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Abstract

We study contention resolution in multiple-access channels such as the Ethernet. Under a
stochastic model of continuous packet generation from a set of n processors, we construct
a protocol which guarantees constant expected delay for generation rates up to a fixed
constant Ao < 1. Previous protocols which are stable for constant arrival rates do not
guarantee constant expected delay. The two protocols that achieved results closest to this
are one by Raghavan and Upfal, which only guarantees logarithmic (in n) expected delay,
and one by Paterson and Srinivasan, which only guarantees constant expected delay with
high probability. (In the latter protocol, there is a non-zero probability that the initial
clock synchronization might fail and cause the expected delay to grow unboundedly.)
Although those protocols do not guarantee constant expected delay, we have used ideas
from them in the construction of our protocol, which does guarantee constant expected
delay. We achieve our results using a technique called Robust Synchronization which is
applied periodically in our protocol. The introduction of this technique and the analysis
of this technique are the major contributions of the paper.

1 Introduction

There has been an enormous amount of work on contention resolution for Ethernet-like
multiple-access channels (see, for example, [3, 4], and the references therein). Most of this
work has focused on backoff protocols, including both constant backoff protocols (as in the
Aloha network [1]) and increasing backoff protocols (as in the Ethernet network [6]). Backofl
protocols work very well in practice and are therefore worthy of study. However, it has been
shown that the expected packet delay of backoff protocols with constant generation rate is
Q(n), where n is the number of processors. (Hastad, Leighton, and Rogoff [4] show this for
exponential, polynomial, and constant backoff protocols, but the same lower bound technique
would apply to other backoff functions.)
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Raghavan and Upfal [8] were the first develop a contention-resolution protocol with o(n)
expected packet delay for a constant generation rate. Specifically, their protocol allows a
generation rate up to about 1/10, while achieving expected delay O(logn). A key idea
that allows the low expected delay is that of a “Reset State” which is entered when bad
situations are detected. Later, Paterson and Srinivasan (7] achieved constant expected delay
for an infinite number of processors, assuming that the processors have synchronized clocks,
for generation rates up to about 1/e. Using their infinite-processor protocol, Paterson and
Srinivasan designed a protocol that can be used by n processors whose clocks differ by at
most B (for some value B) and, with high probability, achieves constant expected packet delay
for generation rates up to about 1/e. This protocol starts with a “Pre-processing Phase” which
takes Q(max{ B, n}) time and succeeds with high probability. If the pre-processing phase fails,
then the expected packet delay of the protocol can grow without bound. Thus, the overall
expected packet delay of the protocol is unbounded.

In this paper we affirmatively answer the question of the existence of a contention-
resolution protocol with constant expected packet delay in the standard multiple-access chan-
nel model, i.e., we present the first protocol that achieves constant expected packet delay for
generation rates up to a fixed constant Ag < 1, without the added requirement that proces-
sors be started with identical clocks. In fact, our protocol allows processors to start and stop
repeatedly (with some constraints) with no a priori clock values, and it still achieves constant
expected packet delay.

Our protocol uses the protocol of Paterson and Srinivasan as a subroutine. The analysis
of this subroutine requires processors to have synchronized clocks, and we are able to simulate
this (for reasonably long periods of time) using a new technique for Robust Synchronization.
In particular, our protocol incorporates repeated, robust “Synchronization Phases”. Each
“Synchronization Phase” is similar to the “Preprocessing Phase” of Paterson and Srinivasan,
except that our synchronization phases are performed repeatedly and are robust in the sense
that they do not require processors to have similar clocks, and they can handle any patho-
logical situation (such as processors starting in the middle of a synchronization phase) and
eventually return to a normal, synchronized state.

In some sense, the structure of our protocol (normal phases, occasionally interrupted by
synchronization phases) is similar to the structure of Raghavan and Upfal’s protocol (which
has normal phases, occasionally interrupted by reset phases). However, there are major
differences between them. One difference is that, because lack of synchronization cannot be
reliably detected, synchronizing phases must be entered periodically even when no particular
bad event is observed. Another difference is that processors in a reset state are only allowed to
send packets with very low probability, and this helps other processors to access the channel.
However, our synchronization phase is designed to accomplish the much-more-difficult task
of synchronizing the processors (this is needed to obtain constant expected delay rather than
logarithmic expected delay), and accomplishing this task requires many transmissions to the
channel, which prevent access to the channel by the other processors. Thus, synchronization
phases are costly in our protocol. A third difference is that in Raghavan and Upfal’s protocol,
a normal phase always tends towards low expected delay, and when bad situations arise,
there is a good probability of them being caught, and thus causing a reset state to occur.
In our protocol, a normal phase tends towards even lower (constant) expected delay if the
processors are synchronized. However, if they are not synchronized, the normal phase does
not necessarily tend towards low expected delay, and there is no sure way to detect that the
processors are unsynchronized. Thus, the bad situation can only be remedied during the

2



next time the processors start a synchronizing phase, which may be after quite a long time!
Fortunately, we are able to bound the effects of this type of behavior and still achieve constant
expected packet delay.

1.1 Model and Definitions

Following all of the papers that we mention in Section 1.2, we work in a time-slotted model
in which time is partitioned into intervals of equal length, called steps. In our basic model,
we have n processors which can start and stop at arbitrary steps, with the constraint that
each time a processor starts, it runs for at least a certain polynomial number of steps.!

Packets are generated at the processors according to a probability distribution. Under
the {)\i}lsiSn-independent arrivals distribution, each processor i is associated with a positive
probability A; and it generates a message independently with probability A; during each time
step that it is running. For technical reasons, we also consider other arrival distributions. We
say that an arrival distribution is {Ai}1<i<n-dominated (for Ay, ..., An > 0) if the total arrival
rate, A = 3; A, is at most € for a sufficiently small positive constant ¢, and the following
condition is satisfied: For every processor i, every step t in which processor i is Tunning, and
every event E concerning the arrival of messages at steps other than ¢ or at processors other
than i, the probability that processor i generates a message at step i, conditioned on event I,
is at most A;.

The packets which arrive at the processors must be transmitted to the multiple access
channel which handles contention as follows: when multiple processors attempt to transmit
to the channel at the same time, none succeed. If a single processor attempts to transmit to
the channel, it receives an acknowledgement that the transmission was successful. Processors
must queue all unsuccessful packets for retransmission, and they use a contention-resolution
protocol to decide when to retransmit. During the time that a processor is trying to send
one packet, it may generate more packets that it needs to transmit. These packets must also
be queued. An important feature of a good contention-resolution protocol is that, even when
packets are generated fairly frequently, the sizes of the queues do not grow unboundedly.

We say a protocol is stable if the expected size of the queues remains bounded. More
formally, let W; be the waiting time of the ith packet, and let

.
Wavg = Jim = ;Wi'
1=

(Intuitively, Wavg is the average waiting time of packets in the system.) We say thata protocol
is stable if E[Wavg] is finite. For stable protocols, we are concerned with the maximum
generation rate A that can be stably sustained, and with the value of E[Wavg]-

1.2 Previous Work

There has been a tremendous amount of work on protocols for multiple-access channels. Here
we will only discuss the work on dynamic protocols in the acknowledgement-based model
that we use. We refer the reader to the papers cited here for discussion of previous work on
protocols using different assumptions or models.

1For the constant expected packet delay results in Section 4, we require this polynomial to be 8n"!; however,
n3? is sufficient for all proofs in Section 3. Note that no attempt has been made to optimize these polynomials.



Aldous [2] showed that for any A > 0, binary exponential backoff is unstable when the
number of processors is infinite. Kelly [5] showed a similar result for polynomial backoff
protocols. Héastad, Leighton, and Rogoff [4] showed that polynomial backoft is stable (with
an expected delay of w(n)) for any A < 1 when the number of processors is finite, and
that binary exponential backoff is unstable for A > .567, when the number of processors is
finite. Raghavan and Upfal [8] give a protocol which, for A < 1/10, is stable for a finite
number of processors, n, and achieves O(logn) expected packet delay. Their protocol has
the added benefit of being a fairly simple, clean protocol. Paterson and Srinivasan [7] give
a very clever protocol which, for A < 1/e, is stable for an infinite number of processors with
synchronized clocks, or stable with high probability for a finite number of processors with
almost synchronized clocks, and achieves constant expected packet delay, again with high
probability. (With some small probability, the delay of their protocol is unbounded.)

1.3 Our Results

We present a protocol which, for a small constant A, is stable for any finite number of pro-
cessors and guarantees constant expected packet delay. In our model, we do not make any
assumptions about a previously synchronized or almost synchronized clock. (Note that the
lambda used in our protocol is very small, a few orders of magnitude smaller than the lambda
used in previous results. We do not claim that our protocol is a practical protocol. The
significance of our protocol is two-fold: (1) it is the first protocol with guaranteed constant
expected delay, and (2) the ideas behind it, mainly the Robust Synchronization technique,
could be useful in other practical protocols.)

The structure of our protocol is simple. Most of the time, the processors are running
the “infinite processors” protocol of Paterson and Srinivasan. The analysis of that protocol
assumes that processors have a synchronized clock. Therefore, in our protocol, the processors
occasionally enter a synchronizing phase to make sure that the clocks are synchronized (or
to resynchronize after a processor enters the system). Note that the synchronizing phase
has some probability of (undetectably) failing, and thus it must be repeated periodically to
guarantee constant expected packet delay.

