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Department of Computer Science, Unï ersity of Colorado at Boulder, Boulder,
Colorado 80309

E-mail: hal@cs.colorado.edu

Received September 16, 1996; revised September 6, 1999

The vertex connectivity k of a graph is the smallest number of vertices whose
deletion separates the graph or makes it trivial. We present the fastest known
deterministic algorithm for finding the vertex connectivity and a corresponding

Ž � 3separator. The time for a digraph having n vertices and m edges is O min k q
4 .n, k n m ; for an undirected graph the term m can be replaced by k n. A random-

Ž .ized algorithm finds k with error probability 1r2 in time O nm . If the vertices
have nonnegative weights the weighted vertex connectivity is found in time
Ž Ž 2 ..O k nmlog n rm where k F mrn is the unweighted vertex connectivity or in1 1

Ž Ž 2 ..expected time O nmlog n rm with error probability 1r2. The main algorithm
combines two previous vertex connectivity algorithms and a generalization of the

Ž .preflow-push algorithm of Hao and Orlin 1994, J. Algorithms 17, 424]446 that
computes edge connectivity. Q 2000 Academic Press
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1. INTRODUCTION

Ž .The ¨ertex connectï ity k of an undirected graph or digraph is the
smallest number of vertices whose deletion separates or trivializes the

Ž .graph. Most terms are defined precisely at the end of this section. This is
w xa central concept of graph theory 15 . We present efficient algorithms for

computing connectivity.
More precisely we consider the following tasks. To compute the connec-

tï ity means to find k and a corresponding separator. To check k-con-
nectedness means to verify that k G k or find a separator of - k vertices.
Lastly if each vertex has a nonnegative weight, k is the smallest weight of
a separator or trivializor and we may wish to compute this weighted
connectivity. We present algorithms for all these tasks, on undirected
graphs and digraphs. Our approach is to simply combine three previous
algorithms, two for computing vertex connectivity and one for network
flow. We now discuss the efficiency and compare it to previous work.
Throughout this paper n and m denote the number of vertices and edges
of the given graph, respectively.

Ž .First consider unweighted digraphs. Even and Tarjan showed how to
Ž 1.5 . w xcompute k in time O k n m 7 . This was improved to the following

w xbest-known bounds: Even 6 showed how to check k-connectedness by
solving at most k 2 q n network flow problems, achieving a running time of

' 'ŽŽ . .O k q n k n m . Galil extended Even’s approach to compute k in the
w xsame time bound with k replaced by k 8 . We find the connectivity in time

Ž � 3 4 .O min k q n, k n m and check k-connectedness in the same bound with
Ž .k replaced by k. This bound equals the previous best when k or k is Q 1

'Ž .or Q n and is superior for all other values. The largest improvement is a
' Ž . Ž .factor n when k or k is Q n . Our algorithm uses O m space, as do all

other algorithms of this paper. Our high-level algorithm is essentially the
w x w xsame as 7 for small connectivities and 6, 8 for large connectivities.

Next consider undirected graphs. An undirected graph has the same
connectivity as the digraph formed by giving each edge both directions.
Hence the digraph algorithms apply. Furthermore the technique of Nag-

w x Ž .amochi and Ibaraki 17 usually allows one to work on a subgraph of O kn
edges rather than the whole graph. This usually allows undirected connec-
tivity and k-connectedness to be computed in the digraph time bound with
m replaced by kn or k n. This is true for all the above algorithms. For

Ž � 3example, we compute undirected connectivity in time O min k q
4 .n, k n k n . We also mention a recent algorithm of Henzinger: In an

undirected graph with minimum degree d it finds k and a corresponding
separator if k F dr2 and verifies k ) dr2 otherwise, in time

2'Ž � 4 . w xO min k , n n 12 .
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We turn to randomized algorithms. Becker et al. give a Monte Carlo
w xversion of 7 that computes the connectivity of a digraph. For any desired

probability p F 1rn it returns the correct answer with probability 1 y p
Ž . ŽŽŽ .i.e., the error probability is p and runs in expected time O log 1rp r
Ž Ž ... 1.5 . w xlog nrk n m 3 . We give an algorithm that computes the connect-

Ž . Ž .ivity with error probability 1r2 in worst-case time O nm . This is a
w xstrict improvement of 3 since for any desired probability p repeating

our algorithm log 1rp times achieves error probability p in time
ŽŽ . .O log 1rp nm . For undirected graphs the time to achieve error probabil-

Ž 2 . Ž .ity 1r2 is O k n replace k by k for checking k-connectedness . These
results use a fact about our deterministic algorithm for computing k : It

ŽŽŽ . .2 .runs in time O n y k n . This bound comes into play when k s n y
Ž . Ž Ž ..o n e.g., the time to compute k is linear when k s n y O 1 .
Linial et al. check undirected k-connectedness with a Monte Carlo

ŽŽ Ž . Ž .. .algorithm that runs in time O M n q nM k log n and has error proba-
w x Ž .bility 1rn 16 . Here M n is the time to multiply two n = n matrices and

Ž 2.38. w x Ž .is O n 5 . Our Monte Carlo algorithm for the same error probability
is faster when k F n.37 or k G n.73; it is always faster if naive matrix
multiplication is used to get a practical algorithm. Linial et al. also give a
Las Vegas algorithm with expected running time k times their Monte
Carlo bound. Cheriyan and Reif achieve similar Monte Carlo and Las

w xVegas time bounds for digraphs 4 . Our deterministic algorithm is faster
than these Las Vegas algorithms if they use naive matrix multiplication.

Ž .Finally consider vertex-weighted graphs undirected or digraphs . The
Ž 2 .naive algorithm computes the weighted connectivity by calculating Q n

maximum flows. We know no other results on weighted connectivity. We
Ž Ž 2 ..improve this to time O k nm log n rm where k denotes the connectiv-1 1

Ž .ity if vertex weights are ignored i.e., every vertex has weight 1 . Since
Ž 2 Ž 2 ..k F mrn this bound is at most O m log n rm . This improves the naive1

bound by a factor greater than n if we use the best-known algorithm of
w x14 to compute a maximum flow. We also present a Monte Carlo algo-
rithm that computes the connectivity with error probability 1r2 in ex-

Ž Ž 2 ..pected time O nm log n rm .
The vertex connectivity algorithms we use transform the problem to a

number of network flow problems, e.g., k n maximum flow problems for
w x7 . We show the preflow-push approach to maximum flow can reduce the

w xnumber of flow problems, e.g., to k flow problems for 7 . The preflow-push
w xapproach is due to Goldberg and Tarjan 10 . Gallo et al. show how this

approach often allows n or more related maximum flow computations to
w x w xbe combined into one 11 . Hao and Orlin 13 use their idea to give an

Ž .efficient algorithm to find the edge connectivity of a capacitated digraph
Ž Ž 2 .. w xin time O nm log n rm . We present a flow algorithm that extends 13 .
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w xIn fact 13 sketches an extension but omits some details. To clarify this we
first define our flow problem. The complete definition of the VC split
problem is given at the end of this section.

Ž .Consider a digraph G s V, E with a set of terminals T : V. A mini-
mum split for T is a set S : V that minimizes the total capacity of the
entering edges subject to the constraint that both T l S and T y S are

w xnonempty. The edge connectivity algorithm of 13 finds a minimum
unrestricted cut, or in our terminology, a minimum split for V. We extend
this algorithm to find a minimum split for T when T is a given vertex
cover of G; we call this a minimum VC split. We find a minimum VC split

w x Žin the same time bound as the edge connectivity algorithm of 13 e.g., for
Ž ..the above unweighted connectivity algorithms this bound is O nm .

In hindsight we discovered that Hao and Orlin sketch a similar exten-
Žw xsion of their algorithm to find a minimum cut in a bipartite digraph 13 ,

.Theorem 9, p. 443; vertex connectivity is not discussed . They indicate that
w xusing the bipush variant of the preflow-push algorithm 2 correctly imple-

ments the extended algorithm. We do not use bipushes for our main VC
split algorithm, but we do introduce a new operation called join. Our join
operation can decrease distance labels by large amounts; previous
preflow-push algorithms never decrease distance labels and this is crucial

w xfor their efficiency 1, 2, 10, 11, 13, 14 . We prove that the desired time
bounds hold in spite of this decrease. It is possible to implement joins
slightly less efficiently so they do not decrease distances, but then they
increase distances by large amounts. It seems that the phenomenon
handled by joins must be addressed and analyzed in any complete algo-
rithm for this problem. Thus, our contribution is to fill a gap in the
fundamentally sound and insightful suggestion of Hao and Orlin.

We anticipate further applications of the VC split algorithm besides
vertex connectivity. For instance taking the vertex cover T s V shows our

w xalgorithm generalizes 13 ; i.e., it can compute the edge connectivity in the
w x � 4same bound as 13 . The vertex cover T s V y s implements Frank’s

digraph connectivity augmentation algorithm in the same time bound
w xas 9 .
The paper is organized as follows. Section 2 gives algorithms for vertex

connectivity, assuming an efficient algorithm for finding a minimum VC
split. Section 3 supplies the VC split algorithm. The rest of this section
gives notation and definitions.

