , and
continue as in Case B.
Case B: e E G \ F : We denote by S the edges that
still have to be moved from Ei to Ei+l.

1. S is a set of edges returned by Tes tSa th(u ,v , i) ,

2 . while S # 0 do
i.e., S c Test-Path(u,v,i).

(a) Remove an edge {a,b} from S. Remove
{a,b} from Ei and add it to Ei+l. (This
modifies Hi.)

(b) Let {u,w) be the label of {a,b}. Find the
node a’ (b’) closest to a (b) on a(u,w).

S U Test-Path(a, a’, i)UTest-Path(b, b’, i).
- - (4 s

3. Call Delete(e,i + 1).

The algorithm maintains the following invariant af-
ter every call to TestYath .

Lemma 2.2 Let x be a vertex. Let S, contain all
edges of S that are labeled with an edge {u,w) and
x E R(U, ut). Then two neighbors of x are in the same
subset of I&(.) if they are connected in (Hi \ S,) \ x.

When the while-loop of Delete(e, i) terminates,
S = 0, and, thus, two neighbors of x are in the same
subset of Hi(x) iff they are connected in Hi \ x. Af-
ter each delete(e) operation the following invariant is
maintained.

Theorem 2.3 For every level i and every node x two
neighbors of x are in the same subset of Hi(x) iff’ they
are connected in Hi \ x.
This shows the correctness of the algorithm.

2.4 The Cover Data Structure

We are given a graph H = (V ,E) with neighbor
partitions H(x) for each x E V, a set of edges S, a
spanhing tree F of the graph H’ = (V, E U S) , and a
path 1r(u,v) in F . Edge {u,v) is not an element of

E U S. xxxxx??Is this needed? Initially, a node in V
is marked iff it is uv-covered in H.

The deletions algorithm uses the cover data struc-
ture with H = Hi-1.

The following algorithm marks the nodes in a(u, v)
which are covered in H’ = (V, E U S) .
Cover(H, S, U, v)

While S # 8 move an edge {s, t } from S to E

1. Find the node a closest to s on a(u,v) and the
nodes n,(a) and nt(a). Find also the correspond-
ing node b closest to t , and n,(b) and nt(b).

2. Mark all nodes on a(a, b) (excluding a and b) .

3. {Adjust the neighbor partitions of a and b in H.}

(a) In H(a) , do join of f indset(n,(a)) and

I f a #?&$(a) then

f indset (nt(a)).

in H(a) , findset(n,(a)) = findset(n,(a))
then mark a. (The vertices n,(a) and n,(a)
are connected in H.)

(b) If

If b # n,(b) then

(a) In H(b), do join of findset(n,(b)) and
f indset(nt(b)).

(b) If in H(b), findset(n,(b)) = findset(n,(b))
then mark b. (The vertices nu@) and n,(b)
are connected in H.)

If F is stored as a BDT then the nodes in a path
may be marked by adding 1 to each node in the path,
in a single operation. To find an uncovered node in
a(%, y): Execute a mincost query on the BDT of F
which returns a node with cost 0, if there is such a
node.

Proof of Correctness

2.5 Other Implementation Details

T h e ET-trees. We present a modified version of
the data structure of [ll], called ET-trees. We encode
an arbitrary tree T with n vertices using a sequence of
2n- 1 symbols, which is generated as follows: Root the
tree at an arbitrary vertex. Then traverse T in depth-
first search order traversing each edge twice (once in
each direction) and visiting every degree-d vertex d
times, except for the root which is visited d + 1 times.
Each time any vertex U is encountered, we call this an
occurrence of the vertex. Let ET(T) be the sequence
of node occurrences representing an arbitrary tree T .

668

For each spanning tree T(B) of a block B of Hi
each occurrence of ET(T(B)) is stored in a node of a
balanced binary search tree, called the ET(T(B))-tree.
For each vertex U E T(B) , we arbitrarily choose one
occurrence to be the active occurrence of U.

With the active occurrence of each vertex v, we keep
the (unordered) list of nontree edges in B which are
incident to U, stored as a balanced binary tree. Each
node in the ET-tree contains the number of nontree
edges stored in its subtree.

