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Abstract 

This paper presents an algorithm for the fully dy- 
namic biconnectivity problem whose running time i s  
exponentially faster than all previously known solu- 
tions. It is the first dynamic algorithm that answers 
biconnectivity queries in time O(log2n) in a n-node 
graph and can be updated after an edge insertion or 
deletion in polylogarithmic time. Our algorithm is a 
Las- Vegas style randomized algorithm with the update 
time amortized update time O(10g4 n).  Only recently 
the best deterministic result for this problem was im- 
proved to 0(&log2 n). 

We also give the first fu l l y  dynamic and a novel 
deletions-only transitive closure (i.e. directed con- 
nectivity) algorithms. These are randomized Monte 
Carlo algorithms. Let n be the number of nodes in the 
graph and let m be the average number of edges in the 
graph during the whole update sequence: The fully dy- 
namic algorithms achieve (1) query time O(n/logn) 
and update time 0 ( h f i l o g 2  n+n); or (2) que 1 time 
O(n/logn) and update time O(nfhfi-llfi)log n = 
O(nma-58 log2 n), where p is the exponent for boolean 
matrix multiplication (currently p = 2.38). 

The deletions-only algorithm answers queries in 
time O(n/ logn). Its amortized update time is 
O(niog2 n). 

1 Introduction 

Given a graph G = (V,E)  with m = / E /  and n = 
IVI, a f u l l y  dynamic graph algorithm for a graph prop- 
erty P provides three types of operations. Insert(e) : 
insert the edge e ,  delete(e) : delete the edge e, and 
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query(u,v) : test if the nodes U and v fulfill P(u,v) 
in the current graph G. They are a model of dy- 
namic/interactive situations occurring, for example, 
in data  bases, incremental compilers, and interactive 
verification systems. However, they are also useful to 
improve the worst-case efficiency of static graph algo- 
rithms, for example of various matching algorithms [l]. 

Biconnectivity. Two nodes of an undirected 
graph are biconnected iff they are connected by two 
vertex-disjoint paths. A biconnected component or 
block is a maximal set of nodes that are biconnected. 
A node that belongs to more than one block is called 
an articulation point. A node is an articulation point 
iff its removal disconnects the graph [lo]. 

Our Result. This paper presents the first fully dy- 
namic biconnectivity algorithm with polylogarithmic 
time per operation. The algorithm is a Las-Vegas 
style randomized algorithm whose amortized update 
time is O(log*n) and whose worst case query time 
is O(log2n). The algorithms also can output all the 
nodes that belong to a block in time linear in their 
number and all p articulation points that belong to a 
block in time O(p1ogn). 

The biconnectivity properties of a network can be 
used to  determine if the network can tolerate the 
failure of one of its node without becoming discon- 
nected. If the edges of the network change over 
time, a fully dynamic algorithm for biconnectivity 
is needed. Another application area are approxima- 
tion algorithms for network design problems: The 3- 
approximation algorithm by Ravi and Williamson [18] 
for the (0,1,2}-survivable network design problem re- 
peatedly adds and deletes edges from the graph and 
tests its biconnectivity properties in between. Our 
new fully dynamic biconnectivity algorithm improves 
the time of the 3-approximation algorithm from O(n3) 
to  d(n2)  [20]. 

Previous Work. Two nodes are 2-edge connected iff 
they are connected by two edge-disjoint paths. In [ll] 
we presented the first fully dynamic connectivity and 

664 
0272-5428/95 $04.00 0 1995 IEEE 

http://mhr8cs.cornell.edu


2-edge connectivity algorithms with polylogarithmic 
time per operation, O(10g3 n) for connectivity and 
O(10g4 n) for 2-edge connectivity. The all, Jorithms are 
Las-Vegas style randomized algorithm. Our algorithm 
shows that 2-vertex connectivity can be maintained 
fully dynamically as efficiently as 2-edge connectiv- 
ity and almost as efficiently as connectivity. Note 
that fully dynamic biconnectivity is at least as hard 
as fully dynamic connectivity or 2-edge iconnectivity: 
Fully dynamic connectivity or 2-edge con aectivity can 
be reduced to  fully dynamic biconnectivity [9], but 
no reduction in the other direction is known. This is 
also reflected in the design of efficient fiilly dynamic 
algorithms: In 1992, Eppstein, Galil, ltaliano, and 
Nissenzweig gave the best known deteriministic con- 
nectivity and 2-edge connecitivity algorit’hms with up- 
date time O(m [3, 21, but only recently Henzinger 
and La PoutrC! improved the best biconnlectivity algo- 
rithm to  O(filog2n) per update [12]. There exists 
a lower bound on the amortized time per operation 
of S2(logn/loglogn) for all three problems that also 
applies to  randomized algorithms [SI. 