R denotes the set of nonnegative real numbers. We often denoteq
singleton sets by omitting set braces, e.g., U j u. If U, W : V then a
UW-set is a subset of V containing W and disjoint from U. For example for
u, w g V, a uw-set contains w but not u. If f is a function f : S ª R then

Ž . � Ž . 4for any set T : S, f T denotes Ý f t : t g T .
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In a graph with vertices ¨ and w, the notation ¨w denotes an undirected
edge joining ¨ and w or a directed edge from ¨ to w; it will be clear from
context which is meant. For a digraph G, G R denotes the reverse digraph,
i.e., all edges of G are reversed. The undirected ¨ersion of G ignores the
directions of edges.

Ž .A directed edge u¨ enters any u¨-set and lea¨es any ¨u-set. For a set of
Ž .vertices W, the in-degree r W equals the total number of edges entering

Ž .W. If the graph has a capacity function on the edges then r W is the total
capacity of edges entering W. An xy-cut is the set of edges entering some
xy-set. A minimum xy-cut is an xy-cut of smallest total capacity; this
minimum equals the value of a maximum xy-flow.

Ž .Consider a digraph or an undirected graph G s V, E . For x, y g V,
� 4S : V y x, y is an x, y-separator if G y S contains no path from x to y.
Ž .Define k x, y as the smallest cardinality of an x, y-separator if such

Ž . Ž .separators exist; if not i.e., x s y or xy g E then set k x, y s n y 1.
Define the ¨ertex connectï ity by

k s min k x , y : x , y g V .� 4Ž .

A ¨ertex-weighted graph has a function w: V ª R . In this context defineq
Ž . � Ž . 4k x, y s min w S , `: S an x, y-separator . The weighted ¨ertex connectï -

ity k is again defined by the above equation. For w identically 1 this is just
ordinary vertex connectivity.

Ž . w xFor an undirected graph G s V, E the algorithm of 17 partitions E,
Ž .in O m time, into a sequence of forests F , k s 1, . . . , n. For k s 1, . . . , nk

define the forest subgraph FG byk

FG s V , Dk F .Ž .k is1 i

w xFor all k, FG is k-connected if G is. In fact 17 proves the strongerk
property that any vertex separator of FG with cardinality - k is a vertexk

Ž w x.separator of G see the proof of Theorem 3.1 in 17 . Clearly FG hask
Ž .O kn edges.

Ž .Consider a digraph G s V, E with a set of ‘‘terminals’’ T : V. A
subset of V is a split of T if it is an st-set for some vertices s, t g T. If
each edge has a nonnegative capacity, a minimum split of T is a split S of

Ž .T that minimizes r S . For any s g T , an s-split of T is an st-set for some
t g T , and we similarly define a minimum s-split of T. Clearly a minimum
split of T is a minimum s-split of T in either G or G R. The minimum VC

Žsplit problem is to find a minimum s-split of T , a given vertex cover of the
.undirected version of G.

If a function refers to a graph we include the graph as an extra
Ž . Ž .argument if it is not clear, e.g., r W, G , k G .
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2. VERTEX CONNECTIVITY

This section gives our algorithms for vertex connectivity. It summarizes
their efficiency, assuming the results of Section 3 for the minimum VC
split problem.

Ž .Consider a digraph G s V, E . For any x g V define

k x s min k x , y : y g V .� 4Ž . Ž .

� Ž . 4 Ž .Clearly k s min k x : x g V . We begin by showing that computing k x
reduces to the minimum VC split problem. Assuming Theorem 3.2 this

Ž . Ž .gives an algorithm to compute k x in time O nm . In this discussion fix
the digraph G and the vertex x. We use three graphs derived from G,
illustrated in Fig. 1.

We start with the standard reduction to network flow by node splitting.
Ž .Specifically define a graph SG the ‘‘split graph’’ having for each ¨ g V,

two vertices ¨ , ¨ and edges ¨ ¨ and ¨ ¨ of capacity 1 and `, respec-T S T S S T
tively, and for each edge ¨w g E an edge ¨ w of capacity `. There is aS T
bijection between x, y-separators of G and finite x y -cuts of SG; specifi-S T

� 4cally, separator U : V corresponds to cut u u : u g U . Hence,T S
Ž .k x, y; G equals the minimum capacity of an x y -cut in SG. Letting yS T

Ž . Ž .be arbitrary we conclude that k x s k x, G equals the capacity of a
smallest x y -cut for a vertex y in SG or n y 1 if no such finite cutS T T

Ž .exists. Any such cut corresponds to an x, y-separator of k x vertices
Ž .using the above bijection .

To find this cut using the algorithm of Section 3 it is convenient to use
Ž .two other graphs. CG the ‘‘contracted graph’’ is derived from SG by

contracting x with its neighbors, i.e., contract vertices x , x , and z forS S T T
z g V with xz g E. Call the vertex resulting from this contraction X .T

Ž .Assume X is not the only vertex of CG, since otherwise k x s n y 1.T
Observe the following:

Ž . Ž .i k x equals the capacity of the smallest X y -cut, for y aT T T
vertex of CG.

Ž . Ž .ii Any such cut corresponds to an x, y-separator of k x vertices.
Ž . � 4 Žiii C s y : y a vertex of CG is a vertex cover of CG this setT T

.includes X .T

Ž .Property i holds since CG is constructed by contracting infinite capacity
Ž .edges incident to the source x of SG. Property iii holds since C is oneS

side of a bipartition of CG.
Next we transform CG to a unit capacity graph UG: Delete all edges

¨ ¨ and assign capacity 1 to all edges ¨ w . The resulting graph UGS T S T
Ž . Ž . Ž .satisfies Properties i and iii . For Property i the transformation does
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not change the value of a maximum flow from X to any y , so it does notT T
Ž Ž .change the value of a minimum cut. Property ii need not hold since new

.minimum cuts may be introduced.
Ž . Ž . Ž .Properties i and iii show that k x is the value of a minimum

ŽX -split of vertex cover C in digraph UG recall the definition of minimumT
.s-split of T at the end of Section 1 . Since UG is a graph with unit edge

Ž . Ž .capacities, Theorem 3.2 shows k x can be computed in time O nm .
ŽNote that n and m for UG are within a constant factor of the same

. Ž .parameters for G. It is a simple matter to derive an x, y-separator of k x
vertices from a minimum X -split: If the set of edges entering theT

� 4 � 4 Žminimum X -split is u u : u g U j ¨ w : ¨w g F for some setsT T S S T
. �U : V, F : E the desired separator can be taken as U j ¨ : ¨w g F for
4some vertex w .

Ž .Now we show how our algorithm for k x can be used to carry out a
number of connectivity computations. The first group of results is summa-
rized as follows. Define three functions

3 � 4T k , n , m s knm, T k , n , m s k q n m , T s min T , T .Ž . Ž . Ž .1 2 1 2

' 'Note T s T for k G n and T s T for k F n .1 2

THEOREM 2.1. For a digraph, the connectï ity k can be found in time
Ž Ž .. Ž Ž ..O T k , n, m and k-connectedness can be checked in time O T k, n, m .

Ž Ž .. Ž Ž ..For an undirected graph the bounds are O T k , n, k n and O T k, n, kn ,
Ž .respectï ely. The space is O m in all cases.

Proof of Theorem 2.1 for digraphs and T s T . We implement the1
w xalgorithm of Even and Tarjan 7 to compute k as follows. Let x ,i

i s 1, . . . , n be an arbitrary indexing of the vertices.

i ¤ 0; k ¤ n y 1;
� � Ž . Ž R.44repeat i ¤ i q 1; k ¤ min k , k x , G , k x , G until i ) k ;i i

We refer to this as the E¨en]Tarjan algorithm.
To see this algorithm is correct assume the connectivity is - n y 1 and

let S be a minimum vertex separator of G. When the algorithm halts it has
< < < <i ) k G S . Some x does not belong to S for j F S q 1 F i. Thus,j

Ž . < < R Ž .k x s S in G or G . Since the algorithm computes k x it halts withj j
< <k s S .

It is a simple matter to find a minimum vertex separator assuming each
Ž .computation of k x finds a corresponding separator. To check k-con-

nectedness terminate the loop when i s k and test if k G k.
Ž .The desired time bound with T s T follows since each value k x is1

Ž .computed in time O nm .
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Proof of Theorem 2.1 for undirected graphs and T s T . As mentioned,1
Žthe digraph algorithm applies to an undirected graph. There is no need to

R .consider G . To check k-connectedness we apply the digraph algorithm
Žto the forest subgraph FG of G this subgraph, constructed by thek
w x .algorithm of Nagamochi and Ibaraki 17 , is defined in Section 1 . Since

Ž . Ž . w xFG has O kn edges and is found in time O m 17 we achieve thek
desired time bound.