The synchronizing phase of our protocol is somewhat complicated, because it must syn-
chronize the processors even though interprocessor communication can only be performed
through acknowledgements (or lack of acknowledgements) from the multiple-access channel.
(This is the model used in all previous papers.) The analysis of our protocol is also compli-
cated due to the very dynamic nature of the protocol, with possibilities of processors missing
synchronizing phases, trying to start a synchronizing phase while one is already in progress,
and so on. Our synchronizing phases are robust, in the sense that they can handle these types
of events, and eventually the system will return to a normal synchronized state.

To give an idea of the problems that arise when designing a robust synchronization phase,
consider the following scenario. Suppose that the set L of all live processors enter a syn-
chronization phase, and halfway through it, another set L’ of processors start up. Since the
processors in L' have missed a large part of the synchronization phase, they will not be able
to synchronize with the other processors. (This seems to be inherent in any conceivable syn-
chronization protocol.) There are two possible approaches for solving this problem. One is
to try to design the protocol so that the processors in L detect the newly started processors
during the synchronization phase. Then they must somehow resynchronize with the newly
joined processors. However, any synchronization protocol must perform various tasks (such



as electing a leader) and it is difficult to detect the presence of the processors in L' during
some of these tasks. A second approach is to allow the processors in L to ignore the processors
in L' and to finish their synchronization phase (either synchronized amongst themselves, or
not). Then the set L’ of processors in the synchronization phase will very likely disrupt the
normal operations of the processors in L, causing them to synchronize again. But now the
processors in L' will be about halfway through their synchronization, whereas the processors
in I are just starting synchronization! Our solution to this problem is a combination of the
two approaches, and is described in the next section with the description of our protocol.

1.4 Outline

In Section 2 we describe our new protocol. In Section 3 we prove the key features of our
protocol, namely, a packet generated at a step in which no processors start or stop soon
before or after will have constant expected delay, and a packet generated at a step in which a
processor starts soon before or after will have an expected delay of O(n®7) steps. In Section 4
we show that our protocol achieves constant expected packet delay for a fairly general multiple
access channel model, with processors starting and stopping.

2 The Protocol

Let
§=1{0,...,n%0 —1}\ {n? - 1,20% — 1,3n” — 1,...,n*" ~ 1},

be a set of steps, namely, the first n0 steps, except for the last one of every n? steps. Then let
T be the tree defined as in Paterson and Srinivasan’s protocol, except that (1) it is truncated
to the first n10 — n3® leaves, and (2) if a node in their tree 7" has step j in its trial set, then
the corresponding node in our tree T’ has the jth step of § in its trial set. Let W = 12n%.

Now we give an informal description of our protocol. In the normal state a processor
maintains a buffer B of size n7 and an infinite queue Q. B and @ contain packets to be
sent, and when a packet is generated it is put into B. For each packet m € B the processor
maintains a variable trial(m) which contains the next step on which the processor will attempt
to send m. The step trial(m) will be chosen using Paterson and Srinivasan’s protocol (but
modified as above). The steps not in S (i.e., the last step of every n? steps) are used to send
packets from Q. At each of these steps, with probability 1 /(3n), the processor attempts to
send the first packet in Q. Each processor also maintains a list I which keeps track of the
results (either “failure” or “success”) of the most recent packet sending attempts from @, up
to n? of them.

A processor goes into a synchronizing state if a packet has remained in the buffer for n”
steps or if L is full (contains n? results) and only contains failures. It also goes into a synchro-
nizing state from time to time even when these events do not occur. (It synchronizes if it has
been simulating Paterson and Srinivasan’s protocol for at least n40 steps, and it synchronizes
with probability n~3° on any given step.) If the processor does go into a synchronizing state,
it transfers all packets from B to the end of Q.

In the synchronizing state, a processor could be in one of many possible stages, and its
actions depend on the stage that it is in. It will always put any generated packets into the
queue. Also, it only sends dummy packets in the synchronizing state. (The dummy packets
are used for synchronizing. Real packets that arrive during the synchronization phase must



wait until the next normal phase to be sent.) The various synchronization stages are as follows
(a processor goes through these stages in order).

JAMMING The processor starting the synchronization jams the channel by sending packets
at every step. In this way, it signals other processors to start synchronizing also.

FINDING_LEADER Each processor sends to the channel with probability 1/n on each
step. The first processor to succeed is the leader.

ESTABLISHING_LEADER In this stage, a processor has decided it is the leader, and it

jams the channel so no other processor will decide to be the leader.

SETTING_CLOCK In this stage, a processor has established itself as the leader, and it
jams the channel once every 4W steps, giving other processors a chance to synchronize
with it.

COPYING_CLOCK In this stage, a processor has decided it is not the leader, and it
attempts to copy the leader clock by polling the channel repeatedly to attempt to find
the synchronization signal (namely, the jamming of the channel every 4W steps by the
leader). Specifically, it sends to the channel with probability 1/(3n) on each step, and
if it succeeds, it knows that the current step (mod 4W) does not correspond to the
leader’s clock. After many attempts, it should only be left with one step (mod 4W)
that could correspond to the leader’s clock. At the end of this stage, it synchronizes its
clock to the leader’s clock.

WAITING This stage is used by a processor after COPYING_CLOCK in order to synchro-
nize with the leader’s clock. The processor idles during this stage.

POLLING A processor in this stage is simply “biding its time” until it switches to a normal
stage. While doing so, it attempts to send to the channel occasionally (with probability
1/(3n) on each step) in order to detect new processors which might be joining the
system and re-starting a synchronization phase. If new processors are detected, the
processor re-starts the synchronization phase. Otherwise, it begins the normal phase of
the protocol.

The length of each of these stages is very important, both in terms of achieving a high prob-
ability of synchronization and a high level of robustness. The high probability of synchroniza-
tion is achieved by making the “preliminary” stages (i.e., JAMMING, FINDING_.LEADER,
and ESTABLISHING_LEADER) of length ©(W) (this is long enough to guarantee all pro-
cessors in a normal state will detect a synchronization), and the “synchronizing” stages (i.e.
SETTING.CLOCK, COPYING_CLOCK, and WAITING) of length ©(Wn?) (this gives pro-
cessors enough time to determine the leader’s clock modulo 4W, with high probability). The
high level of robustness is achieved by the following properties:

1. Having the lengths of the “preliminary” and “synchronizing” stages as above,
2. Noticing that only the preliminary stages can cause the channel to be jammed,
3. Noticing that the “synchronizing” stages cannot detect a new synchronization occurring,

4. Having the POLLING stage be of length O(Wn3) (longer than all of the other stages
combined), and



5. having the POLLING stage be able to detect new synchronizations.

The differing lengths of time for the “preliminary”, “synchronizing” and POLLING stages,
and the fact that only the POLLING stage could cause another synchronization to occur,
guarantees that bad events as described at the end of Section 1.3 cannot occur, even when
up to n processors are starting at different times.

Whenever a processor joins the Ethernet, it starts the protocol with state = SYNCHRONIZING,
sync_stage = JAMMING, clock = 0, and L empty. We now give the details of the protocol.

Protocol
At each step do
If (state = NORMAL) call Procedure Normal
Else call Procedure Synchronizing

Procedure Normal
If a packet, m, is generated
Put m in B
Choose trial(m) from the trial set of the appropriate leaf of T
If ((clock mod n?) = n? — 1) call Procedure Queue_Step
Else call Procedure Normal Step

Procedure Normal_Step
If (clock > n*° or any packet in B has waited more than n” steps)
Move all of the packets in B from B to Q
Empty L
state « SYNCHRONIZING, sync.stage < JAMMING, clock < 0
Else
With Probability n=3°
Move all of the packets in B from B to @
Empty L
state < SYNCHRONIZING, sync_stage «— JAMMING, clock « 0
Otherwise
If more than one packet m in B has trial(m) = clock
Send a dummy packet
For each m € B with trial(m) = clock
Choose a new trial(m) from the trial set of the appropriate node
at the next level of T' :
If exactly one packet in B, m, has trial(m) = clock
Send m
If m succeeds, remove it from B
Else choose a new trial(m) from the trial set of the appropriate node
at the next level of T
clock « clock + 1



Procedure Procedure Queue_Step
With probability 1/3n
If (Q is empty) Send a dummy packet
Else
Send the first packet in @
If the outcome is “success”, Remove the packet from ¢
Add the outcome of the send to L
Otherwise Add “failure” to L
If (|| = n? and all of the entries of L are “failure”)
Move all of the packets in B from B to @
Empty L
state «— SYNCHRONIZING, sync_stage «— JAMMING, clock < 0
Else clock « clock + 1

Procedure Synchronizing
If a packet arrives, put it in ¢
If (sync.stage = JAMMING) call Procedure Jam
Else If (sync.stage = FINDING_.LEADER) call Procedure Find_Leader
Else If (syncstage = ESTABLISHING_LEADER) call Procedure Establish_Leader
Else If (sync_stage = SETTING_CLOCK) call Procedure Set_Clock
Else If (syncstage = COPYING_CLOCK) call Procedure Copy-Clock
Else If (sync.stage = WAITING) call Procedure Wait
Else If (sync_stage = POLLING) call Procedure Poll