New Ideas. Our algorithm reduces the fully dy- 
namic biconnectivity problem in a graph to a fully 
dynamic biconnectivity problem on a chain and n fully 
dynamic connectivity problems. For this reduction we 
use the leveled graph decomposition of [ll] and add 
three new concepts: (1) Local graphs: We store at each 
node a partition of its neighbors into biconnected com- 
ponents and use these local graphs to  answer queries. 
Since the edges of the graph are distributed over var- 
ious levels, each level “inherits” the edges of the local 
graph from all previous levels. To efficiently maintain 
the local graphs, we reduce the maintenance of the lo- 
cal graph to  a connectivity (instead of biconnectivity) 
problem and we build a simple dynamic connectivity 
data structure to  efficiently maintain the local graphs 
under the inheritance law. (2) Cover data structure: 
After an edge deletion we quickly need to  find all newly 
created articulation points in a suitablly chosen sub- 
graph of G. Since all new articulation points lie on a 
path of G, we use a new fully dynamic data structure 
for testing biconnectivity along an (arbitrary) path. 
(3) Active nodes: The above ideas give a* polylogarith- 
mic deletions-only algorithm. To get an efficient fully 
dynamic algorithm, we cannot afford to  maintain lo- 
cal graph at each node at each level. Instead we label 
suitable nodes on each level as active and update only 
the local graphs of active nodes at each level. 

Transitive Closure. Given a directed graph G 
the fully dynamic transitive closure problem is to 
maintain the property P(u,v)  “can the node U reach 

the node U?”. The fully dynamic transitive closure 
problem has applications to  industrial robotics [21] 
and databases [23], but no fully dynamic algorithm 
better than recomputation from scratch was previ- 
ously known. As pointed out by Khanna, Motwani, 
and Wilson [14], the sparsification technique [3], used 
in the best deterministic algorithm for the dynamic 
connectivity problem in undirected graphs cannot be 
used to design an efficient fully dynamic transitive clo- 
sure algorithm. . , 

Our Results. We give the first fully dynamic al- 
gorithms that are better then recomputation from 
scratch, and also a novel deletions-only transitive clo- 
sure algorithm. Let n be the number of nodes in the 
graph and let riL be the average number of edges in 
the graph during the whole update sequence: The fully 
dynamic algorithms achieve 1 query time O(n/ log n) 

O(n/ log n) and update time O(nmfi-l/fi log2 n) = 
O(nriL0*58 log2 n), where p is the exponent for boolean 
matrix multiplication (currently p = 2.38). 

The deletions-only algorithm answers queries in 
time O(n/logn). Its amortized update time is 
O(n log2 n) . 

Previous Work. The best insertions-only algorithm 
takes amortized time O(n) per insert and 0(1) per 
query [13,15], or O(m*A) for m insertions [24], where 
m* is the number of edges in the transitive closure 
and A is the out-degree in the final graph. The pre- 
viously best deletions-only algorithm takes amortized 
time O(m) for m deletions and O(1) per query, where 
m is the number of edges in the initial graph [15], or 
O(m*A) for m deletions [24], where m* is the number 
of edges in the transitive closure and A is the out- 
degree in the final graph. 

We first present the biconnectivity and then the 
transitive closure algorithms. 

and update time O(riLfi1og U n+n); or (2) query time 

2 Biconnectivity 

2.1 A simple algorithm 

Given a graph G = (V,E),  we maintain (A) G in 
a dynamic connectivity data structure which provides 
a spanning forest F ,  (B) G \ x in a dynamic connec- 
tivity data structure for each node x, and (C) F aug- 
mented with costs at nodes in a dynamic tree data 
structure [19]. In time O(1ogn) per operation, the 
dynamic tree data structure supports insertions and 
deletions of edges and a mincost query, that returns 
the minimum cost on a path. 
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The dynamic tree data structure decomposes F into 
heavy and light edges such that (1) the heavy edges 
form heavy paths that are connected by light edges, (2) 
each node belongs to  at most one heavy path, and (3) 
the path between any two nodes U and v is decomposed 
into at most O(1ogn) heavy paths and O(1ogn) light 
edges. 

If x is incident to  at most one heavy edge, we store 
cost 0 at x. Otherwise, if a and b are the two nodes 
connected to  x by a heavy edge, we store a cost > 
0 at z iff a and b are connected in G \ x. We call 
the resulting dynamic tree a block-labeled dynamic tree 
data structure (BDT) because of the lemma below. 

We denote the tree path between two nodes U and 
v by ~ ( u ,  w). 

Lemma 2.1 [16] Two nodes U and w are biconnected 
iff’ no node on  T(u,v), where T ( U , W )  consksts only of 
heavy edges, has cost 0. 

This lemma implies that to  determine if two nodes U 
and w are biconnected, it suffices to  transform the path 
from U to  w to  a path consisting of heavy edges only. 
The dynamic tree data structure implicitly allows for 
such a transformation, by rooting the tree first at U 
and then at U. This takes time O(1ogn) if no costs are 
updated. However, our data structure has to update 
the cost of a node if an incident light edge becomes 
heavy. 