We can also compute the connectivity by working on a subgraph of
Ž .O k n edges. There are two ways to achieve this. The first is to begin by

Žfinding a value k with k F k - 2k do this by checking k-connectedness
w x.for k doubling; alternatively use the algorithm of 12 ; then run our

connectivity algorithm on the forest subgraph FG . We give a second2 k
method that may be superior in practice because it is one simple loop.
Ž .Readers only interested in asymptotic results can skip this.

Ž .Let G s V, E be the given graph. Index the vertices of V as x ,i
i s 1, . . . , n. Also let x s x and FG s FG s G for i s 1, . . . , n.nq i i nqi n

i ¤ 0; k ¤ n y 1;
repeat

� Ž . � 4 Ž .4i ¤ i q 1; if k x , FG - min i, k then k ¤ k x , FGi i i i

until i ) 2k ;

To prove this algorithm is correct let k* denote the connectivity of G.
First observe that the iterations with i F k* all have k s n y 1. This

Ž .follows since FG is i-connected so k x , FG G i. When i ) k*, FG hasi i i i
connectivity k*. Thus, k G k* and the algorithm does not halt with
i F 2k*.

Now assume k* - n y 1 and consider the iterations for i s k* q 1,
. . . , 2k* q 1. Let S be a separating set of G with k* vertices. S is a
separating set of each FG . At least one of these k* q 1 iterations hasi

Ž .x f S note that each iteration examines a distinct x . This iteration setsi i
k s k*. Furthermore any corresponding vertex separator of FG is ai

Žvertex separator of G, since i ) k* see the discussion of the forest
.subgraph in Section 1 . Thus, the algorithm halts with the correct connec-

tivity and separator, and i s 2k* q 1. The latter bound on the number of
iterations implies the desired time bound.

Proof of Theorem 2.1 for checking k-connectedness and T s T . The2
algorithm is an implementation of a variant of Even’s algorithm for

w xchecking k-connectedness 6 .
Given a digraph G and parameter k, the algorithm either verifies that

y � 4k G k or it finds k and a corresponding separator. Define k as min k , k
yŽ . yand similarly for k x, y . Thus, we seek k and a corresponding separa-

tor if ky- k.
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� 4For X : V and y g V y X, S : V y y is a weak X, y-separator if
G y S contains no path from X to y. Equivalently a weak X, y-separator

� 4is a subset of V y y that is an x, y-separator for every x g X that it does
not contain. Note that X is trivially a weak X, y-separator. Define

Ž . Ž .k X, y as the smallest cardinality of a weak X, y-separator; also k XW W
� Ž . 4 < <s min k X, y : y g V y X . If this quantity is less than X then it equals

the cardinality of an x, y-separator for some x g X.
ŽChoose two arbitrary sets X, Y : V of cardinality k. These sets can be

equal. We will need the sets to be distinct when we use this algorithm to
.compute k . Observe that

kys min k X j k Y , G R j ky y , x : y g Y , x g X . 1� 4� 4Ž . Ž . Ž . Ž .� 4W W

Ž .In proof, each quantity on the right-hand side of 1 corresponds to a
separator if it is less than k, so the right-hand side is G ky. Next suppose
k - k and let S be a minimum separator of k vertices. Thus V y S can be
partitioned into two nonempty sets A, B such that G y S contains no path

Ž . < < Žfrom A to B. If X : A j S then k X s S we use the fact thatW
< < . Ž R. < <X s k . Similarly if Y : B j S then k Y, G s S . In the remainingW
case X contains a vertex of B and Y contains a vertex of A. Thus, k

Ž .equals the minimum value in the third set of 1 .
Our algorithm works by computing the quantities on the right-hand side
Ž . Ž .of 1 and corresponding separators if such exist . We now describe how

each of these quantities is computed.
˜Ž .Consider the first quantity k X . Define a digraph G by starting withW

G and adding a new vertex a with edges ax, x g X. Fix a vertex y g V y X.
˜A subset of V y y is an a, y-separator in G if and only if it is a weak

˜Ž . Ž . Ž .X, y-separator in G. Hence k X s k a, G , and we can compute k XW W
Ž .using our procedure to compute k x . Similarly we compute the second

Ž . Ž R.quantity of 1 , k Y, G .W
yŽ .Finally we compute each value k y, x , y g Y, x g X. As noted above,

Ž .k y, x equals the size of a minimum y x -cut in the split graph SG. Thus,S T
yŽ .we can compute k y, x by computing a maximum flow from y to x ,S T

stopping if we verify that the maximum flow value is G k.
Now we prove the desired time bound T s T . It suffices to show this2

Ž . Ž R. Ž .for digraphs. The time to compute k X and k Y, G is O nm byW W
Ž . yŽ .our discussion of k x . We compute each value k y, x by the

Ford]Fulkerson maximum flow algorithm, computing F k augmenting
Ž . 2paths. Hence, the time is O km . The time to compute all k of these

Ž 3 .values is O k m . This establishes the time bound.

Proof of Theorem 2.1 for computing connectï ity and T s T . We find2
the connectivity k using this algorithm: Check k-connectedness for k
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equal to successive powers of 2 until we reach a power 2 i ) k . At that
Žpoint the algorithm determines k and a corresponding separator. Recall

our checking algorithm finds k and a corresponding separator when
.k ) k .

If the graph is undirected it is easy to see that the total time is
Ž Ž ..O T k , n, k n . Now consider a digraph. The desired bound2
Ž Ž .. Ž .O T k , n, m holds except for the computations of k X and2 W
Ž R. Ž .k Y, G . This takes time O nm in each k-connectedness check, givingW

Ž . Ž .a total contribution of O nm log k . Now we reduce this to O nm .
Specifically we show that one execution of our VC split algorithm gives

Ž . Ž .enough information to compute each desired value k X in O n time.W
Ž Ž . Ž . .Hence, the total time is O nm q n log k s O nm . The values

Ž R.k Y, G are computed the same way.W
˜Ž . Ž .The procedure we have given to compute k X s k a, G works asW

follows: It constructs a contracted graph CG by starting with the split
˜graph of G and contracting vertices a , a , and x for x g X into a newS T T

�vertex X . Then it finds a minimum X -split of the vertex cover y : y aT T T T
4vertex of UG in the unit capacity graph UG.

Let SG denote the split graph of G. Let U9G be the unit capacity graph
formed from SG in a manner similar to UG; i.e., delete all edges ¨ ¨ andS T

Žassign capacity 1 to all edges ¨ w . Note that we have not used aS T
.contracted graph CG to form U9G. Choose an arbitrary z g V. Suppose

we execute our algorithm to find a minimum z -split of vertex coverT
� 4C s y : y g V of digraph U9G. We shall see that our algorithm worksT

Žas follows: It orders the vertices of C y z as t , i s 1, . . . , n y 1. TheT i
.ordering is determined by the algorithm. For each such i it computes mi

� 4as the value of a minimum St -cut where S s z ,t , . . . , t .i T 1 iy1
Our connectivity algorithm saves these values m . Then for each k-con-i

� 4 Ž .nectedness check, we choose X to be z , t : 1 F i - k . The value k XT i W
˜Ž . � 4s k a, G equals min m : k, . . . , n y 1 . This follows because the con-i

˜Ž .tracted graph CG in the computation of k a, G is the same as the split
graph of G with vertices x , x g X contracted.T

Proof of Theorem 2.1 concluded. It is easy to combine the two ap-
proaches to connectivity into one algorithm: We execute the second

'algorithm to find k or determine that k ) n . In the latter case we then
switch to the first algorithm. This gives one algorithm that achieves
Theorem 2.1.

Ž .We mention a related connectivity problem. In a digraph G s V, E for
any x g V define

k x s min k x , G , k x , G R .� 4Ž . Ž . Ž .ˆ
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Ž . Ž .If G is undirected clearly k s k . The quantity k x indicates how wellˆ ˆ
connected x is to the remaining vertices. It may be of interest to know the
entire function k . For example to choose a ‘‘server’’ in a distributedˆ
network we would select a host with the highest connectivity to the

Ž .‘‘client’’ nodes; i.e., the server x should maximize k x .ˆ
Ž .To calculate all values k x first compute k and a correspondingˆ

Ž .separator S. Observe that any vertex x f S has k x s k . Thus, weˆ
Ž .complete the calculation by computing k x for each x g S.ˆ

Ž .COROLLARY 2.2. In a digraph all ¨alues k x , x g V can be found inˆ
Ž .time O k nm .

