
http://wrap.warwick.ac.uk/

Original citation:
Goldberg, Leslie Ann and MacKenzie, P. D. (1997) Contention resolution with
guaranteed constant expected delay. University of Warwick. Department of Computer
Science. (Department of Computer Science Research Report). (Unpublished)
CS-RR-328

Permanent WRAP url:
http://wrap.warwick.ac.uk/61016

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61016
mailto:publications@warwick.ac.uk

Research R"port 328

Contention Resolution with Guaranteed
Constant Expected

Delay

Leslie Ann Goldberg and Philip D. MacKenzie

RR328

We study contention resolution in multiple-access channels such as the Ethernet. Under a
stochastic model of continuous packet generation from a set of n processors, we construct a
protocol which guarantees constant expected defay for generation rates up to. a fixed constant
*hl"tt is less thln 1. Previous protocols which are stable for constant arrival rates do not
guarantee constant expected delay. The two protocols that achieved results closest to this are one

5y Raghavan and Upial, which only guaranlees logarithmic (in n) expected.dg!ay, an{ o.ng.by

Piters6n and Srinivasan, which only guarantees constant expected delay with high probability.
(In the latter protocol, there is a non-zero probability that the initial clock_synchronization might
iail and cause the expected delay to grow unboundedly.) Although those protocols do not
guarantee constant expected delay, we have used ideas from them in the construction of our

irotocol, which does guarantee constant expected delay. We achieve our results using- a

iechnique called Robu{t Synchronization which is applied periodically. in our p.rotocol. 'The

introduction of this technique and the analysis of this technique are the major contributions of the

paper.

Department of Computer Science

University of Warwick
Coventry CY47AL
United Kingdom

July 1997

Contention Resolution with Guaranteed Constant
Expected Delay*

Leslie Ann Goldbergt

July 21,

LTR Project 20244 - ALCOM-IT.
lphilnacOcs. idbsu. edu. Dept. of Mathematics

83?25. Part of this work was performed at Sandia

under contract DBAC04-76DP00789.

Philip D. MacKenziet

1997

Abstract

We study contention resolution in multiple-access channels such as the Ethernet. Under a

stochastic model of continuous packet generation from a set of n processors, lve construct

a protocol which guarantees constant expected delay for generation rates up to a fixed

constant.lo (1. Previous protocols which are stable for constant arrival rates do not

guaranree consrant expected delay. The two protocols that achieved results closest to this

u,." o.r" by Raghavan and Upfal, which only guarantees logarithmic (in n) expected delay,

and one by Paterson and Srinivasan, which only guarantees constant expected delay with

high problbility. (In the latter protocol, there is a non-zero probability that the initial

clock synchro.rirutlon might fail and cause the expected delay to grow unboundedly')

Although those protocols do not guarantee constant expected delay, we have used ideas

from them in the construction of our protocol, which does guarantee constant expected

delay. We achieve our results using a technique called Bo6u st Synchronizalion rvhich is

applied periodically in our protocol. The introduction of this technique and the analysis

of this technique are the major contributions of the paper'

1 Introduction
There has been an enormous amount of work on contention resolution for Ethernet-like

multiple-access channels (see, for example, [3, 4], and the references therein). Most of this

work has focused on backoff protocols,1".t"ai"g both constant backoff protocols (as in the

Aloha network [1]) and increasing backoff protocols (as in the Ethernet network [6])' Backoff

protocols work very well in practice and are therefore worthy of study. However, it has been

shown that the expected packet delay of backoff protocols with constant generation rate is

O(r), where n is the number of processors. (Histad, Leighton, and Rogof [4] show this for

exponential, polynomial, and constant backoff protocols, but the same lower bound technique

would apply to other backoff functions.)