When converting a light edge incident to  x into a 
heavy edge, we test in G \ x if the two (new) heavy 
neighbors of x are connected and set the cost of z 
appropriately at a cost of O(log n). 

Since there are only O(1ogn) light edges on any 
simple tree path, only O(1ogn) costs of nodes have to 
be updated when the tree is rooted at U and then at U. 
Thus, determining if two nodes are biconnected takes 
time o (log2 n) . 

Each insertion or deletion of an edge in G requires 
an update in possibly ad dynamic connectivity data 
structures. Thus, an update takes time O(nlog3 n). 

The idea of the p-olylogarithmic algorithm is to  
(1) store information about each G \ x more com- 
pactly; and (2) use sampling and the BDT to  deter- 
mine quickly which of the G \ x’s have become discon- 
nected or have small cuts; (3) move edges across small 
cuts to  a sparser “higher level” graph and update the 
G \ z’s. This leads to  a polylogarithmic expected time 
fully dynamic algorithm. We describe first a deletions- 
only algorithm and extend it then to  a fully dynamic 
algorithm. 

2.2 A polylogarithmic deletions-only al- 
gorithm 

We present an algorithm whose amortized time per 
deletion is O(lo n). The deletion time can be im- 

abstract. 
Data structure. The edges of G are partitioned 

into 1 = logm levels El, .  . . , El such that UiEi = E ,  
following ideas of [ll]. Initially E1 = E and Ei = 0 
for i > 1. We define Hi = (V, Uj<i  Ej). 

For each i, we keep a forest Fi of tree edges such 
that Fi is a spanning forest of Hi, Fi-1 Fi and 
Fi \ Fi-1 C Ei- We set F ,  a spanning forest of G to  
FZ and maintain F in a dynamic tree data structure. 

For nodes z and U, n,(x) denotes the neighbor of  
x on T(u,x). The weight w ( T )  of a tree T of F is the 
number of nontree edges incident to  the nodes of T, 
where edges whose both endpoints lie in T are counted 
twice. The size s i z e ( T )  is the number of nodes in T. 

A block is a maximal set of nodes that  are bicon- 
nected. A node that belongs to  more than one block is 
called an articulation point. A node is an articulation 
point 8 its removal disconnects the graph [lo]. An 
edge is said to be in a given block if both its endpoints 
are in the block. Every nontree edge is in exactly one 
block. 

For every level i with 1 5 i 5 1 we keep the follow- 
ing data structures: (1) a dynamic connectivity data 
structure of (V, Ei U Fi-l), (2) an ET-tree storing the 
(nontree) edges of Ei \ Fi, (described below), (3)  a 
BDT of Fi, (described above), (4) a partition of the 
set of neighbors, (“neighbor partition”) of x in Hi,  de- 
noted Hi(x), such that y and z are in the same subset 
of Hi(x) iff they are connected in Hi \ x. This parti- 
tion is stored in a disjoint-set data structure, which al- 
lows find-set, join, backtrack from a sequence of joins, 
split, and list operations. (The list operation lists all 
elements of a subset.) ( 5 )  for each nontree edge of Ei, 
its block in Hi. 

Queries. Since HZ = G, we use Ht(z)  together 
with the BDT of F to answer biconnectivity queries 
in time O(10g2 n) as described in the simple algorithm. 

Main Idea. The edges of G are partitioned into 
O(1og n) levels such that edges in highly-connected 
parts are on lower levels than those in loosely- 
connected parts. When an edge {U, v }  of Ei is deleted, 
Hj(x)  with j 2 i may require updating. The nodes x 
whose neighbor partitions have to  be updated are ex- 
actly the new articulation points of Hi, i.e. the nodes x 
on T(U, U) such that U and w are disconnected in Hi \z. 
We randomly select a set Sampled of O(log2 n) edges 
of a subset of Ei and determine the articulation points 

proved to  O(1og P n), but we omit these details in this 
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in Hi-lUFiUSampZed. (1) If there exists no such artic- 
ulation point, then no articulation point has been cre- 
ated in Hi and we are done. (2) If no suitable articula- 
tion point is found in Hi-1 U Fi U Sampi‘ed, we repeat 
the sampling with a new subset of Ei. (3) If a suitable 
articulation point z is found in Hi-1 U U Sampled, 
with high probability there is a cut in Hi\z separating 
U and v that is too sparse for level i. First we move 
{u,v} to  Ei+l. Then we move all edges on the cut 
to  Ei+l by recursively deleting these edges from Ei. 
Finally we recursively delete {U, v} from Ei+1. 