Note that in an undirected graph we can also achieve the time bound
Ž 2 .O kk*n where k* is the largest value of k . For this do the second stepˆ

using graphs FG with k doubling, until all values of k have been found.ˆk
In preparation for the next result we refine our time bound for very high

Ž Ž .. Ž .connectivities k s n y o n . Recall our algorithm for computing k x .
The contracted graph CG contains a vertex y only when xy f E. To stateT

Ž .the main observation, for each vertex x g V define d x to be theo
Ž .number of edges leaving x in the given graph G . Then the number of

vertices y in CG isT

n y d x . 2Ž . Ž .o

Ž . Ž .For computing the connectivity note that d x G k . Thus, 2 implieso
Ž Ž ..CG has F n y k vertices y and O n n y k edges. The same boundsT
R Ž .hold when CG is constructed from G . Hence, the time bound O n m ofT
Ž . ŽŽ . . Ž ŽTheorem 3.2 implies that we find k x in time O n y k m s O n n y

.2 .k and thus the Even]Tarjan algorithm given above to compute k runs
ŽŽŽ . .2 . Ž .in time O n y k n for digraphs or undirected graphs . For example,

Ž .this time bound is linear when k s n y O 1 . A similar bound holds for
checking k-connectedness.

We turn to randomized algorithms. We compute the connectivity as
follows. Define d as the smallest in-degree or out-degree of a vertex. Our
randomized algorithm is the Even]Tarjan algorithm, except that we choose

Ž .each vertex x randomly and terminate when i G 1rlog nrd .i
To state the results define

T n , m s nm.Ž .

THEOREM 2.3. The following can be done with error probability F 1r2:
Ž Ž ..For a digraph the connectï ity k can be found in time O T n, m . For an

Ž Ž ..undirected graph k can be found in time O T n, k n and k-connectedness
Ž Ž ..can be checked in time O T n, kn . For any fixed nonnegatï e ¨alue f , error
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probability F 1rn f can be achië ed in the same time bounds if k or k is
Ž e. Ž .O n for any fixed ¨alue e - 1. In all cases the space is O m .

Proof. First consider digraphs. To calculate the error probability of our
algorithm let S be a minimum vertex separator. To err the algorithm must

Ž < < . ichoose all i vertices from S. This occurs with probability F S rn F
Ž . idrn F 1r2.

Ž .To bound the time write d s 1 y e n for e between 0 and 1. Using
Ž . Ž .natural logarithms, ln nrd s yln 1 y e ) e . Thus, since 1re G 1 the

Ž . Ž .number of iterations is O 1re . Using 2 and Theorem 3.2, each iteration
Ž . ŽŽ . . Ž .computes k x in time O n y d m s O e nm . Thus, the total time isi

Ž .O nm as desired.
Now consider undirected graphs. We check k-connectedness using the

digraph algorithm on FG .k
Ž xTo compute k , find a value k g k , 2k and use the digraph algorithm

to compute the connectivity of FG . We find the desired k using thek
w x Ž 2 .algorithm of 12 in time O k n or less. This implies the desired time

bound.
For the last part of the theorem first consider digraphs. We change the

Ž .termination test to i G fr 1 y e . It is easy to see this achieves the desired
error probability. The time bound follows since each iteration uses time
Ž .O nm . Undirected graphs are similar.

To make this paper self-contained we sketch a procedure that for a
Ž . Ž 2 .given undirected graph computes a value k g k , 4k in time O k n . This

w xprocedure is conceptually simple and can replace that of 12 in the above
algorithm to compute undirected connectivity.

Our algorithm is based on the following fact. Let x be a vertex of degree
Žexactly k in FG . The existence of such a vertex when k F k is proved ink

w x .17 . x can be chosen as the last vertex scanned by the algorithm. Then
Ž .k x, FG equals k if k F k and is - k if k G 2k .k
To prove the fact define N as the set of all neighbors of x. If k F k

Ž .then FG is k-connected. Thus, N is a separator or trivializor that showsk
Ž .k x, FG s k.k
Suppose k G 2k . Define S as a vertex separator of k vertices. The

Ž . Ž Ž . .desired conclusion k x, FG - k is clear if x f S k x, FG s k or ifk k
FG contains a vertex of degree - k. Suppose neither of these is the case.k
Partition V y S into nonempty sets A and B such that G y S contains no

< <path from A to B. Without loss of generality A l N F kr2. Consider
Ž . Ž .the set T s S y x j A l N . Note that A y N contains some vertex a.

Ž < <If A y N s B then A F kr2. This implies any vertex of A has degree
Ž . < < .F kr2 y 1 q S F k y 1 - k, contradicting our initial assumption.

< < Ž .Thus, T is an a, x-separator. Furthermore T F k y 1 q kr2 F k y 1.
Ž .Thus, T shows k x, FG - k as desired.k
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Ž . Ž .The algorithm to compute k g k , 4k calculates k x, FG for k dou-k
Ž .bling until k x, FG - k. The above fact shows the algorithm halts with kk

w .larger than k but no larger than the power of 2 in 2k , 4k . The time is
Ž 2 . Ž . Ž 2 .O k n since each calculation of k x uses time O kn .
The final topic of this section is computing weighted vertex connectivity.

Let w: V ª R be a vertex weight function. Our algorithm first finds aq
Ž .minimum unweighted separator S using one of the previous algorithms .

Then it sets

k s min w S , k x , G , k x , G R : x g S .� 4Ž . Ž . Ž .
Ž .All references to k refer to weighted connectivity. This is correct since if
S is not a minimum weight separator then some x g S is not contained in

Ž .some minimum weight separator, so the weighted connectivity is k x, G
Ž R.or k x, G .

Ž . Ž R.To calculate the values k x, G and k x, G we proceed similar to the
unweighted case: Define the split graph SG as before, except that each

Ž .edge ¨ ¨ has capacity w ¨ . Define the contracted graph CG as before.T S
Ž .Applying Theorem 3.3 to CG shows k x, G can be found in time

Ž Ž 2 ..O nm log n rm .

THEOREM 2.4. For any digraph or undirected graph with nonnegatï e
¨ertex weights, the weighted connectï ity can be found in time
Ž Ž 2 ..O k nm log n rm , where k is the unweighted ¨ertex connectï ity. The1 1

Ž .space is O m .

A randomized algorithm also works. Define

� 4 � 4d s min w x : x¨ g E , w x : ¨x g E : ¨ g V .� 4Ž . Ž .
We use the Even]Tarjan algorithm, except that we choose each vertex xi

Ž . Ž .randomly with any ¨ g V having probability w ¨ rw V , and we termi-
Ž Ž . .nate when i G 1rlog w V rd .

THEOREM 2.5. For any digraph or undirected graph with nonnegatï e
¨ertex weights, the weighted connectï ity can be found with error probability

Ž Ž 2 .. Ž .F 1r2 in expected time O nm log n rm . The space is O m .

Proof. To calculate the error probability let S be a minimum weight
vertex separator. To err the algorithm must choose all i vertices from S.

Ž Ž .. iThis occurs with probability F krw V . Note that d G k , since all
quantities in the definition of d are the weights of vertex separators or

Ž Ž .. itrivializors. Thus, the error probability is F drw V F 1r2.
Ž . Ž .To bound the expected time write d s 1 y e w V for e between 0 and

Ž .1. The same calculation as Theorem 2.3 shows there are O 1re iterations.
Thus, it suffices to show the expected time for an iteration is
Ž Ž 2 ..O e mn log n rm .
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Ž . ŽEquation 2 gives the size of our vertex cover of CG recall Property
Ž . . Ž .iii of CG . Hence, we can apply Theorem 3.3 with n s n y d x . ItT o

Ž . ŽŽshows that any quantity k x, G is computed in time O n y
Ž .. Ž 2 .. Ž .d x m log n rm . The expected value of d x iso o

w x d x rw V : x g V� 4Ž . Ž . Ž .Ý o

� 4s 1rw V w x : x¨ g E : ¨ g V G ndrw V ,� 4Ž . Ž .Ž . Ž .Ý

Ž� 4. Ž .since any vertex ¨ has w x: x¨ g E G d . Hence, n y d x has expecta-o
Ž Ž .. Ž .tion F n 1 y drw V s ne . So the expected time to compute k x, G is

Ž Ž 2 .. Ž R.O e nm log n rm . Similarly for computing k x, G . Thus, the expected
time for an iteration is as desired.

3. MINIMUM VERTEX COVER SPLITS

This section presents an algorithm to find a minimum vertex cover split.
Recall that we are given a digraph with vertex cover T and vertex s g T ;
we seek an st-set that has the smallest possible in-degree subject to the

Ž .constraint that t g T. Our algorithm runs in time O nm on a unit
Ž Ž 2 ..capacity multigraph and time O nm log n rm on a capacitated graph.