Using this data structure for each level we can sam-
ple an edge of 2’1 in time O(1ogn). The data structure
can be maintained during the insertion or deletion of
an edge in Hi or Fi in time O(1ogn). The total time
spent in updating the ET-trees on all levels during m
deletions is O(mlog2n). The details are omitted in
this abstract.
The neighbor partitions Hi(%). Store each dis-
joint set of nodes in a balanced tree. Then a join,
delete, and insert can be executed in time O(1ogn).
A split of a set S into SI and S2 can be executed in
O(1ogn) min{lSl(, IS21)) and a list of elements in a set
can be generated in constant time per element.

finding weighted midpoints, node on ~ (u , v)
closest t o s
Running Time Analysis. We show that the amor-
tized cost for a deletion is O(log5n) if there are m
deletions. We test in time O(log2n) for a replace-
ment edge in the dynamic connectivity data structure
of Gj U Fj for j 2 i, starting with j = i. Each call of
Test-Path takes time O(1ogn) to determine a’, n,(a‘),
b’, n,(b), z, and y, and to build the ET-tree of Tu(%)
and of T,(y) and time O(10g3 n) to sample and cover.
If no articulation point z’ with w(T,(z’)) > w(T1)/2
is found, we repeat the sampling on a subtree of half
the weight, when (after at most logn repetitions) w
is reached, we recurse on the other half of the path.
Thus, the total sampling cost per removed edge of Gi
is O(log5n) and the total cost of this case over the
course of the algorithm for level i O(nzi log5 n). We
show that q j m i = O(m), giving a total sampling
cost O(m1og n).

L e m m a 2.4 The total number mi of edges ever in Gj
is m/cIi-l.

If the block containing (U , v) is split itt z’, let E’ be
the set of tree and non-tree edges of GilJ Fj-1 that are
incident to the nodes of F,(z’) U 2’. VVe show below
that the time spent for splitting B except for sam-
pling is O(1E’Ilo n). If IS,l 5 w(F,(z’))/(c’logm)
we charge O(1og n) to each edge in 17’ to amortize
these costs. Since the size of the block to which each

!

edge of E’ belongs is halved, each edge is charged at
most logn times per level, for a total of o(i0g3 n) per
level. If IS,l > w(F,(s’))/(c’logm), the probability
of this subcase occurring is (1 - l / (c ’ l ~ g m)) ~ ~ ~ g ’ ~ =
O(l/n2) for c = 4c’ and the total cost of this case is
O(lE’1 log2 n). Thus this contributes an expected cost
of O(log2 n) per operation.

We still have to show that the cost for all other
work is O(lE’1 log2 n). Computing S,, adding all edge
incident to Fw(z’) \ S, and splitting the ET-tree at the
new articulation points takes O(IE’J logn). We receive
the O(IE‘I log2 n) bound by showing that updating the
graphs Hj(s) for all new articulation points s in Hi
takes time O(lE’I log n) for each level j . Showing the
bound for level i suffices, since we showed above that
the work for j > i is dominated by the work on level
i. We also showed above that the work on level i
is O(dj(s)logn), where d;(s) is the number of edges
incident to s in E’. Summed over all s, this gives

This gives an O(log5n) amortized expected time
per deletion, which can be improved to O(log4n) by
avoiding the double-recursion during sampling.

O(IE’1logn).

2.6 A polylogarithmic fully dynamic algo-
rithm

We increase the number of levels to 1 = 2 log n and
insert every edge on level 1. If the number of non-tree
edges on a level i becomes bi = n2/2i-2, we move all
edges from level i to 2 log n to level i - 1. This is called
a rebuild at level i, its cost is O(bilog2n). In [ll] we
showed the following lemma.

Lemma 2.5 The number of insertions between two
rebuilds on level i is at least bi/2.

Instead of charging O(log3n) for splits to the non-
tree and tree edges on level i, we charge them to the
non-tree edges and the nodes on level i. To recharge
the non-tree edges and nodes after a rebuild on level
i and to pay for the rebuild, we charge each insertion
O(10g3 n) per level, O(10g4 n) alto ether. The total

and the non-tree edges on level i - 1 and O(n) for the
nodes on each level 2 i (there are no non-tree edge
after the rebuild) for a total of O(bi log3 n + nlog4 n).
Thus, if bi = R(nlogn), i.e. i 5 logn - loglogn the
insertions can pay for recharging all nodes. For levels
i > logn - loglogn, we modify the deletions algo-
rithm as follows: We define O(bi) active nodes and
only update the graphs Hi of active nodes. For each
inactive node z we keep the graph H j (z) identical to

recharging costs are O((bi + n) log Q n) for the nodes

669

the graph Hj(x), where j is the largest level smaller
than i on which x is active. (The cost of updating
Hi($) is charged to the work on level j , not i.) Addi-
tionally, the total number of active nodes on all levels
2 i will be O(bi). Thus, the total recharging cost af-
ter a rebuild on level i is O(bi log3 n) for the non-tree
edges and active nodes on level i - 1 and O(bilog3 n)
for the active nodes on all levels 2 i.