Procedure Jam
Send a dummy packet
If (clock < W/2 — 1) clock « clock + 1
Else sync_stage « FINDING_LEADER, clock « 0

Procedure Find_Leader
With probability 1/n
Send a dummy packet
If it succeeds
sync_stage « ESTABLISHING_LEADER, clock — 0
If (clock < W — 1) clock « clock +1
Else
fori=0todW -1
possibletime[t] « Yes
sync_stage +— COPYING_CLOCK, clock < 0



Procedure Establish_Leader
Send a dummy packet
If (clock < 2W — 1) clock « clock + 1
Else sync_stage — SETTING.CLOCK, clock « 0

Procedure Set_Clock
If (clock = 0 mod 4W)
Send a dummy packet
If (clock < 20Wn? — 1) clock « clock + 1
Else sync_stage «— POLLING, clock < 0

Procedure Copy-Clock
With probability 1/(3n)
Send a dummy packet
If it succeeds
possibletime[clock mod 4W] « No
If (clock < 20Wn? — 1) clock « clock +1
Else
If possibletime[j] = Yes for exactly one j,
clock « —J
Empty L
If (j = 0) syncstage — POLLING
Else sync_stage «— WAITING
Else
Empty L
sync.stage «— POLLING, clock « 0

Procedure Wait
clock « clock +1
If (clock = 0) syncstage — POLLING



Procedure Poll
With Probability 1/(3n)
Send a dummy packet
Add the outcome of this send to the end of L
Otherwise Add “failure” to Lo
If (|L| = n? and all of the entries of L are “fail”)

Empty L
sync_stage — JAMMING, clock « 0
Else
If (clock < Wn?® — 1) clock « clock + 1
Else
Empty L

state — NORMAL, clock « 0

3 The Main Proof

Suppose that n is sufficiently large and that n processors run the protocol. Step 0 will be the
step in which the first processor starts the protocol. Processors will start and stop (perhaps
repeatedly) at certain predetermined times throughout the protocol. We say that the sequence
of times at which processors start and stop is allowed if every processor runs for at least n33
steps each time it starts. Just before any step, t, we will refer to the processors that are
running the protocol as live processors. We will say that the state of the system is normal if
all of these processors are in state NORMAL. We will say that it is good if

1. It is normal, and

7

2. for some C < n® — 17, every processor has clock = C, and
; yp

3. every processor with |L| > n?/2 has a success in the last n?/2 elements of L, and
4. no packet in any processor’s buffer has been in that buffer for more than n”/2 steps.

We say that the state is a starting state if the state is good and every clock = 0. We say that
it is synchronizing if

e every processor has state = NORMAL, or has state = SYNCHRONIZING with either
sync_stage = JAMMING or sync_stage = POLLING, and

e some processor has state = SYNCHRONIZING with syncstage = JAMMING and
clock = 0.

We say that the system synchronizes at step t if it is in a normal state just before step ¢
and in a synchronizing state just after step t. We say that the synchronization is arbitrary
if every processor with state = SYNCHRONIZING, sync_stage = JAMMING and clock = 0
just after step t had its clock < n*°, had no packet waiting more than n’ steps in its buffer,
and either had |L| < n? or had a success in L, just before step t.

Definition: The interval starting at any step ¢ is defined to be the period [¢,...,t+ n33 —1].
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Definition: An interval is said to be productive for a given processor if at least n?9/2 packets
are sent from the processor’s queue during the interval, or the queue is empty at some time
during the interval.

Definition: An interval is said to be light for a given processor if at most n'7 packets are
placed in the processor’s queue during the interval.

Definition: Step t is said to be an out-of-sync step if either the state is normal just before
step t, but two processors have different clocks, or the state was not normal just before any
step in [t —13n7 +1,...,t]. (Intuitively, an out-of-synch step is the result of an “unsuccessful”
synchronize phase.)

Definition: T = n?!.

Procedure Normal Step simulates a slightly modified version Paterson and Srinivasan’s
protocol from [7]. (We refer the reader to [7] for a full description and analysis of Paterson
and Srinivasan’s protocol.) We call our slightly modified version PS’. PS’is based on the
variant of Paterson and Srinivasan’s protocol with k& = 16, s = 2 and 7 = 8 which was
described in {7]. In PS’, a is defined to be k% (Paterson and Srinivasan use a smaller a.)
Paterson and Srinivasan require A < 1/sa. However, in PS', we require 4\ < 1/sa. In
our variant, b is chosen such that & > 2/(4A). Given our choice of constants, PS’ can
only handle smaller values of A; than those specified in [7). The main difference between
PS5’ and the protocol discussed in [7] is that after every n? — 1 steps, PS’ waits one step,
generating inputs, but not running the Paterson-Srinivasan protocol. (Any inputs that arrive
during this step are deemed to have arrived after at the beginning of the following step, when
PS’ continues simulating the Paterson-Srinivasan protocol.) Note that from any starting
state until a synchronization, our system simulates PS’. This implies that our system stops
simulating PS’ when a processor starts up, since that processor will immediately start a
synchronization. Then PS’ is simulated again once a starting state is reached. Lemmas 1
and 2 describe the behavior of PS’ and are based on a theorem of Paterson and Srinivasan.

Lemma 1 Suppose that PS' is run with a {A,-}lS,'Sn-dominated arrival distribution for 7 <
n40 steps. Then the ezpected delay of any packet that arrives is O(1). Furthermore, the
probability that any packet has delay more than n’/2 is at most n60,

Proof: The lemma follows from the proof of Theorem 2 of [7]. Note that an extra factor
of 2 in the definition of A allows the theorem to apply to PS’ (with the extra step every n?
steps). . o

Lemma 2 Suppose that PS' is run with a {Xi}1<i<n-dominated arrival distribution for T <
n*0 steps and that a packet arrives at processor p at step ' < 1. Then the expected delay of
any packet that arrives is O(1). Furthermore, the probability that any packet has delay more
than n7 /2 is at most n~%°.

Proof:  Another extra factor of 2 in the definition of A and the constraint on b ensure that
the expected number of packets in a node of the tree at level 0 (even with the extra packet)
can be handled by the protocol. Thus, this Lemma follows from Lemma 1. a

Lemma 8 Given a random variable X taking on non-negative integer values, and two events
A and B over the same space, E[X|A A B} < E[X|B]/ Pr(A|B).
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Proof: Note for any event C that Pr(C|{B) > Pr(C A A|B) = Pr(C|A A B) Pr(A|B). From
this we see that

E[X|AAB] = > rPr[X =r|AAB]
r>0
< Y rPrX = r|B]/Pr[A|B]
r>0
< E[X|B]/P1{A|B].

a

Lemmas 4 to 8 outline the analysis of the normal operation of the synchronization phase
of our protocol.

Lemma 4 Suppose that the protocol is run with a sequence of processor start/stop times in
which no processor starts or stops between stepst and t+W . If the system is in a synchronizing
state just before step t, then every live processor sets sync_stage to FINDING_.LEADER just
before some step in the range {t,...,t + W}.

Proof:  First note a processor can have state = SYNCHRONIZING and sync_stage =
JAMMING for only W/2 steps. Then note that every processor with state = SYNCHRONIZING,
sync_stage = POLLING, and clock < Wn® — n? will set sync_stage to JAMMING after at
most n? steps; every processor with state = SYNCHRONIZING syncstage = POLLING,
and clock > Wn3 — n? will either set sync_stage to JAMMING within n® steps, or switch
to state = NORMAL within n? steps, and set sync_stage to JAMMING after at most an
additional n* steps (since when state = NORMAL, a queue step is taken only once every n?
steps); and every processor with state = NORMAL will set sync.stage to JAMMING after
at most n? steps. The lemma follows by noting that n* 4+ n* < W/2, and that a processor
remains in sync_stage = JAMMING for W/2 steps. a

Lemma 5 Suppose that the protocol is run with a sequence of processor start/stop times
in which no processors start or stop between steps t and t + 4W. If every processor sets
sync_stage = FINDING_LEADER. before some step in the range {t,...,t + W}, then with
probability at least 1 — e~"", ezactly one processor sets syncstage = SETTING_.CLOCK

just before some step in the range t + 2W + 1,...,t + 4W and every other processor sets
sync_stage = COPYING_CLOCK just before some step in the range t + W, ..., 1+ 2W.

Proof: First note that at most one leader is elected since after elected, it does not
allow any processors to access the channel for 2W steps. Also note that no processor
will have syncstage = FINDING_LEADER just before step ¢t 4 2W, since syncstage =
FINDING_LEADER for at most W steps.