We initialize all neighbor .partitions Hi(x) and 
maintain them as follows: Whenever a set S of edges 
is moved from Ei to  Ei+l, we test for each edge 
{u,v} E S if n,(x) and n,(z) are connected in (the 
new) Hi \ x. (I) If yes, the connected components of 
Hi \ x are unchanged and, we do not modify Hi(x) .  
(11) If nu($) and n,(x) are not connected in Hi \ x ,  
let B be the old block containing {u,v}, and let B1 
and Bz be the new blocks incident to  x .  We split the 
subset of &(x) contained in B into two subsets, those 
nodes contained in B1 and those contained in B2. 

2.3 The deletions-only algorithm 

When an edge {u,v} in some Ei is deleted or re- 
moved from Ei, the nodes on the path 7r(u,v) may 
become articulation points in Hi. The algorithm 
Test-Path below determines those poiints which are 
articulation points in certain randomly chosen sub- 
graphs of &, of the form H: = (V‘,E+l U Fi U 
Sampled), where Sampled is a randomly chosen set 
of edges described below. For a given set Sampled, 
we may accordingly define for any node: x ,  the neigh- 
bor partition Hi($). 

In addition, Test-Path decides that a set S’ of edges 
has to  be moved up from Ei to  Ei+l which in turn 
may create new articulation points on Hi. Hence a 
single edge deletion may result in numerous calls to  
Test-Path. The call Test-Path(u,v,i) removes {U, v} 
from Hi and the data  structure of level :i. At termina- 
tion of the call Test-Path(u,v,i) the neighbor partition 
of x is 

0 Hr(x ) ,  where HY = Hi \ SI, for every node x on 

0 Hi($) for every node x not on 7r(ul,v). 

We first present Test-Path and then the delete al- 
gorithm which uses Test-Path as a subroutine. 

Definitions. An edge e in a graph H covers a node 
z on a path 7r(u,v) if it is connected to  n,,(z) and n,(z) 
in H \ z .  A node is uv-covered iff there is an edge e 

7r(u,v), and 
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which covers it on ?~(u ,v ) .  A node is covered in H if 
it is not an articulation point of H .  

If T contains the vertices U and x ,  let T, \ x denote 
the subtree of T \ x which contains U. 

A vertex 2 on a path ~ ( u ,  v) of tree T is a weighted 
midpoint of the path if w(T, \ x) 5 (1/2)w(T) and 

In the algorithm Test-Path below, ~ ( u ,  v) is a path 
w(Tu \ % J ( x ) )  I (1/2)w(T). 

in a tree T E Fi. Initially, Sampled = S’ = 8. 
Test_Path(u,v,i): 

0 Split path Determine the mid-edge (y,z) of 
7r(u,w). Wlog y E 7r(u,z). 
If size(T, \ y) 5 size(T, \ z )  
then 2’ t y, z’ t z ,  U’ t U, U’ t v 
else y’ t z, z’ t y, U’ t v, U’ t U. 

0 Sample: If U‘ = y’, stop. Let TI t Tu# \ z’. Let 
x be the weighted midpoint of 7r(u’,y‘). Sample 
2clog’ m edges from Ei which are incident to TI 
for some appropriate constant c. Call this set 
Sampled. 

0 Determine and mark the nodes in ~ ( u ‘ ,  y’) which 
are covered in Hl t (V, UEj<i U Fi U Sampled); 

0 If all the nodes in ~ ( x ,  y’), inclusive y’ and exclu- 
sive x ,  are covered, then set y’ t nut(x), z’ t x 
and goto Sample step. 

0 Else let w E ~ ( x , y ‘ )  be a node which is not cov- 
ered. Let (a1 , . . . ,ad} be the set of all neighbors 
of w that are connected to  n,#(w) in H:(w). Let 
Tz t U15j<dTaj (w). Search all nontree edges in- 
cident to  T2 to  determine the S t{edges with 
only one endpoint in Tz}. 

- If 0 5 IS/ 5 w(Tz)/2c’logm then label each 
edge in S by {U‘, w} and set S’ t S U S’. 

- Determine the nodes in 7r(uf,w) which are 
covered in Hi \ S’. 

- Update data structures: Each node on 
7r(u’,w) that is not covered is a new articu- 
lation point in Hi \ S‘. For each new artic- 
ulation point s, update Hi(s) such that two 
neighbors of s lie in the same subset of Hi(s) 
iff they are connected in (Hi \ S) \ s. Update 
the ET-tree of the block of Hi \ S at the new 
articulation points. 

0 Repeat for second half of path: Let U t y’ and let 
w c v’; goto Split path step. 



We can now describe the deletion algorithm. 
T h e  Deletion Algorithm. If e = (u,v) E Gi is 

deleted, we denote for all j by Hj the graph Hj before 
and by H; the graph Hj after the deletion of e .  
Delete(e, i) 
Case A:  e E F : If the removal of e disconnects G, 
then remove e from Gi and F and stop. Otherwise, 
find the replacement edge e’ from the lowest-numbered 
possible level. Remove e from F,  add e’ to  F ,  and 
continue as in Case B. 
Case B: e E G \ F : We denote by S the edges that 
still have to  be moved from Ei to Ei+l. 

