
Using Autoreducibility to Separate Complexity Classes

Harry Buhrman*
CWI

PO Box 94079
1090 GB Amsterdam

The Netherlands

Lance Fortnow t
University of Chicago

Department of Computer Science
1100 E. 58th St.

Leen Torenvliet+
University of Amsterdam
Plantage M uidergracht 24

1024 TV, Amsterdam
The Netherlands Chicago, IL 60637

Abstract

A language is autoreducible if it can be reduced to
itself by a Turing machine that does not ask its own in­
put to the oracle. We use autoreducibility to separate
exponential space from doubly exponential space by
showing that all Turing-complete sets for exponential
space are autoreducible but there exists some Turing­
complete set for doubly exponential space that is not.
We immediately also get a separation of logarithmic
space from polynomial space.

Although we already know how to separate these
classes using diagonalization, our proofs separate
classes solely by showing they have different structural
properties, thus applying Post's Program to complex­
ity theory. We feel such techniques may prove un­
known separations in the future. In particular if we
could settle the question as to whether all complete
sets for doubly exponential time were autoreducible
we would separate polynomial time from either loga­
rithmic space or polynomial space.

We also show several other theorems about autore­
ducibility.

1 Introduction

While complexity theorists have made great strides
in understanding the structure of complexity classes,
they have not yet found the proper tools to do non­
trivial separation of complexity classes such as P and

*E-mail: buhnna.n@cwi.nl. Part of this research was done
while visiting the Univ. Politecnica de Catalunya in Barcelona.
Partially supported by the Dutch foundation for scientific re­
search (NWO) throughNFI Project ALADDIN, under contract
number NF 62-376 and a TALENT stipend.

tEmail: fortnow@cs.uchicago.edu. Supported in part by
NSF grant CCR 92-53582.

tE-mail: leen@fwi.uva.nl. Partially supported by HC&M
grant nr. ERB4050PL93-0516.

0272-5428/95 $04.00 © 1995 IEEE 520

NP. They have developed sophisticated diagonaliza­
tion, combinatorial and algebraic techniques but none
of these ideas have yet proven useful in the separation
task.

Back in the early days of recursion theory, Post
[Pos44] wanted to show that the set of nonrecur­
sive recursively enumerable sets strictly contained the
Turing-complete recursively enumerable sets. In what
we now call "Post's Program" (see [Odi89, Soa87]),
Post tried to show these classes differed by finding a
property that holds for all sets in one class but not for
some set in the second.

We would like to resurrect Post's Program for sep­
arating classes in complexity theory. In particular
we will show how some classes differ by showing that
their complete sets have different structure. While we
do not separate any classes not already separable by
known diagonalization techniques, we feel that refine­
ments to our techniques may yield some new separa­
tion results.

In this paper we will concentrate on the property
known as "autoreducibility." A set L is autoreducible
if there is a polynomial-time oracle Turing machine M
that accepts L using L as an oracle with the caveat
that M(x) may not query whether x EL.

Trakhtenbrot [Tra70a] first looked at autoreducibil­
ity in both the recursion theory and space-bounded
models. Ladner [Lad73] showed that there ex­
isted Turing-complete recursively enumerable sets
that are not autoreducible. Ambos-Spies [AS84]
first transferred the notion of autoreducibility to the
polynomial-time setting. More recently, Yao [Yao90]
and Beigel and Feigenbaum [BF92] have studied a
probabilistic variant of autoreducibility known as "co­
herence."

In this paper, we ask for what complexity classes do
all the complete sets have the autoreducibility prop­
erty. In particular we show:

• All Turing-complete sets for EXPSPACE are

autoreducible.

• There exists a (2-)Turing-complete set for
EEXPSPACE that is not autoreducible.

As an immediate corollary we have EXPSPACE i=
EEXPSPACE and thus that L -:/= PSPACE. Al­
though we have known these separations via the usual
space hierarchy theorems [HS65] our proof does not
rely on diagonalization, rather separates the classes
by showing that the classes have different structural
properties.