< < Ž .More precisely write n s T . The time bounds are actually O n m andT T
Ž Ž 2 .. Ž .O n m log 2 q n rm , respectively see Theorems 3.2 and 3.3 .T T
We solve the special case of the problem where the undirected version

of G is bipartite and the vertex cover T is one set of the bipartition. The
general problem reduces to this special case as follows. Let an instance of

Ž .the general problem be specified by digraph G s V, E , vertex cover T ,
and s g T. Replace each edge ¨w g E that has ¨ , w g T by two edges

Ž .¨x, xw. Here x is a new vertex on the two new edges and no others and
the two new edges have the same capacity as the original. The new graph is

Žbipartite no edge joins two vertices of V y T since T is a vertex cover
.of G . For any t g T a minimum st-cut has the same value in both graphs

Ž .since a maximum st-flow has the same value . The parameters n and mT
change by at most a constant factor. Hence it suffices to consider the

Žbipartite case. We note that a version of our split algorithm works directly
on the general problem. We do not present this version because the
Relabel routine has more cases. We also note that the graphs generated

.by the reductions of Section 2 are already bipartite.
Ž w xWe briefly review the preflow-push algorithm see 10 for a complete

. Ž . Žtreatment . Fix a digraph G s V, E with distinguished vertices s the
. Ž .source and t the sink and capacity function c: E ª R . Without loss ofq

generality assume an edge e belongs to E if and only if its reverse edge,
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denoted e R, belongs to E. A flow is function f : E ª R satisfying theq
Ž Ž . Ž ..capacity constraint for each edge e g E, f e F c e and the conser̈ ation

Žconstraint each vertex / s, t has excess 0, where the excess at vertex ¨ is
Ž . Ž� 4. Ž� 4..e ¨ s f w¨ : w¨ g E y f ¨w: ¨w g E . A preflow obeys the same

conditions except that instead of conservation we require that each vertex
Ž . Ž .¨ / s has e ¨ G 0. The ¨alue of a flow or preflow is e t ; a maximum flow

Ž .preflow is one with maximum value. The maximum value of a preflow is
the same as that of a flow, because any preflow can be converted to a flow
of the same value.

Ž .Fix a preflow f. A vertex ¨ / s, t is o¨erflowing if e ¨ ) 0. An edge e
Ž . Ž . Ž . Ž R. Ž .has residual capacity r e s c e y f e q f e . An edge with r e ) 0 is

Ž .a residual edge; an edge with r e s 0 is saturated. To push d units of flow
Ž . Ž . Ž R.along e means to increase f e by d and then reduce both f e and f e

� Ž . Ž R.4 � Ž . Ž .4by min f e , f e . Pushing up to min e ¨ , r ¨w units of flow along
Ž .edge ¨w keeps f a valid preflow. A push of r ¨w units is a saturating push

Ž .it makes ¨w saturated .
A distance function is a mapping d: V ª N such that any residual edge

Ž . Ž .¨w not incident to s satisfies d ¨ F d w q 1.
w xThe preflow-push algorithm of 10 computes a maximum preflow. To do

this it maintains a preflow and corresponding distance function, repeatedly
Ž . Ž .pushing flow on residual edges ¨w that have d ¨ s d w q 1 and increas-

ing distance labels until there are no overflowing vertices. At that point the
preflow is maximum and the algorithm halts.

w x ŽThe algorithm of 13 finds a minimum unrestricted cut i.e., an xy-cut of
.minimum capacity where x and y are arbitrary . It maintains a preflow

Žfrom source S to sink t. Here S is a contraction of vertices of V we use S
.to denote both the subset of V and its contraction ; t is a vertex not in S.

Initially S consists of one vertex s g V. The algorithm repeatedly finds a
Ž w x.maximum preflow from S to t following 10 and then transfers t to S

Ž .and chooses a new sink vertex t9 f S that has minimum distance d t9 . At
certain points the algorithm makes a set of vertices ‘‘dormant.’’ The
dormant vertices are temporarily ignored}the algorithm pushes flow and

Žincreases distance labels only on vertices that are ‘‘awake’’ i.e., vertices
.not belonging to S or a dormant set . When no awake vertices remain

Ž .because they have all been chosen as sinks and transferred to S the
algorithm awakens the last dormant set and repeats this process on them.
As mentioned, for each sink t the algorithm computes a maximum preflow
from S to t; its value equals that of a minimum St-cut. The minimum
unrestricted cut of the given graph G has value equal to the smallest of
these St-cuts on G or G R.

Our algorithm extends the Hao]Orlin minimum unrestricted cut algo-
rithm. The main change is a new operation Join which adjoins an awake
vertex to a previously created dormant set.
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3.1. Algorithm Statement

w xWe present the algorithm using the same organization as 13 : We divide
the algorithm into a number of subroutines. We state each routine and

w xthen briefly comment on how it works and how it differs from 13 . The
formal analysis of our algorithm does not rely on these comments.

We use the following notation. The algorithm maintains a partition of V
Ž . Ž . Žinto sets S the source set , D , i s 1, . . . , g the dormant sets , and W thei
. Ž .awake set . Let PP denote this partition. PP changes over time. Also

define D ' S. The function d is the distance function. For a set U : V,0
Ž . � Ž . 4 Ž . � Ž . 4d U s min d ¨ : ¨ g U and d U s max d ¨ : ¨ g U .min max

Recall that we are given G, T , s where G is a digraph whose undirected
version is bipartite, T is one set of the bipartition, and s g T. We seek an
s-set that contains a vertex of T and has the smallest possible in-degree.
The following main routine returns with W * equal to the desired set.

Ž .procedure Min VC Split G, T , s ;
Ž .1. Initialize; r) initialize flow, distances d ¨ , etc. )r

2. repeat
�3. New Sink; r) choose new sink, etc. )r

4. while a vertex of W is overflowing do
�5. choose an overflowing vertex ¨ g W;

Ž .6. if there is a residual edge ¨w with w g W and d ¨ s
Ž .d w q 1 then

� Ž . Ž .47. push min e ¨ , r ¨w units of flow along ¨w
Ž .48. else Relabel ¨

Ž . Ž . 49. if r W, G - r W *, G then W * ¤ W

10. until T : S j t;

w xThis is essentially the main routine of 13 . The Initialize and
New Sink routines collectively initialize the data structures for the first
iteration. Here is Initialize; New Sink, which selects the next sink t
of the preflow, is given later.

procedure Initialize;
� 41. W * ¤ any s-set separating T , e.g., ¨ for some ¨ g T y s;

2. S ¤ B; g ¤ 0; r) S is the same set as D )r0

3. W ¤ V; t ¤ s;

4. set the flow in each edge of G to 0;
Ž . Ž .5. for ¨ g V do if ¨ g T then d ¨ ¤ 0 else d ¨ ¤ 1;
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We shall see that in the first iteration New Sink completes the initializa-
� 4tion by setting S to s and t to the first sink and saturating the edges

directed from s.
Ž .The Relabel routine either increases the distance label d ¨ or adjusts

the dormant sets. The Create Dormant routine creates a new dormant
w xset as in 13 . The Join routine adjoins ¨ to an existing dormant set.

Ž .procedure Relabel ¨ ; r) ¨ g W )r
Ž . Ž . Ž .1. if ¨ is the only vertex in W at distance d ¨ and d ¨ - d Wmax

then
Ž� Ž . Ž .4.2. Create Dormant u g W: d u G d ¨

3. else if no residual edge goes from ¨ to W then
Ž� 4. Ž .4. if ¨ g T then Create Dormant ¨ else Join ¨

Ž . � Ž . 45. else d ¨ ¤ min d w q 1: ¨w a residual edge, w g W ;

Ž .procedure Create Dormant U ; r) U : W )r
1. W ¤ W y U; g ¤ g q 1; D ¤ U;g

Ž .procedure Join ¨ ; r) ¨ g W y T )r
Ž . Ž .1. W ¤ W y ¨ ; D ¤ D j ¨ ; d ¨ ¤ d D l T q 1;g g min g

Ž .In line 1 of Relabel if ¨ is the only awake vertex at distance d ¨ and
Ž . Ž .d ¨ s d W then the condition of line 3 holds; i.e., no residual edgemax

Žgoes from ¨ to W. This follows from the d-Validity property below, which
. Ž .says d is a valid distance function. In Join the resetting of d ¨ preserves

Ž .the validity of d. This resetting can change d ¨ arbitrarily; in particular,
Ž .d ¨ can decrease. This contrasts with most preflow-push algorithms where

Ž . Ž w x.any vertex ¨ has d ¨ nondecreasing e.g., 1, 2, 10, 11, 13, 14 . Finally
note that Join can add ¨ f T to S s D .0
New Sink transfers the previous sink to S and saturates all edges

directed from it. Then it chooses an awake vertex of T as the next sink.
This may necessitate waking the last dormant set D .g

procedure New Sink;
1. W ¤ W y t; S ¤ S j t;
2. saturate each residual edge ẗ directed from t;
3. if W l T s B then

� Ž .4. for ¨ g W do Join ¨ ;
45. W ¤ D ; g ¤ g y 1g

Ž . Ž . Ž . Ž .6. for each ¨ g W y T with d ¨ s d W do d ¨ ¤ d ¨ q 2;min

Ž . Ž .7. choose t as a vertex of W with d t s d W ;min
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The purpose of the Join operations in line 4 is to update distance labels.
Now consider the loop of line 6 that increases distance values by 2. It
applies when the awake vertex t9 g T with smallest distance value has
Ž . Ž .d t9 s d W q 1. Thus, the loop ensures that the new sink t9 has themin

smallest distance value. This is needed in the following two situations.
In both situations, New Sink is entered with the old sink t being the

Ž .only vertex at distance d t . The first situation is when some other vertex
of T is awake. We shall see this implies there is such a vertex t9 with
Ž . Ž . Ž .d t9 s d t q 2. This quantity equals d W q 1 after line 1 deletes tmin

Ž . Ž .from W. Hence, the loop ensures d t9 s d W as desired. The secondmin
situation is when no other vertex of T is awake and line 5 wakens D . Ifg

Ž .D was created in Relabel when ¨ was the only awake vertex atg

Ž .distance d ¨ for some ¨ f T , then a vertex t9 g T l D with smallestg

Ž . Ž . Ž .distance value has d t9 s d ¨ q 1. Thus, again the loop ensures d t9 s
Ž .d W . This concludes the statement of our algorithm.min

3.2. Algorithm Analysis

We prove that our algorithm has properties similar to the ones shown in
w x13 . We state these nine properties below and discuss how they are used in
the overall argument. Then we present the proofs of the properties.