1. S is a set of edges returned by Tes tSa th(u ,v , i ) ,  

2 .  while S # 0 do 
i.e., S c Test-Path(u,v,i). 

(a) Remove an edge {a,b} from S.  Remove 
{a,b} from Ei and add it to  Ei+l. (This 
modifies Hi.)  

(b) Let {u,w) be the label of {a,b}. Find the 
node a’ (b’) closest to  a (b)  on a(u,w). 

S U Test-Path(a, a’, i)UTest-Path(b, b’, i). 
- - ( 4  s 

3. Call Delete(e,i + 1). 

The algorithm maintains the following invariant af- 
ter every call to  TestYath .  

Lemma 2.2 Let x be a vertex. Let S, contain all 
edges of S that are labeled with an edge {u,w) and 
x E R(U,  ut). Then two neighbors of x are in the same 
subset of I&(.) if they are connected in (Hi \ S,) \ x. 

When the while-loop of Delete(e, i) terminates, 
S = 0, and, thus, two neighbors of x are in the same 
subset of Hi(x) iff they are connected in Hi \ x. Af- 
ter each delete(e) operation the following invariant is 
maintained. 

Theorem 2.3 For every level i and every node x two 
neighbors of x are in the same subset of Hi(x) iff’ they 
are connected in Hi \ x. 
This shows the correctness of the algorithm. 

2.4 The Cover Data Structure 

We are given a graph H = (V ,E)  with neighbor 
partitions H(x) for each x E V, a set of edges S, a 
spanhing tree F of the graph H’ = (V, E U S ) ,  and a 
path 1r(u,v) in F .  Edge {u,v) is not an element of 

E U S. xxxxx??Is this needed? Initially, a node in V 
is marked iff it is uv-covered in H. 

The deletions algorithm uses the cover data struc- 
ture with H = Hi-1. 

The following algorithm marks the nodes in a(u,  v) 
which are covered in H’ = (V, E U S ) .  
Cover(H, S, U, v) 

While S # 8 move an edge {s, t }  from S to  E 

1. Find the node a closest to s on a(u,v) and the 
nodes n,(a) and nt(a). Find also the correspond- 
ing node b closest to t ,  and n,(b) and nt(b). 

2. Mark all nodes on a(a, b) (excluding a and b) .  

3. {Adjust the neighbor partitions of a and b in H.}  

(a) In H(a) ,  do join of f indset(n,(a))  and 

I f a  #?&$(a) then 

f indset ( nt(a)). 

in H(a) ,  findset(n,(a)) = findset(n,(a)) 
then mark a. (The vertices n,(a) and n,(a) 
are connected in H.) 

(b) If 

If b # n,(b) then 

(a) In H(b),  do join of findset(n,(b)) and 
f indset(nt( b) ). 

(b) If in H(b),  findset(n,(b)) = findset(n,(b)) 
then mark b. (The vertices nu@) and n,(b) 
are connected in H.) 

If F is stored as a BDT then the nodes in a path 
may be marked by adding 1 to each node in the path, 
in a single operation. To find an uncovered node in 
a(%, y): Execute a mincost query on the BDT of F 
which returns a node with cost 0, if there is such a 
node. 

Proof  of Correctness 

2.5 Other Implementation Details 

T h e  ET-trees.  We present a modified version of 
the data structure of [ll], called ET-trees. We encode 
an arbitrary tree T with n vertices using a sequence of 
2n- 1 symbols, which is generated as follows: Root the 
tree at an arbitrary vertex. Then traverse T in depth- 
first search order traversing each edge twice (once in 
each direction) and visiting every degree-d vertex d 
times, except for the root which is visited d + 1 times. 
Each time any vertex U is encountered, we call this an 
occurrence of the vertex. Let ET(T)  be the sequence 
of node occurrences representing an arbitrary tree T .  
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For each spanning tree T(B) of a block B of Hi 
each occurrence of ET(T(B))  is stored in a node of a 
balanced binary search tree, called the ET(T(B))-tree. 
For each vertex U E T(B) ,  we arbitrarily choose one 
occurrence to be the active occurrence of U. 

With the active occurrence of each vertex v, we keep 
the (unordered) list of nontree edges in B which are 
incident to U, stored as a balanced binary tree. Each 
node in the ET-tree contains the number of nontree 
edges stored in its subtree. 