To prove the first result we first give a new char­
acterization of EXPSPACE based on work of Chan­
dra, Kozen and Stockmeyer [CKS81], Simon [Sim75]
and Orponen [Orp83]. We characterize EXPSPACE
as a game between two exponential players playing for
exponential moves with a polynomial-time judge.

Issues of relativization do not apply to this work
because of oracle access (see [For94]): A polynomial­
time autoreduction can not view as much of the oracle
as an exponential or double exponential computation.
To illustrate this point we show

• There exists an oracle relative to which there exist
EXPSPACE-complete sets that are not autore­
ducible.

Note that if we can settle whether the Turing­
complete sets for EEXP are all autoreducible one way
or the other, we will have a major separation result. If
all of the Turing-complete sets for EEXP are autore­
ducible then we get that EEXP -:/= EEXPSPACE
and thus P i= PSPACE. If there exists a Turing­
complete set for EEXP that is not autoreducible then
we get that EXPSPACE-:/= EEXP and thus L-:/= P.
Thus this autoreducibility question about EEXP be­
comes an exciting line of research.

In contrast to the above results we show the limi­
tations of our approach:

• All '.5~-tt-complete sets for EXP, EEXP,
EXPSPACE, and EEXPSPACE are '.S~-tt au­
toreducible.

• All #P-robust sets are nonuniformly autore­
ducible.

• All complete sets for EEXP and EEXPSPACE
are nonuniformly autoreducible.

2 Preliminaries

Let E = {O, l}. Strings are elements of E*, and
are denoted by small letters x, y, u, v,.. .. For any

string x, the length of x is denoted by jxj. Languages
are subsets of :E*, and are denoted by capital letters
A, B, C, S, We assume that the reader is familiar
with the standard Turing machine model and other
standard notions of complexity theory, as can be found
in [BDG88]. Nevertheless, some of the definitions that
we feel may not be common knowledge, are cited be­
low.

521

An oracle machine is a multitape Turing machine
with an input tape, an output tape, work tapes, and a
query tape. Oracle machines have three distinguished
states QUERY, YES and NO, which are explained as
follows: at some stage(s) in the computation the ma­
chine may enter the state QUERY, and then goes to
the state YES, or goes to the state NO, depending on
the membership of the string currently written on the
query tape in a fixed oracle set. We will also say the
machine received the answer 1 (0) when the machine
goes to the YES (NO) state.

Oracle machines appear in the paper in two fla­
vors: adaptive and non-adaptive. For a non-adaptive
machine, queries may not be interdependent, whereas
an adaptive machine may compute the next query
depending on the answer to previous queries. If a
Turing machine accepts (rejects) a string x, we will
sometimes write M(x) = 1 (M(x) = 0). We use the
same notation for oracle machines: MA(x) = 0/1 or
M (x, A) = 0/1. The set of strings recognized by a
Turing (oracle) machine (with oracle A), is denoted
by L(M), L(M, A).

We use polynomial time bounded adaptive ora­
cle machines, to model Turing reductions (~~) and
non-adaptive machines to model truth-table reduc­
tions (Sft)· For polynomial-time bounded oracle ma­
chines, this yields definitions equivalent to the stan­
dard definitions of reducibilities in [LLS75].

The set of queries generated on input x by oracle
machine M is denoted Q M (x). For adaptive machines,
this set may be oracle dependent, and is therefore de­
noted Qti(x), where A is the oracle set. The (possibly
exponential size) set of all possible queries generated
by adaptive machine M on input x-also called the
query tree of Mon input x-is denoted QTM(x).

We will also use a structural property of sets. This
property can be defined as a reduction of the set to
itself. The property we will use is autoreducibility.

Definition 2.1 A set A is autoreducible if and only if
there exist a polynomial-time oracle machine M such
that:

1. L(M, A)= A.

2. x rf. Qti(x).