For every non-tree edge of Gi assume the path be-
tween its two endpoints is colored red. A node on level
i > log n is active if it is (1) the endpoint of a non-tree
edge of Gi, (2) incident to at least 3 red edges, or (3)
connected by a red edge to an active node of type (1)
or (2).

This guarantees that there are O(bi) active nodes.
Each inactive node lies either on a tree path between
2 (unique) active nodes of type (3) or not between any
2 active nodes.

We modify the coverage data structure as follows:
All pairs of edges incident t o a non-active nodes are
considered to be uw-covered (no matter whether they
were uv-covered by a Cover operation or not). Thus,
a FirstUncowered query returns only active nodes
which guarantees that the time spent at level i be-
tween 2 rebuilds at level i is at most O(bi log3 n). We
omit th,e details.

Theorem 2.6 Given a graph with mo initial edges,
the presented data structure answer biconnectivity
queries in time O(log2 n), executes insertions in amor-
tized time O(log4n), and executes deletions in amor-
tized expected time O(10g4 n).

3 Reachability in directed graphs

We present one algorithm to answer reachability
queries in dynamic (deletions-only) directed graphs
and two for fully dynamic directed graphs. All three
algorithms are Monte Carlo; that is, they always an-
swer queries correctly when the answer is ”yes, node
i is reachable from node j , but, with probability
O(l/nc) (where c depends on the constants chosen by
the algorithm), they may err when answering “no”.

Two techniques are combined in a novel fashion.
The first technique is suggested by the following theo-
rem. A similar theorem is used in [22] in the problem
of computing transitive closure in parallel in a static
digraph.

Theorem 3.1 Let c be a constant. If cslnn nodes are
chosen at random, then for all times during a sequence
of n3 updates, for all pairs of nodes x and y , if there is

a path from x to y , then with probability 1 - O(1/nc-6)
there is a shortest acyclic path from x to y such that
e w e y gap longer than nls has a distinguished node.

The second technique is the simple procedure de-
scribed in [5] which is used for updating a breadth-first
search tree in an undirected deletions-only dynamic
graph. An easy modification of their analysis gives
the following:

Theorem 3.2 The set of all nodes reachable from (or
which reach) a specified node by a path of distance no
greater than k in a dynamic (deletions only) directed
graph can be maintained in time O(mk).

Denote the set of nodes reachable from (or which
reach) a node z by a path of distance no greater than
k , by m t (z , k) , (in(x, k)) , respectively.

The proofs of correctness of the algorithms de-
scribed here are omitted in this extended abstract.
They involve a straightforward application of the first
theorem above.

3.1 Deletions-only

Let 2 5 T 5 n be a parameter that can be cho-
sen by the user. For i = 1,. . . ,In T , randomly select
a set of min{0(2ilogn),n} distinguished nodes Si.
For each distinguished node 2, maintain out(x,
and i n (~ , n / 2 ~) for each i such that that x E Si;
and Out(x) = U~il,Esi)o~t(x,n/2i) and In(.) =
U{;l,Esi)in(x,n/2i). For each node U E V maintain
the sets out(u, n / r) and in(u, n/r).

To answer a query(u,w), test first if ‘U is in
out(u,n/r). If not, then test to see if for any dis-
tinguished node 5, U E In(.) and w E Out(z). If for
some x, both test results are positive, output “yes.”

If the shortest path from U to w has length no
greater than n/r then the query is answered correctly.
If the shortest path between U and w has length greater
than n/r, then the query is answered correctly with
high probability.

The total update time is O(Ci(2ilogn)(n/2i)m +
n(n/T)m) = O(mnlogn1ogr + n2m/r) . The query
time is proportional to the number of distinguished
nodes which is O(min{r logn, n}). The amortized up-
date time is O(nlog2 n + n2/r). If T = n/log2 n the
amortized update time is O(nlog2 n), the amortized
query time is O(n/logn).