Suppose P is the last processor to set sync_stage = FINDING_.LEADER. Then as long
as no leader has been elected, the probability that P is elected at a given step is at least
(1/n)(1 — (1/n))*™! > 1/(en). Thus the probability that no leader is elected is at most
(1—-1/(en))"”, which is at most e~™ . Then the leader will spend 2W steps with sync_stage =
ESTABLISHING.LEADER before setting sync.stage to SETTING_.CLOCK, while the other
processors will directly set sync.stage to COPYING.CLOCK. a
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Lemma 6 Suppose that the protocol is run with a sequence of processor start/stop times in
which no processor starts or stops between steps 7 — 3W and 7 + 20Wn?. If exactly one
processor sets sync_stage = SETTING_.CLOCK just before step 7 € {t +2W,.. ., t +4W}
and every other processor sets sync_stage = COPYING_CLOCK just before some step in the
range T —3W, ..., T, then with probability at least 1 —4Wne™™. all processors set sync_stage =
POLLING with clock = 0 just before step T + 20Wn2.

Proof: The statement in the lemma is clearly true for the processor that sets sync_stage =

SETTING_CLOCK. Suppose that P is some other processor. For each ¢ in the range 0 <

i < 4W, if P’s clock = i mod 4W when the leader’s clock = 0 mod 4W, possibletime][?]

will be Yes. If not, P has at least [(20Wn? — 3W)/(4W)] chances to set possibletime[i] to

No, i.e., it has that many chances to poll when its clock = : mod 4W and the leader has

already set sync_stage = SETTING_CLOCK. Now, 5n% — 1 < [(20Wn? — 3W)/(4W)]. The
1

probability that P is successful on a given step is at least %(55), and so the probability that

it is unsuccessful in 5n2 — 1 steps is at most (1 — 52;1-)5”2—1 < e ™. The lemma follows by
summing failure probabilities over all processors and moduli of 4W. a

Lemma 7 Suppose that the protocol is run with a sequence of processor start/stop times
in which no processors start or stop between steps T and T + Wnd. If all processors set
sync_stage = POLLING with clock = 0 just before step T then with probability at least 1 —
Wnie /10 qll processors set state = NORMAL and clock = 0 just before step T+ Wn3.

Proof: Say a sequence of n?/2 steps is bad for processor P if P does not have a successful
transmission on any step in the sequence. Then the probability that a given processor Pis
the first to set sync_stage = JAMMING is at most the probability that it has a bad sequence
of n?/2 steps, assuming all other processors still have sync.stage = POLLING. This is at
most the probability that it either doesn’t send, or is blocked on each step of the sequence,

which is 2/ 22
1 1 /1N\1" 2\"
—_—— —_— — o I, < —n/lO.
[1 3n + 3n (3)] (1 Qn) =€

The lemma follows from summing over all steps (actually this overcounts the number of
sequences of n?/2 steps) and all processors. o

Lemma 8 Suppose that the protocol is run with a sequence of processor start/stop times
in which no processor starts or stops between steps t and t + 13n7. If the system is in a
synchronizing state just before step t, then with probability at least 1 — OWnie ™10, there is a
t' in the range {t + 12n7,...,t+ 13n7} such that it is in the starting state just before siep t.

Proof: The lemma follows from Lemmas 4, 5, 6 and 7. a

Lemmas 9 to 14 outline the analysis of the robustness of the synchronization phase.
Lemma 9 shows that no matter what state the system is in (i.e., possibly normal, possibly
in the middle of a synchronization), if some processor starts a synchronization (possibly
because it just started), then within W/2 steps, every processor will be in an early part
of the synchronization phase. Then Lemma 10 shows that with high probability, within a
reasonable amount of time, all processors will be beyond the stages where they would jam
the channel, and furthermore, there is a low probability of any going back to those stages
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(i.e., a low probability of any synchronization starting). Finally, Lemma 11 shows that soon
all processors will be in the polling stage. At this point, as shown in Lemma 12, they will
either all proceed into the normal state, or if a synchronization is started, they will all detect
it and with high probability proceed into a good state as in Lemma 8.

Note that these lemmas require the assumption that no processors start or stop. This
is because they are used for showing that the system returns to a normal state from any
situation, even from a bad situation such as a processor just having started in the middle
of a synchronization phase. If another processor starts before the system returns to normal,
then we would again use these lemmas to show that the system will return to normal within
a reasonable amount of time after that processor started.

Lemma 9 If the protocol is run and some processor sets sync_stage = JAMMING just before
step t, and that processor does not stop for W/2 steps, then there is a t’ in the ranget, ... t+
(W/2) such that just before step t', no processor has state = NORMAL, and every processor
that has sync_stage = POLLING has clock < W/2.

Proof:  Every processor P that has state = NORMAL or syncstage = POLLING just
before step t will detect the channel being jammed and set state = SYNCHRONIZING and
sync.stage = JAMMING just before some step in the range t+1,...,1 4 (W/2). The Lemma
follows. a

Lemma 10 Suppose that the protocol is run with a sequence of processor start/stop times
in which no processor starts or stops between steps t and t + 5nW. If, just before step t,
no processor has state = NORMAL and every processor with sync _stage = POLLING has
clock < W/2, then, with probability at least 1 — 5Wn2e~"/10 there is a t' in the range
t,...,t+ 5nW such that just before step t', each processor has state = SYNCHRONIZING
with sync_stage set to SETTING_CLOCK, COPYING_.CLOCK, WAITING, or POLLING.
Furthermore, if a processor has sync_stage = POLLING, it has clock < 5nW + W/2 and
either it has clock < n?/2, or it has had a success in the last n?/2 steps.

Proof:  Say a processor is calm at a given step if it has state = SYNCHRONIZING and
sync_stage set to SETTING.CLOCK, COPYING_CLOCK, WAITING, or POLLING and if
sync.stage = POLLING, then its clock is at most W/2 + 5nW. Note that each processor
is uncalm for at most 4W steps in t,...,t + 5nW, so there is a sequence of W steps in
t,...,t+ 5nW in which every processor is calm. Let ¢’ be the random variable denoting the
(n?/2 + 1)st step in this sequence.

Say a sequence of n?/2 steps is bad for a processor P if P has syncstage = POLLING just
before every step in the sequence, and all of its transmissions during the sequence are blocked
by other calm processors. The probability that a processor with sync_stage = POLLING adds
a failure to L on a given step, either due to not transmitting or due to being blocked by a calm
processor, is at most 1 — 1/(3n) + (1/(3n))(1/3) = 1 — 2/(9n). Thus, the probability that a
given sequence of n?/2 steps is bad for a given processor is at most (1 — 2/ (9n))"2/ 2 < /10,
Thus, with probability at least 1 — 5Wn2e~"/1, no sequence of n?/2 steps in t,...,t + 5nW
is bad for any processor. In particular, the sequence of n?/2 steps preceding t' is not bad
for any processor, so any processor that has sync_stage = POLLING just before step t' with
clock > n2/2 has a success in the sequence of n?/2 steps preceding t'. a
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Lemma 11 Suppose that the protocol is run with a sequence of processor start/stop times in
which no processor starts or stops between steps t and t + 5nW + (W/2) + 20Wn?. If some
processor sets syncstage = JAMMING just before step t then with probability at least 1 —
21Wn3e ™10 there is a t' in the range t,...,t+5nW + (W/2) +20Wn? such that just before
step t', each processor has sync stage = POLLING.

Proof: We know by Lemmas 9 and 10 that, with probability at least 1—5Wn2e~"/19 there
is a 7 in the range t,...,t + 5nW + (W/2), such that just before step 7, each processor has
state — SYNCHRONIZING and sync_stage set to SETTING_CLOCK, COPYING_CLOCK,
WAITING, or POLLING. Furthermore, if a processor has sync.stage = POLLING, it has a
clock < 5nW + W/2. and either it has clock < n?/2, or it has had a successful poll in the
last n2/2 polls.

Note now that unless a processor sets sync._stage = JAMMING in the next 20Wn? steps,
there will be a step t' such that each processor has sync.stage = POLLING. But to set
sync_stage = JAMMING, a processor with sync_stage = POLLING must be unsuccessful in
all transmission attempts during some n?/2 consecutive steps. For a single processor and
a single set of n?/2 consecutive steps, the probability of this is at most e ™10 (as in the
proof of Lemma 7). For all processors and all possible sets of n?/2 consecutive steps in
7,...,7+ 20Wn?, this probability is bounded by 20Wn3e~™/1%. The Lemma follows. a

Lemma 12 Suppose that the protocol is run with a sequence of processor start/stop times
in which no processor starts or stops between steps { and t + Wn® 4 13n". If the system
is in a state in which every processor has state = NORMAL or sync.stage = POLLING
just before step t then, with probability at least 1 — 2Wnte=/10 there is a t' in the range
t,...,t+Wn2 4 13n7 such that the system is in a normal state just before step t'.

Proof: If no processor sets syncstage = JAMMING during steps {t,....t + Wn* -1}
then the system reaches a normal state before step ¢ + Wn3. Otherwise, suppose that some
processor sets syncstage = JAMMING just before step " < t+Wn3—1. By Lemma 8, with
probability at least 1 — 2Wn*e™"/1° the system will enter a starting state by step t” + 13n”.
a

Observation 13 Suppose that the protocol is run with a sequence of processor start/stop
times in which no processor starts between stepst and t4+21Wn2—-1. Suppose that no processor
sets sync_stage = JAMMING during steps t,...,t + 21Wn? — 1. Then every processor has
state = NORMAL or sync_stage = POLLING just before step t + 21Wn2.