3 Positive Results

By characterizing EXPSPACE by an exponential
game we show

Theorem 3.1 Every polynomial-time Turing-
complete set for EXPSPACE is autoreducible.

To prove Theorem 3.1 we first give a new character­
ization of EXPSPACE that extends the alternating
characterization of PSPACE due to Chandra, Kozen
and Stockmeyer [CKS81), the oracle characterization
of NEXP by Simon [Sim75) and the alternating ora­
cle characterization of the exponential-time hierarchy
due to Orponen [Orp83).

Let p be a polynomial and M an oracle machine
running in time p(n). Let us also have two arbitrary
players A and B that take turns deciding bits of an
oracle D on strings of length p(n). Once they have de­
cided these 2P(n) bits, M can then have random access
to D as an oracle.

Theorem 3.2 A language L is in EXPSPACE if
and only if there exists a p and M as described above
such that for all x,

x EL => :JA VB MD(x) accepts

x ~ L => 3B VA MD(x) rejects

Sketch of Proof: Chandra, Kozen and
Stockmeyer [CKS81] show that every language L in
EXPSPACE is accepted by an alternating exponen­
tial time Turing machine N. Consider two players, A
and B who play the existential and universal roles as
follows: On input x, Player A writes down an initial
configuration of N (x). If the current configuration is
in an existential state then player A writes down a
valid next configuration of N. If the current configu­
ration of M (x) is a universal state then player B writes
down a valid next configuration of N. Player A wins
if the final configuration is in an accepting state.

A polynomial-time oracle machine cannot verify
that this exponential-size "tableau" of configurations
represents a valid accepting computation. Simon
[Sim75) noticed that Cook's proof that Satisfiability
is NP-complete [Coo71) showed that a tableau has
a "locally-checkable" property: Given a pointer to a
mistake in a tableau, one can verify the mistake by
checking only a small number of bits of the tableau.

If x is not in L then there must be some mistake
in the tableau. After each player has played all the
configurations, we then have player B point to the first
mistake made by player A. Finally, we give player A
one more chance by pointing out a mistake made by

522

player B before the mistake of player A that B pointed
to.

It is now easy to verify that x E L if and only if A
has a winning strategy in this game. In order to meet
the requirement that A and B only play one bit at a
time we just have player B play a dummy bit between
every two bits played by player A and vice versa. 0

One can think of A and B as strategies where A
tries to make M accept and B tries to make M reject.
One can then implement these strategies as functions
that map x and Y1, ... , Yk to {O, 1} where the Yi 's are
all the bits played so far. If x E L there exists a
strategy for A such that for any strategy for B, M
will accept. We call such a strategy a winning strategy
for showing x E L. Likewise if x tf. L then there is a
winning strategy for B.

The following corollary about the complexity of
winning strategies falls out of the proof of Theo­
rem 3.2.

Corollary 3.3 There exists a polynomial q such that
a winning strategy for A or B (depending on whether
or not x E L) is computable by a Turing machine using
2q(lxl) space.

Proof of Theorem 3.1: Suppose L is the Turing­
complete set for EXPSPACE that we want to show
autoreducible. Fix a set K many-one complete for
EXPSPACE. Let MK be the polynomial-time oracle
machine such that K is the language accepted by M f(.

Fix an input x. We will now describe the autore­
duction to determine whether x E L. Remember we
are allowed to query L except for x. Let£+= LU{x}
and L - = L - { x}

We define functions A' (i) and B' (i) that describe
a game where A' (i) is the ith move for player A and
B' (i) is the ith move for player B. We define these
strategies so they can be computed in polynomial time
with access to an oracle for L without querying x. The
autoreduction then simulates M (x) using A' and B'
for the oracles.

For A'(i):

• Consider the following EXPSPACE algorithm:

- Compute whether x E L. If not play zero.

- Otherwise compute recursively the first i-1
moves of A' and B'.

- Play the winning strategy for A on this his­
tory.