The first two properties, besides being crucial overall, will ensure that
the algorithm is well-defined and halts. Recall the definition of PP from
the start of Section 3.1.

Ž .PARITY PROPERTY. d ¨ is e¨en if ¨ g T and odd if ¨ f T.

Ž .d-CONSECUTIVENESS PROPERTY. If U g PP y S then d U is a set of
consecutï e integers.

The next paragraph shows the above two properties imply that a dor-
mant set always contains a vertex of T. This fact has two important
consequences. First, it makes the algorithm well-defined}in Join, the

Ž .assignment to d ¨ needs D l T / B. Second, it guarantees that line 7 ofg

ŽNew Sink always chooses a sink t that belongs to T. This follows by
examining lines 3]7 of New Sink and using the fact, d-Consecutiveness

.and Parity.
We now prove that a dormant set always contains a vertex of T. The

Ž .dormant set D contains s g T after the first execution of New Sink .0
Ž .A dormant set created in line 4 of Relabel by Create Dormant

clearly contains a vertex of T. Consider a dormant set created in line 2 of
Relabel. The new dormant set has vertices with at least two distinct
distance values. Hence the desired property follows from d-Consecutive-
ness and Parity.

The next two properties are important for correctness of the algorithm.
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d-VALIDITY PROPERTY. A residual edge ¨w with ¨ and w in the same set
Ž . Ž .of PP y S has d ¨ F d w q 1.

DORMANCY PROPERTY. No residual edge enters W or goes from D to D ,i j
0 F i - j.

The next property implies the algorithm is correct.

OPTIMALITY PROPERTY. Whenë er Min VC Split updates W *, W is
Ž .an S l T t-set of minimum in-degree r W, G .

To see this implies correctness, let U be a minimum s-split of T. Let t
be the first vertex of U chosen as the sink by New Sink. Thus, when t is

Žthe sink U is an S l T t-set. Note that U need not be an St-set; i.e., U
.may contain vertices of S y T. Now the Optimality property implies

Min VC Split finds a set W of the same in-degree as U.
The last four properties are used in the efficiency analysis.

Ž .INCREASING DISTANCE PROPERTY. A ¨alue d ¨ can decrease only in an
Ž . Ž . Ž .operation Join ¨ . An operation Relabel ¨ either increases d ¨ or

makes ¨ dormant.

The main purpose of the next property is to bound the total increase in
Ž . Ž .d ¨ in operations other than Join ¨ . For any vertex ¨ g V define the

following measure of increase:

I ¨ s the total amount that d ¨ has increased in all operations otherŽ . Ž .Ž
than Join ¨ q 2 = the number of operations Join ¨ .Ž . Ž .. Ž .

A vertex ¨ g T is never in a join operation. Hence, at any moment
Ž . Ž .I ¨ s d ¨ for any ¨ g T.

Ž . Ž .d-BOUND PROPERTY. Each ¨alue d ¨ is less than 2n . Each ¨alue I ¨T
is at most 2n .T

TRANSFER BOUND PROPERTY. New Sink awakens fewer than n dor-T
mant sets. Create Dormant creates fewer than n dormant sets. A gï enT
¨ertex becomes dormant fewer than n times.T

SATURATION BOUND PROPERTY. Any edge and its re¨erse are collectï ely
saturated at most 2n times.T

w xNow we prove the properties. The arguments are similar to 13 except
for the d-Bound. For the first property and others note that the algorithm

Ž .changes distance values in four places: Initialize line 5 , Relabel
Ž . Ž .line 5 , Join, and New Sink line 6 .
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Proof of Parity. This property is first established by Initialize. It is
preserved when line 5 of Relabel changes a distance value because G is
bipartite. It is obviously preserved when Join or line 6 of New Sink
changes a distance value.

Proof of d-Consecutï eness. The argument is by induction on the num-
ber of steps of the algorithm. d-Consecutiveness is first established by
Initialize.

Consider the Relabel routine. The call to Create Dormant in line 2
Žobviously preserves d-Consecutiveness for both W and the new dormant

. Ž . Ž .set . If this call is not made then either d ¨ s d W or there is anothermax
Ž . Ž .vertex at distance d ¨ . In either case d W y ¨ is a set of consecutive

integers. This implies the d-Consecutiveness of W is preserved in all other
Žcases of Relabel i.e., in the calls to Create Dormant or Join in line

Ž ..4 and when line 5 redefines d ¨ . In line 4 d-Consecutiveness is obvious
� 4for the new dormant set ¨ formed by Create Dormant. Finally any call

Ž .to Join preserves d-Consecutiveness for D when it redefines d ¨ .g

Next consider the New Sink routine. d-Consecutiveness is preserved
Ž . Ž .when line 1 deletes t from W since d t s d W . The calls to Joinmin

Ž .line 4 preserve d-Consecutiveness as noted above. Line 6 preserves
d-Consecutiveness of W by d-Consecutiveness prior to this line and Parity.

Proof of d-Validity and Dormancy. These two properties are proved
together by induction on the number of steps of the algorithm. Both
properties are established when Initialize sets the distance values in
line 5.

Consider a push operation in line 7 of Min VC Split. The only
residual edge that can be created by the push is w¨ . d-Validity is preserved

Ž . Ž .since d w - d ¨ by line 6. Dormancy is preserved since w g W by line 6.
Consider the Relabel routine. We begin by checking Dormancy is

preserved. Consider the call to Create Dormant in line 2, and suppose
it makes D the new dormant set. Take any residual edge uw with u g Dg g

Ž . Ž .and w belonging to W before the call. Then d w G d ¨ , by d-Validity if
u / ¨ and by line 6 of Min VC Split if u s ¨ . Thus, w g D andg

Dormancy is preserved. Line 4 of Relabel preserves Dormancy by the
test of line 3.

Next we check that d-Validity is preserved in Relabel. The first case to
Ž .consider is an operation Join ¨ . Take any vertex w g D . A residualg

Žedge joining ¨ and w is directed from ¨ to w by Dormancy before
Ž .. Ž . Ž .Join ¨ . Also w g T since ¨ f T . Hence, the new value of d ¨

satisfies the validity inequality.
Ž .The second case to consider is when line 5 of Relabel redefines d ¨ .

The new value obviously preserves d-Validity for edges directed from ¨ .
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Ž . ŽFor edges directed to ¨ observe that this operation increases d ¨ by
d-Validity prior to line 5 and the definition of ¨ in line 6 of

.Min VC Split .
Finally consider the New Sink routine. Dormancy is preserved when

line 2 saturates the edges directed from t. When W l T s B a Join
operation preserves d-Validity, by the argument above. Also it is obvious
that in line 5 redefining W to D preserves Dormancy. Lastly we show lineg

Ž .6 preserves d-Validity. Immediately before line 6 increases a value d ¨ ,
Ž . Ž .any vertex w g W l T has d w G d ¨ q 1 by Parity. This implies d-

Validity.

Proof of Optimality. When Min VC Split updates W * all vertices
with negative excess are in S l T. Hence, we have a preflow from S l T
to t. The set W contains t but no vertex of S l T. No vertex of W is
overflowing, by definition. Every edge of G entering W is saturated, by
Dormancy. This implies we have a maximum value preflow from S l T to
t and W is an S l T t-set of minimum in-degree.

Proof of Increasing Distance. Line 5 of Relabel increases a distance
Ž . Ž .value d ¨ as shown in the proof of d-Validity and Dormancy . This

implies the second part of the Increasing Distance property. Line 6 of
New Sink also increases distance values.

We prove the d-Bound using the following lemma.

LEMMA 3.1. Whenë er a ¨ertex ¨ is awake,

< <I ¨ - 2 S l T q d ¨ y d t . 3Ž . Ž . Ž . Ž .