fComputerScience,UniversityofWarwick,CoventryCV47AL,
United Kingdom. An extended abstract of this reiort will appear in the Proceedings of the 38th Symposium

on Foundations of Computer Science, 1997.
tleelie0dcs.carcick.ac.uk. Department of Computer Science, University of Warwick, Coven-

try CV4 ?AL, United Kingdom. This work was supported by EPSRC Research Grant GR/L60982 - Design

ood Aoutysi" of Contention-Resolution Protocols, by ESPRIT Project 21726 - RAND-II and by ESPRIT

and Computer Science, Boise State University, Boise, ID,

National Labs and supported by the U.S. Dept. of Energy

1

Raghavan and Upfal [8] were the first develop a contention-resolution protocol rvith o(rr)

expected packet delay for a constant generation rate. Specificaily, their protocol allori's a

generation rate up to about 1/10, while achieving expected delay O(logn). A key idea

that allows the low expected delay is that of a "Reset State" which is entered when bad

situations are detected. Later, Paterson and Srinivasan [7] achieved constant expected delal'

for an infinite number of processors, assuming that the processors have synchronized clocks,

for generation rates up to about lle. Using their infinite-processor protocol, Paterson and

Srinivasan designed a protocol that can be used by n processors whose clocks differ by at

most B (for some value -B) and, with high probability, achieves constant expected packet delal'

for generation rates up to about 1/e. This protocol starts with a "Pre-processing Phase" rvhich

takes 0(max{B,n}) time and succeeds with high probability. If the pre-processing phase fails,

then the expected packet delay of the protocol can grow without bound. Thus, the overall

expected packet delay of the protocol is unbounded.

In this paper we affrrmatively answer the question of the existence of a contention-

resolution protocol with constant expected packet delay in the standard multiple-access chan-

nel model, i.e., we present the first protocol that achieves constant expected packet delay for

generation rates up to a fixed constant)6 (1, without the added requirement that proces-

sors be started with identical clocks. In fact, our protocol allows processors to start and stop

repeatedly (with some constraints) with no a priori clock values, and it still achieves constant

expected packet delay.

Our protocol uses the protocol of Paterson and Srinivasan as a subroutine. The analysis

of this subroutine requires processors to have synchronized clocks, and we are able to simulate

tlris (for reasonably long periods of time) using a new technique for Robust Sgnchronization.

In particular, our protocol incorporates repeated, robust "synchronization Phases". Each
,,synchronization Phase" is similar to the "Preprocessing Phase" of Paterson and Srinivasan'

except that our synchronization phases are performed repeatedly and are robust in tire sense

that they do not require processors to have similar clocks, and they can handle any patho-

logical situation (such as processors starting in the middle of a synchronization phase) and

eventually return to a normal, synchronized state.

In some sense, the structure of our protocol (normal phases, occasionally interrupted by

synchronization phases) is similar to the structure of Raghavan and Upfal's protocol (which

has normal phases, occasionally interrupted by reset phases). However, there are major

differences between them. One d.ifference is that, because lack of synchronization cannot be

reliably detected., synchronizing phases must be entered periodically even when no particular

bad event is observed. Another difference is that processors in a reset state are only allowed to

send packets with very low probability, and this helps other processors to access the channel.

However, our synchronization phase is designed to accomplish the much-more-difficult task

of synchronizing the processors (this is needed to obtain constant expected delay rather than

logarithmic expected delay), and accomplishing this task requires many transmissions to the

channel, which prevent access to the channel by the other processors. Thus, synchronization

phases are costly in our protocol. A third difference is that in Raghavan and Upfal's protocol,

a normal phase always tends towards low expected delay, and when bad situations arise,

there is a good probability of them being caught, and thus causing a reset state to occur.

In our protocol, a normal phase tends towards even lower (constant) expected delay if the

processors are synchronized. However, if they are not synchronized, the normal phase does

not necessarily tend towards low expected delay, and there is no sure way to detect that the

processors are unsynchronized. Thus, the bad situation can only be remedied during the

next time the processors start a synchronizing phase, which may be after quite a long tirne!