• Reduce this algorithm to whether a certain string
yEK.

• Return Mft (y).

For B'(i):

• Consider the following EXPSPACE algorithm:

Compute whether x E L. If so play zero.

Otherwise compute recursively the first
moves of A' and i - 1 moves of B'.

- Play the winning strategy for B on this his­
tory.

• Reduce this algorithm to whether a certain string
YE K.

• Return Mf((y).

If x E L then A' will play according to a winning
strategy for A and will cause M(x) to accept. If x f:. L
then B' will play according to a winning strategy for
Band will cause M(x) to reject. D

Similar though simpler proofs yield the following
corollary:

Corollary 3.4 All Turing-complete
PSPACE and EXP are autoreducible.

sets for

Beigel and Feigenbaum [BF92] had previously shown
that Turing complete sets for PSPACE as well as all
the levels of the polynomial-time hierarchy are autore­
ducible.

We can get more stronger autoreducibilities of com­
plete sets if we allow non uniformity, i.e., a polynomial
amount of advice (see [KL82]) that depends only on
the input size.

Feigenbaum and Fortnow [FF93] define the follow­
ing concept of #P-robustness: A set L is #P-robust
if

p#PL = pL

Theorem 3.5 Every #P-robust language is nonuni­
formly autoreducible.

Proof: Feigenbaum and Fortnow [FF93] show that
every #P-robust language is random-self-reducible.
Beigel and Feigenbaum [BF92] show that every
random-self-reducible set is "weakly coherent" where
weakly coherent means nonuniformly probabilistically
autoreducible. One can then amplify the probability
of correctness so that one random string works for all
inputs and then add that random string to the advice.
0

Since NEXP, EEXP and EEXPSPACE com­
plete sets are #P-robust we get

Corollary 3.6
Every Turing-complete set for NEXP, EEXP and
EEXPSPACE is nonuniformly autoreducible.

523

4 Negative Results

In this section we will construct a set that is com­
plete for EEXPSPACE but not autoreducible. This
together with Theorem 3.1 shows a structural dif­
ference between sets complete for EXPSPACE and
EEXPSPACE.

Theorem 4.1 There exists a 2-Turing complete set
A for EEXPSPACE that is not autoreducible.

Proof: The construction will need to satisfy two
requirements. We will have to diagonalize against all
autoreductions ensuring at the same time that the con­
structed set remains complete. We will diagonalize in
intervals. We will need the following function in the
construction:

b() { 1 if n = O
n = b(n - l)(n-l) + 1 otherwise

In order to make A complete we will make sure that
K - a standard :'.S:fr.-complete set for EEXPSPACE -
reduces to A with a 2-Turing reduction. The reduction
will behave as follows:

input x
Let i be such that b(i) ~ jxj < b(i + 1)
ifOb(i)E A then accept x iff <1,x> EA

else accept x iff <0, x> EA

We will call the oracle machine that performs this
:'.S:LT reduction Mr.

We assume that the ith polynomial time autoreduc­
tion runs in time n i, on inputs of length n. We assume
the following ordering on strings: 0 is the first, 1 is the
second, 00 is the third etc. In this ordering x; denotes
the ith string. We will construct A in stages, but first
we will need the following general lemma concerning
autoreductions. The lemma says, that there is a way
of coding K correctly and still keeping an autoreduc­
tion accepting or rejecting.

Lemma 4.2 For all i and k, let Ao ~ ESb(i)-l. Let
bj E {O, l}. Assume that M(Ob(i)) is an autoreduction
that queries at most 2k strings in its entire query tree1 .

It will be the case that:
Vbj 1 "3S1 ~ {<0,xh>,<l,xh>} ... Vbim3Sm C

{ <0, Xjm>, <1, Xjm> }, U1 2:'.: 2b(i), 1 ~ l ::; m, m <
2b(i)\ A= S1 U ... U Sm U Ao such that either:

1 We can assume that every autoreduction only queries
strings of the form <1,x> and <O,x>. Moreover we also
assume that whenever <i,y> is queried also <(1- i),y> is
queried (i = 0, 1).