Ž .Immediately before an operation Join ¨ ,

< <I ¨ - 2 S j W l T . 4Ž . Ž . Ž .

Ž .Let us show that the lemma implies the d-Bound. Inequality 3 implies
the first part of the d-Bound: First consider a vertex ¨ g T. When ¨ is

Ž . Ž .chosen as the sink d ¨ has achieved its maximum value and 3 gives
Ž . Ž . < < Ž .d ¨ s I ¨ - 2 S l T F 2 n y 1 . Next consider a vertex ¨ f T. TheT

Ž .algorithm always defines d ¨ as one more than the distance of a vertex in
Ž .T , so we always have d ¨ - 2n .T

Ž .Inequality 4 essentially implies the second part of the d-Bound. For
the second part we need only consider vertices ¨ f T. First consider a

Ž .vertex ¨ f T that becomes dormant in an operation Join ¨ and is never
Ž . Ž .subsequently reawakened. Before this join inequality 4 shows I ¨ - 2n .T

Ž . Ž Ž .The join increases I ¨ by 2, so its final value is F 2n since I ¨ isT
.even . Thus, the second part of the d-Bound holds for ¨ . To extend this to
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all vertices ¨ f T we make the convention that when T : S j t in line 10
of Min VC Split, the algorithm actually continues to execute

Ž .New Sink, line 4 of which performs Join ¨ for each ¨ remaining in W.
With this convention the previous argument applies to every ¨ f T. We
conclude that Lemma 3.1 implies the d-Bound.

Before proving Lemma 3.1 we give a useful inequality. Consider the
Ž .moment when an execution of Create Dormant U is completed. Let

Ž . Ž .¨ g U l T have minimum distance; i.e., d ¨ s d U l T . Thenmin

< <d ¨ F d t q 2 W l T . 5Ž . Ž . Ž .

This follows from d-Consecutiveness and Parity. Similar reasoning shows
Ž . Ž .that 5 holds with strict inequality immediately before an execution of
Ž . Ž .Join ¨ in Relabel ¨ .

Proof of Lemma 3.1. The argument is by induction on the number of
Žsteps of the algorithm. At the start of the algorithm after the first

. Ž . Ž . � 4execution of New Sink for any vertex ¨ , I ¨ s d t s 0, S s s , and
Ž . Ž .d ¨ G 0, so 3 holds.
Consider the Relabel routine. When line 5 of Relabel increases
Ž . Ž .d ¨ , obviously 3 is preserved. The only remaining case to check in

Ž . Ž .Relabel is when Join ¨ is executed. We wish to show 4 holds right
Ž .before the join. Inequality 5 shows right before the join,

< <0 F 2 W l T q d t y d ¨ .Ž . Ž .

Ž .Also 3 holds right before the join since ¨ is awake. Adding these
Ž .inequalities gives 4 .

Now consider the New Sink routine. The following three cases exhaust
all the possibilities.

Case 1: ¨ is awake throughout New Sink. We first claim that no set
gets awakened in New Sink. To prove this it suffices to show W l T / B
in line 3. This holds if ¨ g T since then ¨ g W l T by Case 1. It holds if

Ž .¨ f T since Join ¨ is not executed in Case 1.
< <Now we show that New Sink does not decrease the quantity 2 S l T

Ž . Ž . < <y d t on the right-hand side of 3 . Line 1 increases 2 S l T by 2. When
Ž .line 7 chooses a new value for t the quantity d t increases by at most 2

from its previous value, by the claim, d-Consecutiveness, and Parity. The
< < Ž .net effect is that 2 S l T y d t does not decrease.

Ž . Ž .Finally if line 6 increases d ¨ both sides of 3 increase by 2. We
Ž .conclude that 3 is preserved in Case 1.

Case 2: ¨ is awake when New Sink starts and becomes dormant in
New Sink. If ¨ g T it becomes dormant in line 1 and there is nothing
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Ž .to prove. Suppose ¨ f T , so ¨ becomes dormant in line 4 when Join ¨ is
executed and ¨ is reawakened in line 5. Immediately before New Sink

Ž . Ž . Ž . Ž .starts, d ¨ s d t q 1 by the test of line 3 . Thus, 3 gives

< <I ¨ - 2 S l T q 1. 6Ž . Ž .

Ž . Ž . < <Inequality 6 becomes I ¨ - 2 S l T y 1 when line 1 adds t to S. This
Ž . Ž . Žgives the desired inequality 2 right before the operation Join ¨ note
. Ž . Ž .W l T s B at this moment . The join increases I ¨ by 2, so 6 holds

Ž .once again. The join also sets d ¨ so that when ¨ awakens in line 5 and
Ž . Ž . Ž .the next sink t is chosen in line 7, we have d ¨ s d t q 1. Thus 6

Ž .implies that 3 holds at the end of New Sink, as desired.

Case 3: ¨ is dormant when New Sink starts. If ¨ remains dormant
throughout the execution of New Sink there is nothing to prove. So
assume ¨ is awakened in line 5. We examine the two possibilities for how
¨ became dormant.

Ž .The first possibility is that an operation Create Dormant U made ¨
Ž .dormant. Right after the execution of Create Dormant U inequality

Ž .5 holds, so

< <0 F 2 W l T q d t y d U l T .Ž . Ž .min

Ž . Ž .Inequality 3 holds right before Create Dormant U . It still holds right
Ž . Ž .after Create Dormant U since no term changes. Adding 3 to the

above inequality gives

< <I ¨ - 2 S j W l T q d ¨ y d U l T . 7Ž . Ž . Ž . Ž . Ž .min

Ž .By the time ¨ gets awakened in New Sink, all vertices in W l T in 7
Žhave been transferred to S. Furthermore some vertex at distance d U lmin

. Ž . Ž .T becomes the sink. Hence, inequality 7 implies that 3 holds at the end
of New Sink, as desired.

Ž .The second possibility is that an operation Join ¨ in Relabel made ¨
Ž . Ž .dormant. Right before Join ¨ inequality 4 holds. By the time ¨ gets

awakened in New Sink, all vertices in W l T in this inequality have been
Ž . Ž .transferred to S. Also the Join ¨ operation increases I ¨ by 2. Thus,

Ž . < < Ž .the inequality becomes I ¨ - 2 S l T q 2. Since I ¨ is even this im-
Ž . < < Ž . Ž .plies I ¨ - 2 S l T q 1. The join operation sets d ¨ so d ¨ s

Ž . Ž .d t q 1 when the next sink t is chosen. This implies that 3 holds at the
end of New Sink, as desired.

Proof of Transfer Bound. There are n y 1 executions of New Sink,T
since each one chooses a new vertex of T as sink. This gives the first
part of the Transfer Bound. There are - n y 1 executions ofT
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Create Dormant, since each one creates a dormant set which eventually
gets awakened in line 5 of New Sink. This gives the second part. A given
vertex becomes dormant - n times, since each time its new dormant setT
either equals D or was created by Create Dormant.0

Proof of Saturation Bound. Consider the saturating pushes from ¨ to w
or w to ¨ for two fixed vertices ¨ f T and w g T. We claim that during
the interval of time after one such push and before the next, the quantity
Ž . Ž .I ¨ q d w increases by at least 2. When the algorithm ends this quantity

Ž .is - 4n d-Bound . Thus, the claim implies there are F 2n saturatingT T
pushes total.

Ž .Now we prove the claim. The claim is obvious if Join ¨ occurs in the
Ž . Ž .interval, so assume it does not. Thus, neither d ¨ nor d w decreases

Ž .Increasing Distance . Without loss of generality suppose the first saturat-
ing push is from ¨ to w. The next push along ¨w or w¨ goes from w to ¨ ,

Ž . Ž .which implies d w has increased by G 2 line 6 of Min TC Split .

Now we estimate the time for the algorithm. We use the inequality
n F m, which holds since a vertex not on any edge can be deleted.

First we give some necessary data structures. We use the current edge
w xdata structure to scan the edges incident to a vertex 10 . We use the

Ž .additional rule that every operation Join ¨ resets ¨ ’s current edge
pointer to the beginning of its adjacency list.