Fortunately, we are able to bound the effects of this type of behavior and still achieve coustant

expected packet delay.

1.1 Model and Definitions

Following all of the papers that we mention in section l.2,we work in a time-.slotfed model

in which time is partitioned into intervals of equal length, called steps. In our basic model,

we have ?z processors which can start and stop at arbitrary steps' with the constraint that

each time a processor starts, it runs for at least a certain polynomial number of steps.l

packets are generated at the processors according to a probability distribution. Ilnder

the {.\;}1a; <n-iidepend,ent a::ivals distribution, each processor i is associated with a positive

pro6uUitity 1; and it generates a message independently with probability); during each time

step that it is running. For technical reasons, we also consider other arrival distributions. We

say that an arrival distribution is {);}14;a,, -dominated (for)1, . . .,)' > 0) if the total arrival

rate, .\ = D; A;, is at most e for . roffi.iently small positive constant e , and the following

condition is satisfied: For every plocessor f, every step I in which processor i is running, and

every event E concerning the arrival of messages at steps other than I or at processors other

than i, the probability that processor i generates a message at step l, conditioned on event -B'

is at most);.
The packets which arrive at the processors must be transmitted to the multiple access

channel which handles contention as follows: when multiple processors attempt to transmit

to the channel at the same time, none succeed. If a single processor attempts to transmit to

the channel, it receives an acknowledgement that the transmission was successful. Processors

must queue all unsuccessful packets for retransmission, and they use a contention-resolution

protocol to decide when to retransmit. During the time that a plocessor is trying to send

one packet, it may generate more packets that it needs to transmit' These packets must also

be queued. An important feature of a good contention-resolution protocol is that, even when

packets are generated fairly frequently, the sizes of the queues do not grow unboundedly'

We say a protocol is stable if the expected size of the queues remains bounded' More

formally, Iet W; be the waiting time of the rth packet, and let

'tfr

WavF=
-li{n^^ =D,Wr.) m+oo rn

=i
(Intuitively , Wavgis the average waiting time of packets in the system.) We say that a protocol

is stable ii BlWJ"g] is finite. For stable protocols, we are concerned with the maximum

generation raie) tltt .uo be stably sustained, and with the value of B[l7avg]'

L.2 Previous Work

There has been a tremendous amount of work on protocols for multiple-access channels' Here

we will only d.iscuss the work on dynamic protocols in the acknowledgement-based model

that we use. We refer the reader to the papers cited here for discussion of previous work on

protocols using different assumptions or models.

esultsinSection4,werequirethispoIynomialtobe8n7l1however,
n33 is sufficient for all piooG in Section 3. Note that no attempt has been made to optimize these polynomials'

Aldous [2] showed that for any)) 0, binary exponential backoff is unstable rvhen tlie
number of processors is infinite. Kelly [5] showed a similar result for polynomial backoff
protocols. Hi,stad, Leighton, and Rogoff [4] showed that polynomial backoff is stable (with
an expected delay of r,,'(z)) for any) < 1 when the number of processors is fi.uite, and

that binary exponential backoff is unstable for) > .567, when the number of processors is

finite. Raghavan and Upfal [B] give a protocol which, for) < i/10, is stable for a" finite
number of processors, n, and achieves O(log n) expected packet delay. Their protocol has

the added benefit of being a fairly simple, clean protocol. Paterson and Srinivasan [7] give

a very clever protocol which, for) < 1f e,is stable for an infinite number of processors with
synchronized clocks, or stable with high probability for a finite number of processors with
almost synchronized clocks, and achieves constant expected packet delay, again with high

probability. (With some small probability, the delay of their protocol is unbounded.)