(a) • M(Qb(i),A) == 0, and

• Mr(Xj 11 A)== bj11 (1 :S l::; m), and

• Qb(i) EA

or

(b} • M(Qb(i), A)== 1, and

• Mr(Xj 11 A) = bj 11 (1::; l::; m), and

• Qb(i) (/. A

We will call autoreductions that satisfy (b) of type 0
and the ones that satisfy (a) type 1.

Proof Sketch of Lemma 4.2: We will use in­
duction on k. The statement is true for k == 0 since
the autoreduction that queries no strings at all is ei­
ther of type 0 or of type 1 (depending on whether
it accepts Qb(i)). Assume the lemma is true for k.
Assume M(Q 0(i)) queries 2k + 2 strings. Assume
<1, xa> and <0, Xa> are the first queries. Let M;j
(with i,j E {O, 1}) correspond to the computation of
M(Ob(i)) with <0, Xa> answered i and <1, Xa> an­
swered j (without querying <0, Xa> and <1, Xa>).
Using the induction hypothesis it follows that Moo,
M 01 , M1o and M11 have either type 0 or type 1. It
is not hard to see that by doing a case analysis one
can always code Xa according to ba into A keeping
M(Qb(i)) of type 1 or 0 at the same time. D

The actual construction of A is as follows:

stage i:

TYPE := type of Mi(Qb(i)) * either 0 or 1 *
put Qb(i) in A iff TYPE = 1
for all x such that b(i) < lxl::; b(i)i do:

Put <TYPE, x> in A iff x E K
(*) Keep M;(Ob(i)) of type TYPE by

putting <(1 - TYPE), x> in or out of A

end of stage i
Line (*) in the above construction can be done

because of Lemma 4.2. The computation whether
M;(Ob(i)) is of type 0 or 1 can be done within 2n' al­
ternating time and hence in double exponential space.
Since EEXPSPACE is closed under complementa­
tion, the computation whether x E K can also be car­
ried out in double exponential space and it thus follows
that A E EEXPSPACE. Moreover K s;LT A. o

Note that Corollary 3.6 contrasts this theorem.
It shows that it is impossible to diagonalize against
nonuniform autoreductions, keeping the construction
complete at the same time.

We would like to refine the above construction such
that A is computable in EEXP, with]{ playing the

role of a standard complete set for EEXP. The main
problem is that it seems to be hard to figure out
whether an autoreduction is of type 0 or 1. (See Sec­
tion 6.) However tweaking the function b(n), one can
easily adapt the above construction so that it can be
carried out in double exponential time with a non­
constant number of alternations.

Corollary 4.3 There exists a :SLT ·complete set A
for double exponential time with a non-constant num­
ber alternations, that is not autoreducible.

Corollary 4.4 L is different from polynomial time
with a non-constant number of alternations.

Another nice feature of our construction is that
Theorem 3.1 and Corollary 3.4 for EXP do not rela­
tivize.

Theorem 4.5 There exists an oracle A such that not
all sets complete for EXPA and EXPSPACEA are
autoreducible relative to A.

Proof: The construction of the oracle A will par­
allel the construction of Theorem 4.1. The oracle will
contain information on when autoreduction M;(Ob(i))
is of type 0 and of type 1. This information will be
coded high enough in A such that Mi(Qb(i)) can not
reach it, because it can not ask long queries. On the
other hand an exponential time or space machine can
now compute the type of autoreductions and hence
the construction of Theorem 4.1 can be carried out in
exponential time or exponential space. D

5 Nonadaptive Autoreductions

524

The results in the previous sections go through with
respect to truth-table (nonadaptive) reductions. Us­
ing a logtime oracle characterization analogous to the
one for EXPSPACE (Theorem 3.2), we can show the
following.