3.2 A fully-dynamic transitive closure al-
gorithm

Approach 1: Keep the deletions-only data structure
with T = n/log2n to give the correct answer if there

670

is an “old” path between two nodes.
Additionally after each insertion of an edge (x ,y) ,

compute in(s, n) and out(x, n). After eatch deletion,
recompute in(x, n) and out(x, n), for all inserted edges
(z, y), and adjust the deletions-only data istructure for
old paths. Rebuild the deletions-only daka structure
after f i updates. To answer a query (u , ~) , test if
there’s an old path between U and U and if not, test if
U E in(x, n) and v E out(x, n) for all x which are tails
of newly inserted edges.

Let mo be the number of edges in the ,graph at the
time of the last rebuild. The total time for no more
than f i deletions and no more than 45 insertions
since the last rebuild is O(monlog2 n + n(mo + fi)),
which is O(mofilog2n + n) per update. Let 7jL
be the average number of edges in G during the se-
quence of updates. Since mo < m + &, this is
O(riZfi1og’ n + n) amortized time per update, with
O(n/ logn) query time.

Approach 2: As before, keep the Approach 1
deletions-only data structure with T = TI, to give the
correct answer if there is an “old” path lbetween two
nodes.

Let t be a parameter selected by the user, 2 < t < n.
Randomly select a set of t’ = ctlogn special nodes
S = { s I , s ~ , ..., s,.’}. Maintain the following data
structures: 1. For each special node s, uut(s,n/t) and

2. An t’ x t’ matrix M , where Mi,j = 1 iff s j lies in
out(sj) and the matrix M* that containis the transi-
tive closure of M.
3. An n x t‘ matrix N S whose i, j entry is 1 iff node
i is in in(sj ,n/t) and matrix S N whose i , j entry is 1
iff node j is in out(si,n/t).

When an edge is inserted, make its tail U, a
new special node and: (1) determine in(u,n/t) and
out(u,n/t); (2) add a new row and a new column to
M for U and recompute M* by adding all1 values that
involve the new row and the new column; and (3) add
a new column to N S and a new row to SIV. Compute
NSM’ and M*SN to determine all special nodes that
are reachable from and can reach any given node, re-
spec t ivel y.

When an edge is deleted, update: the old deletions-
only data structures; in(s, n/t) and oui.(s, +), for
each special node s; M and M*, recomputing the
latter from scratch; N S and S N , and irecomputing
NSM’ and M’SN.

To answer a query (s,y), test (1) if there exists a
path from x to a, without a new edge using the old
deletions-only data structure and (2) if there exists a

in(s,n/t).

special node s such that x can reach s and s can reach
y using the above data structure.

We analyze the running time of approach 2. Let mo
be the number of edges at the time of the last rebuild,
let ud be the number of deletions since the last rebuild,
and let ui be the number of insertions since the last
rebuild. The total time for the old deletions-only data
structure is ~ (n m o log2 n).

In addition, for each deletion, O((t‘ + ui) (n /~)m)
for the in(s,n/~)’s and out(s,n/t)’s; O(ud(t’ +
~ i) ~ + udM(t‘ + Uj)) to update M and M* and
O(ud(n/t’)M(t’ + uj)) to update and then multiply
N S and S N with M’. Thus, the total time for ud
deletions on the new data structures is O(ud(t’+ui)2+

The total time for ui insertions is O(uj(m0 + uj))

for computing in(u,n/t) and out(u,n/t) for each
new special node U, O(ui(t‘ + ~ i) ~) for updating M ,
O(ui(n/(t‘ + ui))M(t’ + ui)) for the resulting matrix
multiplications. Thus, the total time is O(ui(m0 +
~ i > + ui(t + ui12 log2 n + ui(n/(t + u i) M (t + uj)). If
we rebuild when ui = t , the total time for t insertions
is O(tm0 + t 3 log’ n + nM(t)) .

In a sequence of t insertions, if the sequence con-
tains at most t deletions, charge the cost for the dele-
tions to the insertions. Otherwise, amortize the cost of
the deletions over the deletions. The amortized cost
of each update operation is O(nm0 log’ n/t + mo +
t’ log2 n+nM(t) / t) = O(nriL1og’ n/t+m+t2 log2 n+
nM(t) / t) where mo < h + t is the average number
of edges in the graph during the sequence of updates.
Query time is O(n/ log n + t log n).

Various trade-offs can be shown with approach
2. If we assume M (t) = O(t3) and want to mini-
mize the total time per update operaton, we choose
t = This gives an amortized update time of
O(nm2/310g2n) and a query time of O(n/logn +
m1/310gn) = O(n/logn). If we assume M (t) =
O(t2.38) and want to minimize the total time per
update, we choose t = riL1/2.38. This gives an
amortized update time of O(nm1.38/2-38 log2 n) =
O (n ~ k ~ * ~ ~ l o g ~ n) and a query time of O(n/logn +

‘IldM(t + ui) + ud(n/t)M(t + %)) a

m0.4202 log n) = O(n/ log n).