1.3 Our Results

We present a protocol which, for a small constant), is stable for any finite number of pro-

cessors and guaranfees constant expected packet delay. In our model, we do not make any

assumptions about a previously synchronized or almost synchronized clock. (Note that the

lambda used in our protocol is very small, a few orders of magnitude smaller than the lambda

used in previous results. We do not claim that our protocol is a practical protocol. The

significance of our protocol is two-fold: (1) it is the first protocol with guaranteed constaut

expected delay, and (2) the ideas behind it, mainly the Robust Synchronizalion technique,

could be useful in other practical protocols.)
The structure of our protocol is simple. Most of the time, the processors are running

the "infinite processors" protocol of Paterson and Srinivasan. The analysis of that protocol

assumes that processors have a synchronized clock. Therefore, in our protocol, the processors

occasionally enter a synchronizing phase to make sure that the clocks are synchronized (or

to resynchronize after a processor enters the system). Note that the synchronizing phase

has some probability of (undetectably) failing, and thus it must be repeated periodically to

guarantee constant expected packet delay.

The synchronizing phase of our protocol is somewhat complicated, because it must syn-

chronize the processors even though interprocessor communication can only be performed

through acknowledgements (or lack of acknowledgements) from the multiple-access channel.

(Thisls the model used in all previous papers.) The analysis of our protocol is also compli-

cated due to the very dynamic nature of the protocol, with possibilities of processors missing

synchronizing phases, trying to start a synchronizing phase while one is already in progress'

and so on. Our synchronizing phases are robust, in the sense that they can handle these types

of events, and eventually the system will return to a normal synchronized state.

To give an idea of the problems that arise when designing a robust synchronization phase,

consider the following scenario. Suppose that the set -L of all live processors enter a syn-

chronization phase, and halfway through it, another set Lt of processors start up. Since the

processors in .L' have missed a large part of the synchronization phase, they will not be able

to synchronize with the other processors. (This seems to be inherent in any conceivable syn-

chronization protocol.) There are two possible approaches for solving this problem. One is

to try to design the protocol so that the processors in -L detect the newly started processors

during the synchronization phase. Then they must somehow resynchronize with the newly

joined processors. However, any synchronization protocol must perform various tasks (such

Let

as electing a lcader) and it is difficult to detect the presence of the processors in -t' during

some of these tasks. A second approach is to allow the processors in -L to ignore the processors

in tr/ and to finish their synchronization phase (either synchronized amongst themselves, or

not). Then the set -tl of processors in the synchronization phase will very likely disrupt the

normal operations of the processols in tr' causing them to synchronize again' Rut now the

pro."rror. in ,L/ will be about halfway through their synchronization, whereas the processors

ir-, ,t are just starting synchronization! Our solution to this problem is a combination of the

two approaches, and is described in the next section with the description of our protocol.

L.4 Outline

In Section 2 we describe our new protocol' In Section 3 we prove the key features of our

protocol, namely, a packet generated at a step in which no processors start or stop soon

before or after will have constant expected delay, and a packet generated at a step in whiclt a

processor starts soon before or after will have an expected delay of O(n"') steps. In Section 4

we show that our protocol achieves constant expected packet delay for a fairly general multiple

access channel model, rvith processors starting and stopping'

The Protocol

^9: {0, ...,n4o - 1}\ {n'- 7,2n2 -L,3n2 - 1,.. .,nao -r},
be a set of steps, namely, the first 240 steps, except for the last one of every n2 steps' Then let

7 be the tree defined u, in Put"rron and Srinivasan's protocol, except that (1) it is truncated

to the first nao - n38 leaves, and (2) if a node in their tree ? has step j in its trial set, then

tlre corresponding node in our tree T has the jth step of ^9 in its trial set. LetIA = I2na'