Theorem 5.1 All sets 5'.ft-comp/ete for PSPACE
are 5'.ft autoreducible.

Proof: The proof is analogous to the proof of The­
orem 3 .1. Details will be in the full version of this
paper. D

Considering truth-table reductions also brings
down Theorem 4.1 an exponent.

Theorem 5.2 There exists a ::;ft-complete set for
EXPSPACE that is not :Sft autoreducible.

Proof: The proof is analogous to the proof of The­
orem 4.1 using the fact that a truth-table autoreduc­
tion only queries polynomial many queries in its en­
tire query tree, hence it only costs super polynomial
alternating time to compute the type of a :'.S:ft autore­
duction. D

The above two theorems show that the question
whether all :'.S:ircomplete sets for EXP are :'.S:it au­
toreducible is very interesting. An answer would prove
either PSPACE =fa EXP or P =f. PSPACE.

Corollary 3.6 also finds it counterpart for non­
adaptive autoreductions.

Theorem 5.3 All :'.S:it-complete sets for NP are $ft
autoreducible with respect to nonuniform reductions.

Proof Sketch: We use techniques from
[BvHT93]. Let L be a :'.S:ircomplete set for NP. On
input x one can compute relative to L a witness Yx
that witnesses that x E L. Whenever x is queried in
this computation answer 1 (x E L). If a witness Yx
is computed accept x otherwise reject. This proce­
dure is an adaptive autoreduction. We now use tech­
niques from [VV86] in order to find a witness using
non-adaptive queries to L and polynomially many ran­
dom bits. Since this computation can be amplified,
the construction can be derandomized and becomes
nonuniform. D

The following theorem shows another technique
that enables one to show that $~-tt-complete sets are
$~-tt autoreducible.

Theorem 5.4 If C is a $~-tt-complete set for EXP
then C is 2-truth-table autoreducible.

Proof: We assume an enumeration of $~-tt re­
ductions M1 , M2, ... We construct a set D in EXP.
Since C is $~-it-complete for EXP, D $~-tt C. Let
Mi witness this fact. Now we will construct, simu­
lating Mi on input <j, x>, an autoreduction on x for
c.

The following algorithm will define D. Simulate
M;(<i, x>). There are several cases:

l. Mi(<i, x>) accepts: reject <i, x>

2. M;(<i, x>) rejects: accept <i, x>

3. x (/. QM,(<i, x>): accept iff x EC

4. llQM,(<i,x>)ll = 1 and x E QM,(<i,x>): accept
iff x <t c

5. llQM,(<i,x>)ll = 2 and x E QM,(<i,x>). Let
y be the other query. Compute whether x E C.

525

Substitute this answer in the oracle computation
of Mi. So Mi(<i, x>) can be seen as a 1 truth­
table reduction, depending only on y. There are
again several cases:

(a) Mi(<i, x>) accepts: reject <i, x>

(b) Mi(<i, x>) rejects: accept <i, x>

(c) M;(<i, x>) accepts iffy is in the oracle set:
accept iff x E C

(d) M; (<i, x>) rejects iff y is in the oracle set:
accept iff x <t. C

It is not hard to see that D E EXP, so D ::;Ltt C. Let
Mi witness this reduction. The autoreduction is the
following algorithm. On input x simulate Mj(<j, x>).
If it is the case that x </. QM, (<j, x>) then use C as
an oracle to compute the reduction. We are in Case 3
in the definition of D and <j, x> E D iff x E C iff
Mf (<j, x>) accepts. If this is not the case (i.e. x E
QM3(<j, x>)) let y be the other query we arranged D
so that the only remaining cases are 5c and 5d. In both
cases we arranged it so that x EC iffy EC. Thus in
this case accept iffy E C. Furthermore observe that
this autoreduction is in fact a 2-truth-table reduction.
D

As a corollary to the proof we get

Corollary 5.5
All $~-tt -complete sets for EXPSPACE, EEXP,
and EEXPSPACE are :::;~-tt autoreducible.