Lemma 14 Suppose that the protocol is run with a sequence of processor start/stop times in
which no processor starts or stops between steps t and t + n8. Given any system state just
before step t, with probability at least 1 — 3Wnte—™/10 there is a t' in the range {t,...,1+ n8}
such that the system is in a normal state just before step t.

Proof: The lemma follows from Lemma 12, Observation 13 and Lemma 11. a

Lemma 15 through Theorem 19 show that if the protocol is run with a {Aiti<icn
dominated packet arrivals distribution then the system is usually in a good state, (i.e., syn-
chronized and running the PS’ protocol), and thus the expected time that packets wait in
the buffer is constant.
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Lemma 15 Suppose that the protocol is run with a sequence of processor start/stop times
in which no processor starts or stops during steps t,...,t + n31/4 — 1. Given any system
state just before step t, with probability at least 1 — 6Wnie /10 there is a t' in the range
{t,...,t + n3/4} such that the system is in a starting state just before step t'.

Proof: By Lemma 14, no matter what state the system is in at step {, with proba-
bility at least 1 — 3Wnte~™/10 it will be in a normal state within n® steps. Then the
probability that it doesn’t enter a synchronizing state within n®'/8 steps is at most (1 —
n=30)(n*'/8)=(n**/8) < ¢~n/10 Then by Lemma 8, once it enters a synchronizing state, with
probability 1—2Wn%e~™/10 it will be in a starting state within 1307 steps. The lemma follows
directly from summing failure probabilities. ]

Lemma 16 Suppose that the protocol is run with a sequence of processor start/stop times
in which no processor starts or stops between steps t and t + n3! — 2n®. Given any system
state just before step t, with probability at least 1 — 4Wnte ™10 there is a t' in the range
{t,...,t+ n3 — 2n8} such that the system is in a synchronizing state just before step t.

Proof: From Lemma 14, with probability at least 1 — 3Wnie /10, the system will be in
a normal state at some time steps in {t,...t 4+ n®}. Once the system is in a normal state, on
every step except one out of every n? steps, with probability at least n~30 a processor will
switch to a synchronizing state. The probability of this not happening in the next n3t — 3n®
steps is at most (1 — n30)(" =3n°-n?) < ¢=n/2_ The lemma follows from summing the failure
probabilities. a

Lemma 17 Let 7 be a non-negative integer less than n® — n”. Suppose that the protocol is
run with a {\;}1<i<n-dominated arrival distribution and a sequence of processor start/stop
times in which no Erocessor starts or stops between steps t and t + 7. If the system is in a
starting state just before step t then with probability at least 1 — (13.5)n~22, the system is in
a good state just before step t + 7.

Proof: Consider the following experiment in Figure 1, in which the protocol is started
in a starting state just before step ¢ and run according to the experiment. If none of
{FAIL1,...,FAIL4} occurs then the system is in a good state just before step t4+ 7. Asin the
proof of Lemma 6, the probability that a given element of L is “success” is at least 2/(9n),
so the probability that FAIL1 occurs is at most rne~"™/°, By Lemma 1, and the fact that at
most n%0 /W starting states occur in the experiment (so PS’ is started at most ni%/W times),
the probability that FAIL2 occurs is at most (n‘®/W)n~%" = n~=24, In the experiment, the
clocks of the processors never reach nC. If the state is normal, all processors have the same
value of ¢, every processor with |L| > n2/2 has a success in the last n?/2 elements of L, and
every processor has no packet that has waited more than n” /2 steps, then the probability
that a given processor sets state = SYNCHRONIZING on a given step is at most n~30, Thus,
the probability that FAIL3 occurs is at most 13n~22, By Lemma 8, the probability of failing
to successfully restart after a given synchronization state is at most 2Wn4e "/10, Hence, the
probability of FAILA occurring is at most 2rWnfe~"/10. ]

Lemma 18 Suppose that the protocol is run with a {\;}1<i<n-dominated arrival distribution
and a sequence of processor start/stop times in which no processor starts or stops between
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i1
resyncing « false
Do forever
Simulate a step of the protocol
If (resyncing = false)
If some packet has waited more than n’ /2 steps
FAIL2
If some processor with [L| > n%/2 has no success in the last n?/2 elements of L
FAIL1
If the new state of the system is synchronizing
If (i >t+7—13n") FAIL3
Else
resyncing < true
J<0
Else
If (the new state of the system is a starting state)
resyncing « false
jej+1l
If ((j > 13n7) and (resyncing = true)) FAIL4
i=i+1
If (¢ >t+ 1) SUCCEED

Figure 1: Experiment for proof of Lemma 17
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stepst and t+T. Given any system state just before step t, with probability at least 1 —14n=22,

the system is in a good state just before step t + 1.

Proof: The lemma follows from Lemma 16, Lemma 8, and Lemma 17. O

Theorem 19 Suppose that the protocol is run with a {A;}1<i<n-dominated arrival distribu-
tion and a sequence of processor start/stop times in which no processors start or stop during
steps [t —T,...,t+ n’]. Given any system state just before step t — T', suppose that a packet
is generated at step t. The expected time that the packet spends in the buffer is O(1).

Proof: Let X be the time that the packet spends in the buffer and let G’ be the event
that the state just before step t is good and has clock less than T'. Note that X is always
at most n”. Thus, E[X] < n” Pr[G] + E[X|G]. Now, Pr[G] is at most the probability that
the state just before step ¢ is not good plus the probability that the state just before step ¢
has clock at least 7. By Lemma 15, the latter probability is at most 6Wnte /10 and,
by Lemma 18, the former probability is at most 14n~22. Thus, E[X] < O(1) + E[X|G].
Then E[X|G] = 3, E[X|Gy] Pr[Gy/|G], where Gy is the event that the good state just before
step t has clock t' < T. Let Ay be the event that a packet p’ is born in step ¢’ of the PS5’
protocol. Let B be the event that prior to that step ¢’ (in the PS’ protocol), no packet
has waited more than n” steps, and at step ¢’ no packet in the buffer has waited more
than n7/2 steps. Let Y be the random variable denoting the number of steps required to
transmit p’ (in PS’). Then E[X|Gy] < E[Y]|Ay A B]. (It would be equal except that in our
protocol, it is possible to be transferred to the queue before it is successfully sent from the
buffer.) So by Lemma 3, E[X|Gy] < E[Y|Ay A B] < E[Y|Ay]/ Pr[B|Ay]. Then by Lemma 2,
E[X|Gy] < 2E[Y|Ay] < O(1) for all ¢’ < T. Then E[X|G] = O(1). 0

Lemma 20 through Theorem 33 show that the probability of a packet entering a queue is
low, the probability of a queue being very full is low, and the rate at which the packets are
sent from the queue is high enough so that the expected time any given packet spends in the
queue is low. (Note that most packets will spend no time in the queue.)

Lemma 20 Suppose that the system state just before step t is given in a particular run of the
protocol. With probability at least 1 — 6Wnie /10 there is a t' in the range {t,...,t + n3?}
such that the system is in a starting state just before step t'.

Proof:  Divide the interval of n3? steps into subintervals of n®!/4 steps each. Since at
most n processors can start or stop during the interval, and those that start continue for the
remainder of the interval, there must be a subinterval in which no processors start or stop.
Then use Lemma 15. a

Lemma 21 Suppose that the protocol is run with a {\i}1<i<n-dominated arrival distribution
and a given allowed sequence of processor start/stop times in which no processor starts or
stops between stepst —T and t+n’ /2. Given any system state just before step 1 - T, suppose
that a packet R arrives at processor P at step t. The probability that R enters the queue is
at most 16n~22,

Proof: Let X be the event that R enters the queue. Let G be the event that just before
step t, the state is good and has clock less than T'. Then by Lemma 18 and Lemma 15,
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Pr[X] < 1Pr[G] 4+ Pr[X|G] < 14n7?% 4+ 6Wnie /10 4 Pr[X|G]. Note that Pr[X|G] =
5, Pr[X |Gy Pr[Gu|G], where Gy is the event that the good state just before step t has
clock t'. Consider the experiment in Figure 2. This experiment models the system beginning
at a start state, and going for ¢’ + n7/2 < T + n”/2 steps, but assuming that there are no
arbitrary synchronizations, and that there is a packet R generated at P at clock t'. The
experiment fails at step ¢ = t' if the system enters a state which is not good at that point. It
fails at a step i < t or ' < 1 < t' + n”/2 if the system does a non-arbitrary synchronization
at that point. It fails at step i = t' + n”/2 if the packet R has not been sent successfully.
Let A be the event that FAIL1 occurs, B be the event that FAIL2 occurs, C' be the event that
FAIL3 occurs, and S be the event that the experiment does not fail during steps 1,...,¢".
The probability that R is still in the buffer after step ¢ + n7/2 4 1, or the real system syn-
chronizes before step t + n7/2 4 1, conditioned on the fact that the state just before step t is
good and has clock t' and on the fact that packet R is generated at P at step t', is at most
the sum of (1) Pr[C | §], (2) P[4 | S, (3) Pr[B | S], and (4) the probability that there
is an arbitrary synchronization during steps ¢,...,t + n?/2 — 1, Probability (4) is at most
n(n7/2)(n=3%) = n=22/2. Now note that Pr[A | §] < Pr[A]/ Pr[S]. By the proof of Lemma 17
(using Lemma 2),

Pr[S] > 1 — [n*0(ne™™®) + n7%] >

N =

and
Pr[A] < n®0(ne=™®) 4 n=%0.