Now we give an informal description of our protocol. In the normal state a processor

maintains a buffer B of size n' uni an infinite queue Q. B and Q contain packets to be

sent, and when a packet is generated it is put into B. For each packet rn € B the processol

maintains a variable trial(rn) which contains the next step on which the processor will attempt

to send rn. The step trial(rn) will be chosen using Paterson and Srinivasan's protocol (but

modifled as above). The steps not in ^9 (i.e., the last step of every n2 steps) are used to send

packets from Q. At each of these steps, with probability 1/(3n), the processor attempts to

s"od th" first packet in Q. Each processor also maintains a list -D which keeps track of the

results (eitherafailure" o, "ro".urr") of the most recent packet sending attempts from Q' up

to n2 of them.
A processor goes into a synchronizing state if a packet has remained in the buffer fot nz

steps or if .[is full (contaios ,r2 r"rultr) a"a only contains failures. It also goes into a synchro-

nizing state from time to time even when these events d.o not occu-r. (It synchronizes if it has

been simulating Paterson and. Srinivasan's protocol for at least n40 steps, and it synchronizes

with probability n-30 on any given step.) If the processor does go into a synchronizing state'

it transfers all packets from B to the end of Q.
In the synchronizing state, a processor could be in one of many possible stages, and its

actions depend on the ftage that-it is in. It will always put any generated packets into the

queue. Also, it only sendslummy packets in the synchronizing state. (The dummy packets

rre os"d for synchronizirg. Real packets that arrive during the synchronization phase must

wait until the next normal phase to be sent.) The various synchronization stages are as follorvs

(a processor goes through these stages in order).

JAMMING The processor starting the synchronization jams the channel by sending packets

at every step. In this way, it signals other processors to start synchronizing also.

FINDING-LEADER Each processor sends to the channel with probability t/n on each

step. The first processor to succeed is the leader.

ESTABLISHING-LEADER In this stage, a processor has decided it is the leader, and it
jams the channel so no other processor wiil decide to be the leader.

SETTING-CLOCK In this stage, a processor has established itself as the leader, and it
jams the channel once every 4I4l steps, giving other processors a chance to synchronize

with it.

COPYING-CLOCK In this stage, a processor has decided it is not the leader, and it
attempts to copy the leader clock by polling the channel repeatedly to attempt to find
the synchronization signal (namely, the jamming of the channel every 4W steps by the
leader). Specifically, it sends to the channel with probability 1/(3n) on each step, and

if it succeeds, it knows that the current step (mod 4I4l) does not correspond to the

leader's clock. After many attempts, it should only be left with one step (rnod 4lt)
that could correspond to the leader's clock. At the end of this stage, it synchronizes its
clock to the leader's clock.

WAITING This stage is used by a processor after COPYING-CLOCK in order to synchro-

nize with the leader's clock. The processor idles during this stage.

POLLING A processor in this stage is simply "biding its time" until it switches to a normal
stage. While doing so, it attempts to send to the channel occasionally (with probability
tlQn) on each step) in order to detect new processors which might be joining the

system and re-starting a synchronization phase. If new processors are detected, the

processor re-starts the synchronization phase. Otherwise, it begins the normal phase of
the protocol.

The length of each of these stages is very important, both in terms of achieving a high prob-

ability of synchronization and a high level of robustness. The high probability of synchroniza-

tion is achieved by making the "preliminary" stages (i.e., JAMMING, FINDINGJEADBR'
and ESTABLISHING-LEADER) of length O(W) (this is long enough to guarantee all pro-

cessors in a normal state will detect a synchronization), and the "synchronizing" stages (i.e.

SETTING-CLOCK, COPYING-CLOCK, and WAITING) of length @(Wn2) (this gives pro-

cessors enough time to determine the leader's clock modulo 4W, with high probability). The

high level of robustness is achieved by the following properties:

1. Having the lengths of the "preliminary" and "synchronizing" stages as above,

2. Noticing that only the preliminary stages can cause the channel to be jammed,

3. Noticing that the usynchronizing" stages cannot detect a new synchronization occurring,

4. Having the POLLING stage be of length O(I7n3) (longer than all of the other stages

combined), and

5. having the POLLING stage be able to detect new synchronizations.