This corollary shows that the coding in Theorem 4.1
can not be done via a :::;Ltt reduction. It also shows a
structural difference between ::;LT-complete sets and
:5~-tt-complete sets.

Corollary 5.6 [BST93}
There exists a $LT-complete set for EXPSPACE
that is not :'.S:Ltt -complete.

Proof: Use A in Theorem 5.2 together with Corol­
lary 5.5. D

6 Conclusions

We believe that this research may lead to a separa­
tion of classes not separable by known diagonalization
techniques. We would like to mention a few words
about some thoughts in this direction.

One does not have to look at just complete sets.
Suppose we could construct a set that is Turing
hard for EXPSPACE but lies inside the double

exponential-time hierarchy. This would separate
not only the classes EXPSPACE from the double
exponential-time hierarchy but also L from NP.

One would hope on a variation of Lemma 4.2
where the construction of A could occur in the double
exponential-time hierarchy. Unfortunately such cod­
ing tricks seem to be DSPACE(m)-complete for cod­
ing m = 2n' potential queries.

Given m bits wi, ... ,Wm and a polynomial-time
boolean function /(z) on 2m bits where z represents
(x1, Yi, x2, Y2, ... , Xm, Ym)· We want to pick a z such
that

(a) For all i, w, = Xi and /(z) = 0, or

(b) For all i, Wi =Yi and /(z) = 1.

Say f is type 0 if (a) occurs and type 1 if (b) occurs.
As an added problem, we want to do this online,

i.e. given each bit Wi we need to decide on Xi and Yi

before we get Wi+l · In addition we need to decide on
the type off before we see any of the w's.

In order to choose f to be type 0 the following must
hold:

'v'x13Y1 'v'x23Y2 ... Tlxm3Ymf(z) = 0

For f to be type 1 we get:

(1)

rfy13x1rfy23x2 ... Tlym3Xmf(z) = 1 (2)

Note that by De Morgan's laws and the fact that

we get that the negation of Equation (1) implies Equa­
tion (2). This is essentially what we have proven by
induction in the proof of Lemma 4.2. Note that it is
possible that for some f both Equations (1) and (2)
could hold.

Now suppose we have a quantified boolean formula
of the following form (assume m even):

1/J = 3x1 rfy23x3 ... Ttym<f>(x1, Y2, .. ., Ym)·

Note that if we use </> as our f above, we get that

• ,,P is true implies Equation (2) holds and Equa­
tion (1) fails, and

• ,,P is false implies Equation (1) holds and Equa­
tion (2) fails.

Since QBF m, the set of quantified boolean formu­
las with m quantifiers, is DSPACE(m)-complete un­
der polynomial-time reductions, it is DSPACE(m)­
complete to determine whether f is type O or type 1
and it thus could be DSPACE(m)-complete to code.

526

Generalizations of autoreducibility may give us
the coding power we need. For example, one could
look at k(n)-autoreducibility where k(n) bits of the
language remain unknown to the querying machine.
With some tricks, Theorem 3.1 would go through for
k(n) = O(log n). Perhaps one could use this gener­
alized model to get an appropriate non-autoreducible
set to separate classes.

Finally, perhaps one could use a property other
than autoreducibility to separate classes. One pos­
sibility is mitoticity, a property closely related to au­
toreducibility [Lad73, AS84, BHT94]. A set is mitotic
if it is the disjoint union of two Turing-equivalent sets.
Perhaps mitoticity or some other natural or artificial
property can be used to separate classes.

Acknowledgments

We would like to thank Manindra Agrawal and
Ashish Naik for very helpful discussions.

References

[AS84) K. Ambos-Spies. p-mitotic sets. In
E. Borger, G. Hasenjager, and D. Roding,
editors, Logic and Machines, volume 177 of
Lecture N ates in Computer Science, pages
1-23. Springer, 1984.

[BDG88) J. Balcazar, J. Diaz, and J. Gabarr6. Struc­
tural Complexity I. Springer, 1988.