References

J. Cheriyan, “Randomized d(M([VI)) Algorithms
for Problems in Matching Theory”, Research re-
port (revised) CORR 93-25, Department of Com-
binatorics & Optimization, Univ. Waterloo, Jan-
uary 1995.

67 1

[2] D. Eppstein, Z. Galil, G. F. Italiano, “Improved
Sparsification” , Tech. Report 93-20, Department

.of Information and Computer Science, University

[15] H. La PoutrC and J. van Leeuwen, “Mainte-
nance of transitive closure and transitive reduction
of graphs”, Proc. Workshop on Graph- Theoretic

of California, Irvine, CA 92717

D. Eppstein, Z. Galil, G. F. Italiano, A. Nis-
senzweig, “Sparsification - A Technique for Speed-
ing up Dynamic Graph Algorithms” Proc. 33Td
Symp. on Foundations of Computer Science, 1992,
60-69.

D. Eppstein, Z. Galil, G. E’. Italiano, and
T. Spencer. “Separator Based Sparsification for
Dynamic Planar Graph Algorithms”. Proc. 25th
Symp. on Theory of Computing, 1993, 208-217.

S. Even and Y. Shiloach, “An On-Line Edge-
Deletion Problem”, J. ACM 28 (1981), 1-4.

G. N. Frederickson, “Data Structures for On-line
Updating of Minimum Spanning Trees”, SIAM J.
Comput., 14 (1985), 781-798.

G. N. Frederickson, “Ambivalent Data Structures
for Dynamic 2-edge-connectivity and k smallest
spanning trees”, Proc. 32nd Symp. on Foundations
of Computer Science, 1991, 632-641.

M. L. Fredman and M. Rauch Henzinger, “Lower
Bounds for Fully Dynamic Connectivity Problems
in Graphs”, to appear in Algorithmica.

Z. Galil and G. F. Italiano, “Reducing Edge Con-
nectivity to Vertex Connectivity” SIGACT News
22 (1991), 57-60.

Concepts in Computer Science, LNCS 314,
Springer Verlag, Berlin, 1988, 106-120. submitted.

[l6] M. H. Rauch, “Fully Dynamic Biconnectivity
in Graphs”. Proc. 33rd Symp. on Foundations of
Computer Science, 1992, 50-59.

[17] M. H. Rauch, “Improved Data Structures
for Fully Dynamic Biconnectivity in Graphs”.
PTOC. 26th Symp. on Theory of Computing, 1994,
686-695.

[18] R. Ravi and D. Williamson, “ , i n Approximation
Algorithm for Minimum-Cost Vertex-Connectivity
Problems”, Proc. 6th Symp. on Discrete Algo-

[19] D. D. Sleator, R. E. Tarjan, “A data structure for
dynamic trees” J. Comput. System Sci. 24 (1983),

rithm, 1995,332-341.

362-381.

[20] D. Williamson, personal communication.

[21] R. H. Wilson, “On Geometric Assembly Plan-
ning”, PhD thesis, Stanford University, 1992.
Stanford Technical Report STAN-CS-92-1416.

[22] J. D. Ullman and M. Yannakakis, “High-
Probability Parallel Transitive Closure Algo-
rithms”, SIAM J. Comput., 20 (1991), 100-125.

[23] M. Yannakakis, “Graph-theoretic Methods in
Database Theory”, Proc. 22nd Symp. on Theory
of Computing, 1990, 230-242.

ica, 30 (1993), 369-384. [ll] M. Rauch Henzinger and V. King, “Randomized
Dynamic Graph Algorithms with Polylogarithmic
Time per Operation”, to appear in Proc. 27th
Symp. on Theory of Computing, 1995.

[12] M. Rauch Henzinger and H. La PoutrC,
“Sparse Certificates for Dynamic Biconnectivity in
Graphs”, submitted.

[13] G. F. Italiano, “Amortized efficiency of a path re-
trieval data structure”, Theoretical Computer Sci-
ence, 48 (1986), 273-281.

[14] S. Khanna, R. Motwani, R. Wilson, “Graph
Certificates and Lookahead in Dynamic Directed
Graph Problems, with Applications”, submitted.

672