The differing lengths of time for the "preliminary", "synchronizing" and POLLING stages,

and the fact that only the POLLING stage could cause another synchronization to occur'

guarantees that bad events as described at the end of Section 1.3 cannot occut'' eveti when

up to n processors are starting at different times'

Whenever a processor joins the Ethernet, it starts the protocol with state = SYNCHRONIZING,

sync-stage : JAMMING, clock = 0, and -t empty. we now give the details of the protocol'

Protocol
At each step do

If (state = NORMAL) call Procedure Normal

Else call Procedure Synchronizing

Procedure Normal
If a packet, m, is generated

Put rn in B
choose trial(m) from the trial set of the appropriate leaf of ?

If ((clock mod n2) = n2 - 1) call Procedure Queue-Step

Else cali Procedure NormalSteP

Procedure Normal-SteP
If (clock > n4o or any Packet in

Move all of the Packets in
B has waited more than n7 stePs)

BfromBtoQ
Empty -L

state +_ SYNCHRONIZING, sync-stage *_ JAMMING, clock *- 0

Else
With ProbabilitY n-30

Move all of the packets in B from B fo Q
Empty -L

statee-SYNCHRONIZING,sync-stage*.JAMMING,clock*_0
Otherwise

If more than one packet m in B has trial(rn) = clock

Send a dummY Packet
For each m € B with trial(m) - clock

Choose a new trial(rn) from the trial set of the appropriate node

at the next level of ?
If exactly one packet in 8,, m', has trial(m) - clock

Send rn
If rn succeeds, remove it from B
Else choose a new trial(rn) from the trial set of the appropriate node

at the next level of ?
clock .- clock * 1

Procedure Procedure Queue-Step
With probability 1/3rl

If (Q is empty) Send a dummy packet

Else

Send the first packet in Q
If the outcome is "success", Remove the packet from Q

Add the outcome of the send to -t
Otherwise Add "failure" to L
If (lrl : n2 ar.d all of the entries of L ate "failure")

Move all of the packets in B from B to Q
trmpty,L
state <- SYNCHRONIZING' sync-stage *- JAMMING' clock '- 0

Else clock <- clock * 1

P rocedure Synchronizing
If a packet arrives, put it in Q
If (sync-stage = JAMMING) call Procedure Jam
Else If (sync_stage = FINDING-LEADER) call Procedrrre Find-Leader

trlse If (sync-stage = ESTABLISI{ING-LtrADtrR) call Procedure Establish-Leader

Else If (sync-stage = SETTING-CLOCK) call Procedure Set-Clock

Else If (sync-stage = COPYING-CLOCK) call Procedure Copy-Clock

trlse If (sync-stage = WAITING) call Procedure Wait
trlse If (sync-stage = POLLING) call Procedure Poll

Procedure Jam
Send a dummy packet

If (clock <Wlz - 1) clock .- clock + 1

Else sync-stage <-- FINDING-LEADER' clock *- 0

Procedure Findjeader
With probability 1/n

Send a dummy Packet
If it succeeds

sync-stage.- ESTABLISHING-LEADBR, clock r- 0

If (clock < W - 1) clock <- clock * L

Else
forr'=0to4W-I

possibletime[i] e- Yes

sync-stage *- COPYING-CLOCK, clock <- 0

P rocedure Establish-Leader
Send a dummy packet

If (clock < 2W - 1) clock .- clock * 1

Else sync-stage <- SETTING-CLOCK, clock *- 0

Procedure Set-Clock
If (clock = 0 mod 4W)

Send a dummy packet

If (clock < 20Wn2 - 1) clock .- clock + 1

Else sync-stage *- POLLII'{G, clock '- 0

Procedure Copy-Clock
With probability 1/(3n)