These rules ensure that whenever ¨ ’s current edge pointer reaches the
Ž .end of ¨ ’s adjacency list, every edge ¨w has been scanned with d ¨ equal

w xto its current value. Hence, as in 10 each time ¨ ’s entire adjacency list
Ž . Ž .has been scanned, Relabel ¨ is executed. The latter occurs O n timesT

by the Increasing Distance property, d-Bound, and Transfer Bound. A
Ž .vertex ¨ f T may also have O n partial scans of its adjacency list, eachT
Ž .ending in the operation Join ¨ . We conclude that any given edge is

Ž . Žscanned O n times. Thus, the total time for scanning edges line 6 ofT
. Ž .Min VC Split and lines 3 and 5 of Relabel is O n m .T

We maintain several lists of awake vertices. To choose an overflowing
Ž .vertex in line 4]5 of Min VC Split we maintain a list of the overflow-

ing vertices of W. To implement lines 1]2 of Relabel we maintain a list
Ž . Ž .of vertices of W at each distance value between d W and d W . Wemin max

also mark each awake vertex, to implement line 6 of Min VC Split and
lines 3 and 5 of Relabel. These data structures are initialized each time a

Ž Ž .. Ž .dormant set is awakened, in total time O n m q n s O n m .T T
Ž .We record the value d D l T for each dormant set D. Thus, eachmin
Ž . Ž .join operation uses time O 1 , giving time O n n total for joins.T

Ž .Each push takes O 1 time. The Saturation Bound implies there are
Ž .O n m saturating pushes. It follows from this discussion that excludingT

Ž .nonsaturating pushes, the total time for Min VC Split is O n m .T



COMPUTING VERTEX CONNECTIVITY 247

Now suppose Min VC Split is executed on a unit capacity digraph
ŽG. In such a graph every edge has capacity one but parallel edges are

.allowed. This is the case needed for all results of Section 2 except
weighted connectivity. For such graphs we can consider the residual graph
also to be unit capacity. That is, instead of defining the residual capacity of

Ž . Ž .e as r e , the residual graph contains r e copies of e, each having capacity
Ž1. Thus, each edge of G corresponds to a unique edge in any residual

.graph. The Saturation Bound still holds. Furthermore in such residual
graphs every push is saturating, i.e., there are no nonsaturating pushes. We
have thus completely analyzed the time for such graphs and can conclude
the following:

THEOREM 3.2. A minimum s-split of a ¨ertex co¨er T can be found in
Ž . < <time O n m in a digraph with unit edge capacities, for n s T F n. TheT T

Ž .space is O m .

We turn to the implementation of Min VC Split on capacitated
Ž Ž 2 ..digraphs. We first achieve time O n m log n rm by incorporating dy-T

namic trees, and then we improve the logarithmic factor. The modifica-
w xtions and analysis are similar to the maximum flow algorithm of 10 . We

begin by summarizing that implementation in the context of
w xMin VC Split. Then we sketch the changes to our algorithm from 10

and the changes in the analysis of our algorithm. We conclude by sketch-
Ž Ž 2 ..ing how to improve the time bound to O n m log n rm . We assume theT T

w xreader is familiar with 10 .
w xThe dynamic tree algorithm of 10 maintains a forest of dynamic trees.

Consider a dynamic tree edge ¨w. ¨w is the current edge of ¨ , with w the
parent of ¨ in the dynamic tree. Furthermore edge ¨w satisfies the
condition of line 6 of Min VC Split, so line 7 can push flow along it.
The algorithm pushes flow along paths in dynamic trees, specifically along
paths from a vertex ¨ to the root of its dynamic tree. The algorithm also
pushes flow along single edges not in a dynamic tree. It maintains the
following o¨erflowing ¨ertex in¨ariant: Any overflowing vertex is the root of
the dynamic tree containing it. This is done by using a routine send to

Ž .push flow in a dynamic tree. send ¨ repeatedly pushes flow from ¨ to the
root of its dynamic tree until either ¨ has no excess or ¨ becomes a
dynamic tree root. send also cuts any newly saturated edge, to preserve the
definition of dynamic tree edges. Line 7 of Min VC Split either links

Ž .the dynamic trees of ¨ and w and then does send ¨ , or pushes flow along
Ž .edge ¨w and then does send w .

Ž .When a vertex ¨ is relabelled, i.e., the distance value d ¨ is increased
as in line 5 of Relabel, the algorithm performs an operation cut-

Ž . Ž .children ¨ , where cut-children ¨ cuts every dynamic tree edge corre-
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sponding to a child of ¨ . This preserves the definition of dynamic tree
edges.

ŽThe algorithm chooses overflowing vertices to process line 5 of
. ŽMin VC Split using a queue of overflowing vertices the FIFO pre-

.flow-push algorithm . Each time an overflowing vertex ¨ is chosen from
Žthe head of the queue, pushes from ¨ are done as described above for line

.7 of Min VC Split until either the excess of ¨ becomes 0 or a relabel
Ž .operation is done to increase d ¨ . A vertex is added to the end of the

queue when it becomes overflowing as a result of a push; also if ¨ is
relabelled it is added to the end of the queue.

Each dynamic tree is maintained to contain at most k vertices for some
Ž .parameter value k. Thus, each dynamic tree operation uses time O log k .

Ž 2 . Ž Ž 2 ..Choosing k s log n rm gives the time bound O nm log n rm to find a
w xmaximum value flow 10 .

The dynamic tree implementation of Min VC Split is the same as
w x10 . It does some additional operations that keep each dynamic tree
contained in one set of the partition PP, and other additional operations
corresponding to the extra operations of Min VC Split compared to
w x10 . The additional operations are as follows.

Ž .Consider Relabel ¨ . Recall that ¨ is the root of its dynamic tree since
it is overflowing. If the condition of line 3 of Relabel holds then

Ž . Ž� 4. Ž .cut-children ¨ is done before Create Dormant ¨ or Join ¨ is called
in line 4. The call to Create Dormant in line 2 transfers every dynamic

Ž .tree of W whose root is at distance G d ¨ to the new dormant set D .g

ŽD equals the set of all vertices in these trees. In proof, ¨ ’s dynamic treeg

Ž .is the only dynamic tree of W that contains a vertex at distance d ¨ , by
the test of line 1. This implies any dynamic tree containing a vertex of Dg

Ž .has its root at distance G d ¨ , since each edge uw of a dynamic tree has
Ž . Ž . .d u s d w q 1 and the root has the smallest distance value.

Ž .Next consider New Sink. Line 1 does cut-children t when t is deleted
Ž . Ž .from W. Line 6 does cut-children ¨ when d ¨ is increased by 2.

Lastly note that at the end of New Sink the overflowing vertex
invariant can be violated: A vertex w g W can have positive excess without

Žbeing a dynamic tree root. This is caused by the edge saturations in line 2
of New Sink. These saturations could occur in previous executions of

.New Sink if W was just awakened in line 5. To restore the invariant
Ž .New Sink performs send w for each such w.

We turn to the analysis of the dynamic tree algorithm. Cut-children
Ž .operations do O n m extra dynamic tree cut operations. This followsT

Ž . Ž .since after an operation cut-children ¨ , ¨ becomes dormant or d ¨
increases. New Sink does F m new send operations. Since this accounts

w x Žfor all new operations, the analog of Lemma 5.1 of 10 holds with the
. ŽŽsame proof : The dynamic tree algorithm runs in time O n m qT
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. .n log k , where n is the total number of times a vertex is added toQ A Q A
the queue of overflowing vertices.

Ž .There are O n n passes over the queue. The argument is essentiallyT
w xthe same as 10 : When an overflowing vertex ¨ is chosen from the head of

Ž .the queue line 5 of Min VC Split it is processed until either its excess
Ž .becomes 0 or Relabel ¨ is done, which either makes ¨ dormant or

Ž . w x � Ž .increases d ¨ . Define the potential function of 10 , F s max d ¨ : ¨ g W
4 Ž .is overflowing . If a pass over the queue increases F some distance d ¨

increases by at least the same amount. If a pass does not change F some
Ž . Ž Ž .distance d ¨ increases since any vertex x with d x s F at the start of

. Ž .the pass either gets 0 excess or becomes dormant . Thus, O n n passesT
increase F or keep it the same.

Ž .It remains to show that O n n passes decrease F. The number ofT
passes that decrease F is at most the total increase in F. We have shown

Ž .that all passes increase F by a total amount O n n . In addition FT
Ž .increases by a total amount O n n when dormant sets are awakened, byT

Ž .the Transfer Bound. Hence, the total increase in F is O n n , as desired.T
w x Ž Ž 2 ..The analog of Lemma 5.2 of 10 is that n s O n m q n rk . TheQ A T

w x 2proof of 10 applies without change. Now taking k s n rm achieves time
Ž Ž 2 ..O n m log n rm for Min VC Split.T
This time bound suffices for the weighted connectivity algorithms of

Section 2. It is desirable to replace n by n in the logarithmic factor forT
Žapplications where n is appreciably smaller. This includes the graphsT

generated by our reduction from the general weighted vertex cover split
Ž .problem to the bipartite case, since the reduction can add Q m new

.vertices. To achieve this improved time bound we incorporate the bipush
w xapproach of 2 into our dynamic tree algorithm. We change our additional

send operations into bi-sends. We do not change our additional cut-children
Žoperations since performing cut-children for the root of a dynamic tree

.does not create any new leaves of nontrivial dynamic trees . All other
w x w xchanges are as specified in 2 . The analysis is the same as 2 .

THEOREM 3.3. A minimum s-split of a ¨ertex co¨er T can be found in
Ž Ž 2 .. < <time O n m log 2 q n rm in a capacitated graph, for n s T F n. TheT T T

Ž .space is O m .
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