Thus Pr[A | §] < 2n~%.

Note also that Pr[B | §] < Pr[B]/ P1[S]. By Lemma 2, Pr[B] < n 0, (This can only be
decreased by a queue step causing a synchronization.) Then Pr[B | 5] < 2n7%0,

Finally, Pr[C | §] = 0, since all packets at step ¢ have waited for at most n”/2 steps, and
the experiment stops at step ' +n’ /2. Thus, Pr[X|G] < n~22, which completes the proof. O

Lemma 22 Let i be an integer in [0, ..., 14]. Suppose that the protocol is run with a {Aihi<i<n-
dominated arrival distribution and a sequence of processor start/stop times in which no pro-
cessors start or stop during stepst,...,t+ nl4+ — 1. If the system is in a starting state just
before step t then the probability that the system enters a synchronizing state during steps
ty...,t+ 14t _ 1 is at most 2n~151,

Proof: The probability that an arbitrary synchronization occurs during steps t,...,1 +
14+ _ 1 is at most n - n=39 . pl4+i = p—15+, Following the proof of Lemma 17, we see
that the probability that a non-arbitrary synchronization occurs during these steps is at
most 760 4 n15+ie=7/9_ (The probability that a packet waits in a buffer more than n” steps
is at most n~%° by Lemma 1 and the probability that some processor gets n? failures on L is
at most nl4ti .. e /%) )

Lemma 23 Suppose that the protocol is run with a {/\;}lsgsﬂ-dominated arrival distribution
and a sequence of processor start/stop times in which no processor starts or stops during the
interval [t,...,t + n33 — 1]. If the system is in a starting state just before step t then the
probability that either some step in the interval is an out-of-sync step or that the system is in
a starting state just before more than n” steps in the interval is at most 3Wnlle—n/10,
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1«0
Do forever
Ifi=1¢
Add a packet R to processor P
Simulate a step of the protocol (except for the arbitrary synchronizations)
If some packet has been in a buffer more than n”/2 steps
FAIL1 ‘
If some processor with |L| > n2/2 has no success in the last n*/2 elements of L
FAIL1
Else
Simulate a step of the protocol (except for the arbitrary synchronizations)
If (¢ < t') and some packet has waited more than n” steps
FAIL1
If (i > ') and some packet has waited more than n” steps
FAIL3
If some processor with |L]| > n? has no success in the last n? elements of L
FAIL1
i=i+1
(>t +n"/2)
If packet @ has been sent, SUCCEED
Else FAIL2

Figure 2: Experiment for proof of Lemma 21
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Proof: If the system is in a starting state z > n” times, then at least @ — n”/2 must
be followed by fewer than 2n?® steps before the next synchronization phase. By Lemma 22,
the probability of fewer than 21?6 steps occurring between a starting state and the next
synchronization phases is at most 2n~3. Thus, the probability of this happening after at least

z —n7/2 of the z starting states is at most 2’5(2n'3)$—n7/2 which is at most 27'/2,

If the system is in a starting state just before at most n” steps in the interval, then the
only time that the system could have an out-of-sync step during the interval is during at most
n7 — 1 subintervals which start with a synchronizing state and end in a starting state. By the
proof of Lemma 8, the probability that a given subinterval contains an out-of-sync step is at
most 2Wnte—"/10. Thus, the probability that an out-of-sync step occurs in the interval is at
most n’(2Wnie~™/10) o

Lemma 24 Suppose that the protocol is run with a {)\i}lsiSn-dominated arrival distribution,
a given allowed sequence of processor start/stop times after step t, and a given system state
just before step t. Divide the interval starting at step i into blocks of n' steps. The prob-
ability that the interval has more than 92701 blocks containing non-normal steps is at most
7Wn126""/10.

Proof: Let S contain the first step of the interval, and each step during the interval in
which a processor starts or stops. Then |§]| < 2n+1. Let S/ contain S plus for each step s € 5,
all steps after s until the system returns to a normal state. By Lemma 14, with probability at
least 1—(2n+ 1)(3Wnte /1), S’ can be covered by 2n+1 sequences of at most n® steps each.
Then the set $’ partitions the other steps in the interval into at most 2n + 1 subintervals,
such that the state is normal just before each subinterval, and no processors start or stop
during any subinterval. We perform the following analysis for each of these subintervals.

By Lemma 8, once the system enters a synchronizing state, with probability at least
1 — 9Wnte~"/19 it will be in a starting state within 13n” steps. Once the system is in
a starting state, by Lemma 23 with probability at least 1 — 3Wnlle—"/10 it will enter a
synchronizing state at most n” 41 times, and each synchronizing phase will last at most 13n7
steps.

In total, the probability of not performing as stated above is at most

(2n + 1)(3Wn4e"”/10 + 2Wn4e—”/10 + 3Wn116—n/10) < 7Wn12e"”/10,

Finally, the set S’ can intersect at most (2n + 1)((n®/n*) + 1) blocks of size n*. Then, in each
of the 2n + 1 subintervals of steps between those of S’, there are at most n’ 4+ 2 synchronizing
phases, each of which can intersect at most ((13n”/n?) + 1) blocks of size n*. All together,
at most 27n1! blocks of size n* will contain non-normal steps. a

Corollary 25 Let z be an integer in the range 0 < z < n2® —54n1l. Suppose that the protocol
ts run with a {/\;}lsiSn-dominated arrival distribution, a given allowed sequence of processor
start/stop times after step t, and a given system state just before step t. Focus on a particular
non-empty queue at step t. The probability that the queue remains non-empty for the nezt
znt + 54n18 steps but fewer than z packets are delivered from it during this period is at most
7Wn12€—n/10.
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Proof:  Divide the next zn* + 54n!® < n33 steps into blocks of size n*. By Lemma 24,
with probability at least 1 — 7TWn!2e="/10 at most 54n'! of these blocks will either contain a
non-normal step, or precede a block which contains a non-normal step. The corollary follows
by noting that if block i contains all normal steps and no synchronization is started in block
i 4+ 1, then a packet must have been sent from the queue during block i. a

Lemma 26 Suppose that the protocol is run with a {\;}1<i<n-dominated arrival distribution,
a given allowed sequence of processor start/stop times after step t, and a given system state
just before step t. Then the probability that the interval starting at t is light for a given
processor is at least 1 — 8Wnl2e—n/10,

Proof:  As in the proof of Lemma 24, with probability at least 1 — TWn12e~ /10 the non-
normal steps could be covered by at most (2n + 1) + (2n + 1)(n” + 2) subintervals of at most
n® steps each, and each of the subintervals would contribute at most n® + n” packets to the
queue (including the at most n” that could be transferred from the processor’s buffer). If this
were the case, at most 3n!® packets would be placed in the queue during the interval. O

Lemma 27 Suppose that the protocol is run with a {A;}1<i<n-dominated arrival distribution,
a given allowed sequence of processor start/stop times after step t, and a given system state
just before step t. The probability that the interval starting at t is productive for a given
processor is at least 1 — TWnl2e—n/10,

Proof: Follows from Corollary 25. a

Lemma 28 Suppose that the protocol is run with a {A;}1<i<n-dominated arrival distribution
and a given allowed sequence of processor start/stop times before step t. The probability that
more than n'7 + i(n33 + n7) packets are in a queue just before step t is at most e~ /30 for
i > 1 and at most e™™/3° for i = 0.

Proof: For every non-negative integer j, we will refer to the interval [t — (5 + 1)n% +
1,...,t — jn33] as “interval j”. Choose k such that the queue was empty just before some
step in interval k, but was not empty just before any steps in intervals 0-(k — 1). We say
that interval j is “bad” if it is not both productive and light for the processor. The size of
the queue increases by at most n33 +n” during any interval. If interval & is not bad, then the
queue size increases by at most n'” during interval k. If interval j is not bad for j < k, then
the queue size decreases by at least n?/4 — n!7 during interval k. Thus, if b of intervals 0-k
are bad, then the size of the queue just before step ¢ is at most

(k+1)(nB3 + ") = (k+1-0)(n®+n" +nP/4 — ") + n!".