[BF92] R. Beigel and J. Feigenbaum. On being
incoherent without being very hard. Com­
putational Complexity, 2:1-17, 1992.

[BHT94] H. Buhrman, A. Hoene, and L. Toren­
vliet. Splittings, robustness and structure
of complete sets. In Proceedings of the
1 Oth Symposium on Theoretical Aspects of
Computer Science, volume 665 of Lecture
N ates in Computer Science, pages 175-184.
Springer, 1994.

[BST93) H. Buhrman, E. Spaan, and L. Torenvliet.
Bounded reductions. In K. Ambos-Spies,
S. Homer, and U. Schoning, editors, Com­
plexity Theory, pages 83-99. Cambridge
University Press, December 1993.

[BvHT93] H. Buhrman, P. van Helden, and L. Toren­
vliet. P-selective self-reducible sets: A new

characterization of P. In Proceedings of the
Bth IEEE Structure in Complexity Theory
Conference, pages 44-51. IEEE, New York,
1993.

[CKS81] A. Chandra, D. Kozen, and L. Stock­
meyer. Alternation. Journal of the ACM,
28(1):114-133, 1981.

[Coo71] S. Cook. The complexity of theorem­
proving procedures. In Proceedings of
the 3rd ACM Symposium on the Theory
of Computing, pages 151-158. ACM, New
York, 1971.

[FF93] J. Feigenbaum and L. Fortnow. On the
random-self-reducibility of complete sets.
SIAM Journal on Computing, 22:994-1005,
1993.

[For94] L. Fortnow. The role of relativization in
complexity theory. Bulletin of the Euro­
pean Association for Theoretical Computer
Science, 52:229-244, February 1994.

[HS65] J. Hartmanis and R. Stearns. On the
computational complexity of algorithms.
Transactions of the American Mathemat­
ical Society, 117:285-306, 1965.

[KL82] R. Karp and R. Lipton. Turing machines
that take advice. L 'Enseignement Mathe­
matique, 28:191-209, 1982.

[Lad73] R. Ladner. Mitotic recursively enumerable
sets. Journal of Symbolic Logic, 38(2):199-
211, 1973.

[LLS75] R. Ladner, N. Lynch, and A. Selman. A
comparison of polynomial time reducibili­
ties. Theoretical Computer Science, 1:103-
123, 1975.

[Odi89] P. Odifreddi. Classical Recursion The­
ory, volume 125 of Studies in Logic and
the Foundations of Mathematics. North­
Holland, Amsterdam, 1989.

[Orp83] P. Orponen. Complexity classes of alternat­
ing machines with oracles. In Proceedings
of the 1 Oth International Colloquium on
Automata, Languages and Programming,
volume 154 of Lecture Notes in Computer
Science, pages 573-584. Springer, 1983.

527

[Pos44] E. Post. Recursively enumerable sets of
positive integers and their decision prob­
lems. Bulletin of the American M athemat­
ical Society, 50:284-316, 1944.

[Sim75] J. Simon. On Some Central Problems in
Computational Complexity. PhD thesis,
Cornell University, 1975. Technical Report
TR 75-224.

[Soa87] R. Soare. Recursively Enumerable Sets and
Degrees. Springer, Berlin, 1987.

[Tra70a] B. Trakhtenbrot. On autoreducibility.
Dok/. Akad. Nauk SSSR, 192:1224-1227,
1970. In Russian. English Translation in
[Tra70b].

[Tra70b] B. Trakhtenbrot. On autoreducibility. So­
viet Math. dokl., 11:814-817, 1970.

[VV86] L. Valiant and V. Vazirani. NP is as easy
as detecting unique solutions. Theoretical
Computer Science, 47:85-93, 1986.

[Yao90] A. Yao. Coherent functions and program
checkers. In Proceedings of the 22nd ACM
Symposium on the Theory of Computing,
pages 84-94. ACM, New York, 1990.