Using this data structure for each level we can sam- 
ple an edge of 2’1 in time O(1ogn). The data structure 
can be maintained during the insertion or deletion of 
an edge in Hi or Fi in time O(1ogn). The total time 
spent in updating the ET-trees on all levels during m 
deletions is O(mlog2n). The details are omitted in 
this abstract. 
The neighbor partitions Hi(%). Store each dis- 
joint set of nodes in a balanced tree. Then a join, 
delete, and insert can be executed in time O(1ogn). 
A split of a set S into SI and S2 can be executed in 
O(1ogn) min{lSl(, IS21)) and a list of elements in a set 
can be generated in constant time per element. 

finding weighted midpoints, node on ~ ( u ,  v) 
closest t o  s 
Running Time Analysis. We show that the amor- 
tized cost for a deletion is O(log5n) if there are m 
deletions. We test in time O(log2n) for a replace- 
ment edge in the dynamic connectivity data structure 
of Gj U Fj for j 2 i, starting with j = i. Each call of 
Test-Path takes time O(1ogn) to determine a’, n,(a‘), 
b’, n,(b), z, and y, and to  build the ET-tree of Tu(%) 
and of T,(y) and time O(10g3 n) to sample and cover. 
If no articulation point z’ with w(T,(z’)) > w(T1)/2 
is found, we repeat the sampling on a subtree of half 
the weight, when (after at most logn repetitions) w 
is reached, we recurse on the other half of the path. 
Thus, the total sampling cost per removed edge of Gi 
is O(log5n) and the total cost of this case over the 
course of the algorithm for level i O(nzi log5 n). We 
show that q j m i  = O(m), giving a total sampling 
cost O(m1og n). 

L e m m a  2.4 The total number mi of edges ever in Gj 
is m/cIi-l. 

If the block containing ( U ,  v) is split itt z’, let E’ be 
the set of tree and non-tree edges of GilJ Fj-1 that are 
incident to  the nodes of F,(z’) U 2’. VVe show below 
that the time spent for splitting B except for sam- 
pling is O(1E’Ilo n). If IS,l 5 w(F,(z’))/(c’logm) 
we charge O(1og n) to each edge in 17’ to amortize 
these costs. Since the size of the block to  which each 

! 

edge of E’ belongs is halved, each edge is charged at 
most logn times per level, for a total of o(i0g3 n) per 
level. If IS,l > w(F,(s’))/(c’logm), the probability 
of this subcase occurring is (1 - l / ( c ’ l ~ g m ) ) ~ ~ ~ g ’ ~  = 
O(l/n2) for c = 4c’ and the total cost of this case is 
O(lE’1 log2 n). Thus this contributes an expected cost 
of O(log2 n) per operation. 

We still have to show that the cost for all other 
work is O(lE’1 log2 n). Computing S,, adding all edge 
incident to Fw(z’) \ S, and splitting the ET-tree at the 
new articulation points takes O( IE’J logn). We receive 
the O( IE‘I log2 n) bound by showing that updating the 
graphs Hj(s) for all new articulation points s in Hi 
takes time O(lE’I log n) for each level j .  Showing the 
bound for level i suffices, since we showed above that 
the work for j > i is dominated by the work on level 
i. We also showed above that the work on level i 
is O(dj(s)logn), where d;(s) is the number of edges 
incident to s in E’. Summed over all s, this gives 

This gives an O(log5n) amortized expected time 
per deletion, which can be improved to O(log4n) by 
avoiding the double-recursion during sampling. 

O(IE’1logn). 

2.6 A polylogarithmic fully dynamic algo- 
rithm 

We increase the number of levels to 1 = 2 log n and 
insert every edge on level 1. If the number of non-tree 
edges on a level i becomes bi = n2/2i-2, we move all 
edges from level i to 2 log n to level i - 1. This is called 
a rebuild at level i, its cost is O(bilog2n). In [ll] we 
showed the following lemma. 

Lemma 2.5 The number of insertions between two 
rebuilds on level i is at least bi/2.  

Instead of charging O(log3n) for splits to the non- 
tree and tree edges on level i, we charge them to the 
non-tree edges and the nodes on level i. To recharge 
the non-tree edges and nodes after a rebuild on level 
i and to pay for the rebuild, we charge each insertion 
O(10g3 n) per level, O(10g4 n) alto ether. The total 

and the non-tree edges on level i - 1 and O(n)  for the 
nodes on each level 2 i (there are no non-tree edge 
after the rebuild) for a total of O(bi log3 n + nlog4 n). 
Thus, if bi = R(nlogn), i.e. i 5 logn - loglogn the 
insertions can pay for recharging all nodes. For levels 
i > logn - loglogn, we modify the deletions algo- 
rithm as follows: We define O(bi) active nodes and 
only update the graphs Hi of active nodes. For each 
inactive node z we keep the graph H j ( z )  identical to  

recharging costs are O( (bi + n) log Q n) for the nodes 
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the graph Hj(x), where j is the largest level smaller 
than i on which x is active. (The cost of updating 
Hi($)  is charged to  the work on level j ,  not i.) Addi- 
tionally, the total number of active nodes on all levels 
2 i will be O(bi). Thus, the total recharging cost af- 
ter a rebuild on level i is O(bi log3 n) for the non-tree 
edges and active nodes on level i - 1 and O(bilog3 n) 
for the active nodes on all levels 2 i. 