This quantity is at most n!7 + i(n3% + n7) unless b > (i/2) + (k/(8n*)). Thus, the probability
that the queue has more than nl7 4 i(n3 4 n”) packets just before step ¢ is at most the
probability that for some non-negative integer k, more than (i/2) + (k/(8n*)) of intervals
0-k are bad. By Lemmas 26 and 27, the probability that a given interval is bad is at most
16Wnl2e="/10, Let X = 16Wn!2e~"/10. Then, for ¢ > 1, the failure probability is at most

'k . . . )
. XL(1/2)+(k/(8n N+ < (166n4X)[(¢/2)+(k/(8n Ni+1
% (L(z/2) + (k/(8n%))] + 1) g}
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< Z(l()‘en‘i)()(i/?H(k/(Sn‘))
k>0
< (168714X)i/2 2(166714/\’);"/(8”4)
k>0

< (16enX)"/?8n* 2(16671{‘()"‘
k>0

< 2(8nY)(16en* X )1/

S e—zn/SO‘

For 7 = 0, this probability is at most

k Lk/(8r4)|+1
2 (Lk/(sn4)1 + 1)X

k>0
< Z(men‘ix)Lk/(Sn")Hl
k>0
< (16en*X) Z(l6en4X) Lk/(8n%)]
k>0
< 2(8n*)(16en*X)
< e,

]

Lemma 29 Suppose that the protocol is run with a {Ait1<i<n-dominated arrival distribution
and a given allowed sequence of processor start/stop times afler step t + n32. Suppose that no
processors start or stop during steps [t —T,...,t+ n3?] and that the system stale just before
step t—T is given. The probability that an out-of-sync step occurs before a starting step aftert
is at most AW nlle /10,

Proof: By Lemma 15, the probability of not having a start state just before any step in the
subinterval [t — T,...,t — T/2] is at most 6Wnie—"/10. Then by Lemma 23, the probability
of having an out-of-synch step before step t + n32 is at most 3Wnlle~™/1°, Finally, by
Lemma 15, the probability of not having a start state in the subinterval [t,...,t+ T/2] is at
most 6Wnte—"/19, The Lemma follows by summing the failure probabilities. o

Lemma 30 Suppose that the protocol is run with a {Aih1<icn-dominated arrival distribution,
a given allowed sequence of processor start/stop times after step t, and a given system state
just before step t in which queue Q contains at least z packets. Then the ezpected time until
at least = packets have been sent from Q is O(zn* + n'°).

Proof:  Our first case is when ¢ < n29/2. Let A be the event that at least z packets are
sent in steps t,...,t + zn® 4 54n!® — 1. We refer to the interval [t + zn? + 54n1° + (k —
1)n33,...,t 4+ zn* + 54n'5 + kn3 — 1] as “interval k7. Let C} be the event that interval &
is productive. Let E, be the expected time to send the z packets. Using Corollary 25 and
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Lemma 27,

Ey < (zn* 4+ 54n!%) 4 n* Pr(4) + Z n3? Pr( ;)
k>1 1<i<k—1
S $n4 + 54n15 + Z n33(7wn12e—n/10)k
k>1

= O(:L'n4 + nls).

Our second and last case is when z > 1n%%/2. Let r = [2z/n??]. Note that after r productive
intervals, at least = packets will be sent. Let Dy be the event that intervals 1-k don’t contain
at least r productive intervals, but that intervals 1-(k + 1) do contain r productive intervals.

E. < Y (k+1)n*Pr(Dy)

k>r

< (2 + Z (k4 1)Pr(Dy))

k>2r
k 2_—-n k—r

< nP@r+ Y (k+ 1)<k - r)(?Wnl e~10)k-T
k>2r

< nBRr+ Y (k+1)((2e)TWnalZe /10 T)
k>2r

= 0(n*r)

= O(an?)

]

Theorem 31 Suppose that the protocol is run with a {A;}1<i<n-dominated arrival distribu-
tion, a given allowed sequence of processor start/stop times in which no processors start or
stop during steps [t — n®3,...,t + n3%]. Suppose that a packet is generated at step t. The
expected time that the packet spends in the queue is O(1).

Proof: Let I, be the interval [t — £n3 +1,...,t— (£ — 1)n%]. Let Ag be the event that the
size of the queue is at most n}7 — 1 just before step ¢ — n33 + 1, and, for i > 1, let A; be the
event that the size of the queue just before step t —n33 41 is in the range (174 (i —1)(n* +
n7),n17 + i(n33 + n7) = 1. Let B the event that interval Iy is light. Let C be the event that
the packet enters the queue. Let ¢’ be the random variable denoting the smallest integer such
that ¢ > t and the state of the system just before step t' is a starting state. Let t" be the
random variable denoting the smallest integer such that t” > ¢ and step " is out-of-sync.
Let F be the event that ¢ < . Let X be the random variable denoting the amount of time
that the packet spends in the queue. All probabilities in this proof will be conditioned on the
state of the fact that no processors start or stop during steps [t — n3%,...,t+ n33).

We start by computing ;51 E(X | A; A C)Pr(4i A C). By Lemma 28, Pr(4;) <
e~ (max{i=L,1hn/30 g5 Pr(4; A C) < e~(max{i-11)n/30 By Lemma 30, E(X | A; A C) is at
most

E( —t| A; AC) + O(n4(n" + (5 + 1)(n® + nT))).

(Since A; holds, there are at most n'7 + #(n% + n”) packets in the queue before interval Iy
and at most n3% + n” get added during interval I;.) By Lemma 20, E(t' =t | Ai AC) is
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at most ) ;>q 7132(6Wn4e_”/10)J_1 = O(n??). Thus, E(X | AiAC) = (1 + 1)O(n*"). Thus,
oy E(X | Ai h C)Pr(A; A C) £ Fipy e maimb IR0 4 1)0(n?7) = O(1).

“We now compute E(X | ApABAC) Pr(AgABAC). By Lemma 26, the probability of B is at
most 8Wn12e=/10 5o Pr(AgABAC) < 8Wn12e ™10, As above, E(X | AgABAC) = 0(n®7),
s0 E(X | Ao A B AC)Pr(Ag A BAC) < (8Wnal2e 19)0(n") = O(1).

Next, we compute E(X | AgA F AC) Pr(Ao AF AC). By Lemma 29, the probability of i
is at most 4Wn!le /10 so Pr(Ag AF AC) < AWnlte=/10. As above, E(X | AoAFAC) s
at most E(t' =t ] Ag AT A C)+ O(n37). Since C occurs, the system is in a synchronization
state just before some state in {t,...,t + n’]. Since F occurs, there is an out-of-sync step in
[t,...,t+ 14n7]. By Lemma 20, the expected time from this out-of-sync step until a starting
state occurs is at most 35y n3?‘(6Wn4e'"/10)]—1 = O(n??). Thus, E(t =t | AoAFAC) =
O(n®?) and E(X | AgAF AC) = O(n%7). Thus, E(X | Ao A F A C)Pr(Ag A FAC) <
(AWnlle="190(n37) = O(1).

Finally, we compute E(X | Ao ABAF AC)Pr(Ag A B AL A C). By Lemma 21, the
probability of C is at most 16n7%2, so Pr(Ao A B A F A C) < 16n~%2. We now wish to
bound E(X | Ao A BAF AC). Since Ao and B hold, the size of the queue just before
step t is at most 2n'7. Suppose that t' > ¢+ 212! + 13n7. Then, since F' holds, no step
int,...,t+ 2n% 4 1307 is out-of-sync. Suppose first that no step in ¢,...,t + 2n?! + 1307
is out-of-sync and that the state is normal before each step in t,...,t+ 2n%. Then all of
the clocks will be the same, so at least 2n!7 processors will be sent from the queue during
this period. Suppose second that no step in ?,...,¢ + 21?1 4 13n7 is out-of-sync, but that
the state is not normal just before some step in the range t,...,{ + 2n2'. Then since no
state in ,...,t + 202! 4 13n7 is out-of-sync, ! < t+ 2n2' + 13n7. Finally, suppose that
t' < t4+2n21+13n7. By Lemma 30, E(X | AoABACAF) is at most ' —t4+0(n2n'7) = O(n?).
Thus, E(X | AoABAFAC)P(AgABAFAC) < 16n=220(n?) = O(1). a

Observation 32 When the protocol is run, every packet spends at most n' steps in the buffer.

Theorem 33 Suppose that the protocol is run with a {Ait1<i<n-dominated arrival distribu-
tion, a given allowed sequence of processor start/stop times. Suppose that a packet is generated
at step t. Then the ezpected time that the packet spends in the queue is 0O(n®").

Proof: Let X be the random variable denoting the size of the queue just before step L.
By Lemma 28, for i > 1, the probability that X > 7+ i(n33 + n”) is at most e=in/30,
Given a particular value of X, Lemma 30 shows that the expected time to send the packet is
O(Xn* + n!%). Thus, the overall expected time to send the packet is

O(n4 . (n17 + n33 + n7) + n15) + Z O(n4(n17 + i(n33 + n7)) + nlS)e—(i—l)n/BO — O(n37).
i>2
O

4 Results

In this section, we need the following definitions. For any &, let [k] denote the set {0,.. Lk}
Let V be the set of processors. For v € V, let T, be the set of steps in which processor v is
running.
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Theorem 34 Suppose that the protocol is run with a {A;}1<i<n-independent arrival distri-
bution and a given sequence of processor start/stop times in which each processor runs for at
least 8n™ steps every time it starts. Then E[Wqyg] = O(1).

Proof:  First note that the sequence of processor start/stop times is allowed. Let T be the
set of steps within n33 steps of the time that a processor starts or stops. Lemma 35 proves that
if the {A;}1<i<n-independent arrival distribution is conditioned on having at most m packets
arrive by time ¢, the resulting arrival distribution is {A;}1<;<n-dominated. Therefore, the
system described in the statement of the theorem satisfies the conditions of Lemma 36 with
(from Theorem 19 and Theorem 31) C' = O(1) and (from Theorem 33 and Observation 32)
C = O(n®"). From the condition given in the statement of this theorem, we can see that

. TnT,Nn{t
S = maxlim sup 7070l <%
vEV  ta00 ITU N [t]!
(The worst case for § is when a processor runs for 871 + 6(n — 1)n3% 4 2n33 steps, and the
other n — 1 processors have [ending,starting,ending,starting] times

(21033 2(n — 1)n>3 + 2in%3 2(n — )n® 4+ 20 + 8271 4(n — )0 + 2in® 4 807,

(1 <i<n—1). Then |T| = 8(n—1)n*3 42033, including the n? steps just after the processor
starts and the n33 steps just before the processor stops.) The theorem then follows directly
from Lemma 36. (Note that C and C’ are actually functions of A, but A is a constant.) O

Lemma 35 Consider the distribution obtained from the {A;}1<i<n-independent arrivals dis-
tribution by adding the condition that at most m packets arrive by step t. The resulting arrival
distribution is {A;}1<i<n-dominated.

Proof:

Let A, denote the probability that a message arrives at processor v at time ' (under
the {\i}1<i<n-independent arrivals distribution). Let E be any event concerning the arrival
of messages at steps other than ¢’ or at processors other than v. Let C be the event that at
most m messages arrive during steps 1,...,¢{. We wish to show that Pr(A,» | CAE) < A,. If
' > ¢ then Pr(A, ¢ | C A E) = A, by the independence of the {)A;}1<i<n-independent arrivals
distribution, so suppose that ¢’ < t. Let E’ denote the part of event E concerning arrivals
at steps 1,...,%. By the independence of the {A;}1<i<n-independent arrivals distribution,
Pr(Aye | CAE)=Pr(Ayp | C A E'). Let W be the set containing every possible sequence
of message arrivals during steps 1,...,¢ with the arrival at processor v and step ¢’ omitted.
Let W' be the set of elements of W which satisfy E’ and have fewer than m arrivals and let
W' be the set of elements of W which satisfy E' and have exactly m arrivals.

Pr(A,o |CAE) = > Pr(Ayy|wACAE)P(w|CAE)
weW
= Z Pr(A, ¢ | wAC)Pr(w | CAE")+ Z Pr(Ay e | wAC)Pr(w | CAE)
weEW’ weW”
= Y Pr(Ayy | w)Pr(w|CAE')
weW’
= A Y, Pr(w|CAE)
weW!
< A
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Lemma 36 Suppose that for every m and t a protocol running on n processors has the
property: for all processors v, if a packet P 1is generated at processor v at step t € T and
is one of the first m packets generated, then the expected time before packet P 1s sent is at
most C, and if a packet P is generated at processor v at step t € T and is one of the first
m packets generated, then the expected time before packet P is sent is at most C'. Then

E[Wavg] <2(85C + ("), where § = maX,ev lim sup;_, o —L—lﬁ;fn"g]r“-

Proof: Recall that A = Y, cy Av, that A, > 0 forall v € V and that Wavg = limy o # Yo Wi,
where W; is the delay of the ith packet generated in the system.

1 & 1 & 1 &
E[Wavg] = E [mhlnoo — ; W,] <E [1?%0;) — ; W,} = h;njgop . ; E[W;).

Now let A;, ¢ be the event that the ith packet is generated at processor v at step i. Then

2 EW] = D > E[Wi | i Pr{Ai,t)
=1 i=1 t>0veV
= 33 SEW | Aipd Pr(Aiay)-
veV teTy i=1

Let By, be the event that one of the first m packets is generated at processor v at step t.
Now, the properties of the protocol given in the lemma are equivalent to the following: for
any v €V, mand t €T,

STEW: | Ai) Pr(Aipe | Bmpy) < CifEET, and

i=1
Z:E[VVl ‘ Ai,v,t] PI‘(A,’yU,t | Bm,v,t) S Cl, if t € —T
=1
Furthermore, since for 1 < m Pr(A; ;) = Pr(Aiwe A Bwt) = Pr(Aivs | Bpwt) Pr(Bmw,t)s

Z Z iE[Wt | Ai,u,t] Pr(Ai,u,t)

m

> E[Wi]

t=1 veV teT, t=1
= Z E ZE[Wz | A, Pr(Aijut | Bm,v,t) Pr(Bm,u,t)
veV teT, i=1
= Z Z Pr(Bm,v,t)ZE[Wi | Ai,v,t] Pr(Ai,v,t | Bm,u,t)
veV teT, =1
< > ( > Pr(Bmwt)C + > Pr(Bm,u,t)C') .
veV \teTnT, teTnT,

Let vy = Y ey Av|Tw N [t]], i.e. the expected number of packets generated in the system
through time t. Note that Pr(Bm,ut) < Avs and for m < vy, Pr(Bmut) < Ay exp{—(v: —

27



m)?/(2v;)}, by a Chernoff bound. Then for any 7™ C T,
Z PI‘(Bmm,t) < Z /\v + Z /\v eXP{_(Vt - m)z/(2yi)}

teT* te€T* v <2m teT*, v >2m
< AT {t v <2m} 4+ A, Z exp{—(v: — m)/4}
tET",VtZQm
< MNTNA{t i < 2m}]+AvZexp{—(m+i/\v)/4}
i>0
< AT 0 A{t v < 2m}| + Aye™ /4 Z(e"\”/‘i)i
i>0

AT 0t vy < 2m}| + Ape ™A1 — e~ rol4)"1
AT 0 {t 2w < 2m} + O(1).

IA A

Consequently,
1
E[Wavg] < limsup — Z E[W:]

MNT AT, A {t: vy <2m}|+ 0O

< limsup — Z[C(AUITO T,0{t:v <2m} +0(1))+ C(

m—00

eV
< C(hmsup— Z MTNT,N{t: v < 2m}l)+C”(hmsupE Z)\ [TNT,N{t:v <2m
M—00 ’UEV m— UEV

We bound the factor multiplied by C as follows.

hmsup— Z(/\ ITnT,n{t:v <2m}|)

UEV
~ 1 Z/\U|TﬂTvﬂ{t:ut<2m}| <|Tuﬂ{t:1/t<2m}[>
B lnIzn_?;lop m [Ty 0 {t: v < 2m}
_ Aol Ty ﬂ{t vy < 2m}| (]TﬂTvﬂ{t:zxt<2m}|>
- hy?fllop Z |T, 0 {t : vy < 2m}]
. ( ITﬂTvﬂ{t:ut<2m}|> Ao| Ty Nt : vy < 2m}
< limsup | max
mooo \veV [Ty N{t:v: < 2m}| vEV m
. ITOTuﬂ{t:Vt<2m}|> Aol Ty ﬂ{t vi < 2m}|
<
< (imowpmax e ey ) (e 2
. |Tr‘|Tuﬂ{t:Vt<2m}|) Ao| Ty ﬂ{t v < 2m}|
= i
(magetimsup o o ,,‘?ffopg
ITﬂT,,ﬂ{t:z/t<2m}|>< )
< i zm
= G%¥W$$P [Ty {t: vz < 2m)]| o
TnT,Nn{t: 2
< 2max1imsup| n {t: v < 2m}

v€EV m—oo lT‘U N {t e < 2m}|

. ITNT, N[
= 2maxlimsup ————7—
eV el T N [E]]

= 265.
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We bound the factor multiplied by C” as follows.

MTNT, 0 {t:v <2m
limsupz ol (e v i
m

m—00

1 .
lim sup pon Z(AU TOT,Nn{t:v <2m}|)

m—00

vEV veV
. ML, 0t vy < 2m
< hmsupz Ty 4L v i
m—00 m
veV
. 2m
< limsup —
m—oo M
< 2.
a
References

[1] N. Abramson. The ALOHA system. In N. Abramson and F. Kuo, editors, Computer-
Communication Networks. Prentice Hall, Englewood Cliffs, New Jersey, 1973.

[2] D. Aldous. Ultimate instability of exponential back-off protocol for acknowledgement
based transmission control of random access communication channels. IFEEE Trans. on

Information Theory, IT-33(2):219-223, 1987.

[3] J. Goodman, A. G. Greenberg, N. Madras, and P. March. Stability of binary exponential
backoff. J. Assoc. Comput. Mach., 35(3):579-602, 1988. A preliminary version appeared
in STOC 85.

[4] J. Hastad, T. Leighton, and B. Rogoff. Analysis of backoff protocols for multiple access
channels. Pre-print - a preliminary version appeared in STOC 87, 1993.

(5] F. P. Kelly. Stochastic models of computer communication systems. J. R. Statist. Soc.
B, 47(3):379-395, 1985.

(6] R. Metcalfe and D. Boggs. Distributed packet switching for local computer networks.
Comm. ACM, 19:395-404, 1976.

[7] M. Paterson and A. Srinivasan. Contention resolution with bounded delay. to appear in
Proc. 34th Symp. on Found. of Comp. Sci., 1995.

[8] P. Raghavan and E. Upfal. Stochastic contention resolution with short delays. In Proc.
24th ACM Symp. on Theory of Computing, pages 229-237, 1995.

29