For every non-tree edge of Gi assume the path be- 
tween its two endpoints is colored red. A node on level 
i > log n is active if it  is (1) the endpoint of a non-tree 
edge of Gi, (2) incident to  at least 3 red edges, or (3) 
connected by a red edge to  an active node of type (1) 
or (2). 

This guarantees that there are O(bi) active nodes. 
Each inactive node lies either on a tree path between 
2 (unique) active nodes of type (3) or not between any 
2 active nodes. 

We modify the coverage data structure as follows: 
All pairs of edges incident t o  a non-active nodes are 
considered to  be uw-covered (no matter whether they 
were uv-covered by a Cover operation or not). Thus, 
a FirstUncowered query returns only active nodes 
which guarantees that the time spent at level i be- 
tween 2 rebuilds at level i is at most O(bi log3 n). We 
omit th,e details. 

Theorem 2.6 Given a graph with mo initial edges, 
the presented data structure answer biconnectivity 
queries in time O(log2 n), executes insertions in amor- 
tized time O(log4n), and executes deletions in amor- 
tized expected time O(10g4 n). 

3 Reachability in directed graphs 

We present one algorithm to answer reachability 
queries in dynamic (deletions-only) directed graphs 
and two for fully dynamic directed graphs. All three 
algorithms are Monte Carlo; that is, they always an- 
swer queries correctly when the answer is ”yes, node 
i is reachable from node j ,  but, with probability 
O(l/nc) (where c depends on the constants chosen by 
the algorithm), they may err when answering “no”. 

Two techniques are combined in a novel fashion. 
The first technique is suggested by the following theo- 
rem. A similar theorem is used in [22] in the problem 
of computing transitive closure in parallel in a static 
digraph. 

Theorem 3.1 Let c be a constant. If cslnn nodes are 
chosen at random, then for all times during a sequence 
of n3 updates, for all pairs of nodes x and y ,  if there is 

a path from x to y ,  then with probability 1 - O( 1/nc-6) 
there is a shortest acyclic path from x to y such that 
e w e y  gap longer than nls has a distinguished node. 

The second technique is the simple procedure de- 
scribed in [5] which is used for updating a breadth-first 
search tree in an undirected deletions-only dynamic 
graph. An easy modification of their analysis gives 
the following: 

Theorem 3.2 The set of all nodes reachable from (or 
which reach) a specified node by  a path of distance no 
greater than k in a dynamic (deletions only) directed 
graph can be maintained in time O(mk).  

Denote the set of nodes reachable from (or which 
reach) a node z by a path of distance no greater than 
k ,  by m t ( z ,  k ) ,  (in(x, k ) ) ,  respectively. 

The proofs of correctness of the algorithms de- 
scribed here are omitted in this extended abstract. 
They involve a straightforward application of the first 
theorem above. 

3.1 Deletions-only 

Let 2 5 T 5 n be a parameter that can be cho- 
sen by the user. For i = 1,. . . ,In T ,  randomly select 
a set of min{0(2ilogn),n} distinguished nodes Si. 
For each distinguished node 2, maintain out(x, 
and i n ( ~ , n / 2 ~ )  for each i such that that x E Si; 
and Out(x) = U~il,Esi)o~t(x,n/2i) and In(.) = 
U{;l,Esi)in(x,n/2i). For each node U E V maintain 
the sets out(u, n / r )  and in(u, n/r). 

To answer a query(u,w), test first if ‘U is in 
out(u,n/r). If not, then test to see if for any dis- 
tinguished node 5, U E In(.) and w E Out(z). If for 
some x, both test results are positive, output “yes.” 

If the shortest path from U to  w has length no 
greater than n/r  then the query is answered correctly. 
If the shortest path between U and w has length greater 
than n/r, then the query is answered correctly with 
high probability. 

The total update time is O(Ci(2ilogn)(n/2i)m + 
n(n/T)m) = O(mnlogn1ogr + n2m/r) . The query 
time is proportional to the number of distinguished 
nodes which is O(min{r logn, n}). The amortized up- 
date time is O(nlog2 n + n2/r). If T = n/log2 n the 
amortized update time is O(nlog2 n), the amortized 
query time is O(n/logn). 

3.2 A fully-dynamic transitive closure al- 
gorithm 

Approach 1: Keep the deletions-only data structure 
with T = n/log2n to  give the correct answer if there 
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is an “old” path between two nodes. 
Additionally after each insertion of an edge (x ,y) ,  

compute in(s, n) and out(x, n). After eatch deletion, 
recompute in(x,  n) and out(x, n), for all inserted edges 
(z, y), and adjust the deletions-only data istructure for 
old paths. Rebuild the deletions-only daka structure 
after f i  updates. To answer a query ( u , ~ ) ,  test if 
there’s an old path between U and U and if not, test if 
U E in(x, n) and v E out(x, n) for all x which are tails 
of newly inserted edges. 

Let mo be the number of edges in the ,graph at the 
time of the last rebuild. The total time for no more 
than f i  deletions and no more than 45 insertions 
since the last rebuild is O(monlog2 n + n(mo + fi)), 
which is O(mofilog2n + n) per update. Let 7jL 
be the average number of edges in G during the se- 
quence of updates. Since mo < m + &, this is 
O(riZfi1og’ n + n) amortized time per update, with 
O(n/ logn) query time. 

Approach 2: As before, keep the Approach 1 
deletions-only data structure with T = TI, to  give the 
correct answer if there is an “old” path lbetween two 
nodes. 

Let t be a parameter selected by the user, 2 < t < n. 
Randomly select a set of t’ = ctlogn special nodes 
S = { s I , s ~ ,  ..., s,.’}. Maintain the following data 
structures: 1. For each special node s, uut(s,n/t) and 

2. An t’ x t’ matrix M ,  where Mi,j = 1 iff s j  lies in 
out(sj) and the matrix M* that containis the transi- 
tive closure of M. 
3. An n x t‘ matrix N S  whose i, j entry is 1 iff node 
i is in in(sj ,n/t)  and matrix S N  whose i ,  j entry is 1 
iff node j is in out(si,n/t). 

When an edge is inserted, make its tail U, a 
new special node and: (1) determine in(u,n/t) and 
out(u,n/t); (2) add a new row and a new column to  
M for U and recompute M* by adding all1 values that 
involve the new row and the new column; and (3) add 
a new column to  N S  and a new row to  SIV. Compute 
NSM’ and M*SN to  determine all special nodes that 
are reachable from and can reach any given node, re- 
spec t ivel y. 

When an edge is deleted, update: the old deletions- 
only data structures; in(s, n/t) and oui.(s, +), for 
each special node s; M and M*,  recomputing the 
latter from scratch; N S  and S N ,  and irecomputing 
NSM’ and M’SN. 

To answer a query (s,y), test (1) if there exists a 
path from x to  a, without a new edge using the old 
deletions-only data structure and (2) if there exists a 

in(s,n/t). 

special node s such that x can reach s and s can reach 
y using the above data structure. 

We analyze the running time of approach 2. Let mo 
be the number of edges at the time of the last rebuild, 
let ud be the number of deletions since the last rebuild, 
and let ui be the number of insertions since the last 
rebuild. The total time for the old deletions-only data 
structure is ~ ( n m o  log2 n). 

In addition, for each deletion, O((t‘ + ui ) (n /~)m)  
for the in(s,n/~)’s and out(s,n/t)’s; O(ud(t’ + 
~ i ) ~  + udM(t‘ + Uj)) to update M and M* and 
O(ud(n/t’)M(t’ + uj))  to update and then multiply 
N S  and S N  with M’. Thus, the total time for ud 
deletions on the new data structures is O(ud(t’+ui)2+ 

The total time for ui insertions is O(uj(m0 + uj))  

for computing in(u,n/t) and out(u,n/t) for each 
new special node U, O(ui(t‘ + ~ i ) ~ )  for updating M ,  
O(ui(n/(t‘ + ui))M(t’ + ui)) for the resulting matrix 
multiplications. Thus, the total time is O(ui(m0 + 
~ i >  + ui(t + ui12 log2 n + ui(n/(t + u i ) M ( t  + uj)). If 
we rebuild when ui = t ,  the total time for t insertions 
is O(tm0 + t 3  log’ n + nM(t)) .  

In a sequence of t insertions, if the sequence con- 
tains at most t deletions, charge the cost for the dele- 
tions to the insertions. Otherwise, amortize the cost of 
the deletions over the deletions. The amortized cost 
of each update operation is O(nm0 log’ n/t + mo + 
t’ log2 n+nM(t) / t )  = O(nriL1og’ n/t+m+t2 log2 n+ 
nM( t ) / t )  where mo < h + t is the average number 
of edges in the graph during the sequence of updates. 
Query time is O(n/ log n + t log n). 

Various trade-offs can be shown with approach 
2. If we assume M ( t )  = O(t3) and want to  mini- 
mize the total time per update operaton, we choose 
t = This gives an amortized update time of 
O(nm2/310g2n) and a query time of O(n/logn + 
m1/310gn) = O(n/logn). If we assume M ( t )  = 
O(t2.38) and want to minimize the total time per 
update, we choose t = riL1/2.38. This gives an 
amortized update time of O(nm1.38/2-38 log2 n) = 
O ( n ~ k ~ * ~ ~ l o g ~ n )  and a query time of O(n/logn + 

‘IldM(t + ui) + ud(n/t)M(t + % ) ) a  

m0.4202 log n ) = O(n/ log n). 
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