Send a dummY Packet
If it succeeds

possibletime[clock mod 4W] <-- No

If (clock < 20Wn2 - 1) clock *- clock + 1

Else
If possibletime[i] = Yes for exactly one i,

clock <- -j
trmpty -L

If (j = 0) sYnc-stage *- POLLING
Else sYnc-stage <- WAITING

Else
trmPtY,L
sync-stage *- POLLING, clock <- 0

Procedure Wait
clock <- clock * 1

If (clock = 0) sync-stage <- POLLING

Procedure Poll
With Probability IlQn)

Send a dummy packet

Add the outcome of this send to the end of ,L

Otherwise Add "failure" to L2

If (lrl : n2 ar.d ail of the entries of -t are "fail")
trmpty tr
sync-stage ,- JAMMING, clock *- 0

Else
If (clock { Wn3 - 1) clock .- clock + 1

Else

Empty ,L

state <- NORMAL, clock <- 0

3 The Main Proof

Suppose that rl is sufficiently large and that ?? processors run the protocol. Step 0 will be the
step in which the first processor starts the protocol. Processors will start and stop (perhaps

repeatedly) at certain predetermined times throughout the protocol. We say that the sequencc

of times at which processors start and stop is allowed if every processor runs for at least n33

steps each time it starts. Just before any step, l, we will refer to the processors that are

running the protocol as liue processors. We will say that the state of the system is normal if
all of these plocessols are in state NORMAI. We will say that it is good if

1. It is normal, and

2. fot some C 1 n4o - n7, evety processor has clock : C, and

3. every processor with ll,l > n'12 has a success in the last n2f2 elements of ,L, and

4. no packet in any processor's buffer has been in that buffer for more than n7 f2 steps.

We say that the state is a starti,ng state if the state is good and every clock : 0. We say that

it is synchronizing if

. every processor has state = NORMAL, or has state = SYNCHRONIZING with either

sync-stage = JAMMING or sync-stage = POLLING, and

. some processor has state : SYNCHRONIZING with sync-stage = JAMMING and

clock = 0.

We say that the system synchronizes at step t if it is in a normal state just before step t
and in a synchronizing state just after step t. We say that the synchronization is arbitrary

if every processor with state = SYNCHRONIZING, sync-stage = JAMMING and clock = 0

just after step , had its clock < nao, had no packet waiting more than nz steps in its buffer,

and either had l,Ll < n2 or had a success in .t, just before step f.

Definition: The interlal starting at any step t is defined to be the period [t, . . . , t + n33 - 1] .

10

Definition: An interval is said tobe prod,uctiuefor agiven processor if at least n2e/2 packets

are sent from the processor's llueue during the interval, or the queue is empty at some tirne

during the interval.
Definition: An interval is said to be light for a given plocessor if at most n

17 packets are

placed in the processor's queue during the interval'

Definition: Step f is said to be an out-of-sync step if either the state is normal just before

step l, but two processors have different clocks, or the state was not normal just before any

step in [t-IJn7 +1,...,1]. (Intuitively, an out-of-synch step is the result of an "ttnsttcc.essfttl"

synchronize phase.)

Definitionz T : n37.
procedure NormalStep simulates a slightly modified version Paterson and Srinivasan's

protocol from [7]. (We refer the reader to [7] for a full description and analysis of Paterson

and Srinivasan's protocol.) We call our sl-ightly modified version PS'- PS'is based on the

variant of Paterson and Srinivasan's plotocol with fr : 16, s = 2 and r = B which was

described in [7]. In P,9/, a is defined to be k20 (Paterson and Srinivasan use a smaller o.)

Paterson and Srinivasan require) < l/so' However, in P^9', we require 4A < 1/so' In
our variant, b is chosen such that b > 2le\. Given our choice of constants' P5'catr

oniy handle smaller values of)i than those specified in [7]. The main difference betrveeu

pSt and the protocol discussed in [7] is that after every n2 - I steps' PSl waits one step,

generating inputs, but not running the Paterson-Srinivasan protocol' (Any inputs that arrive

during this step are deemed to have arrived after at the beginning of the following step, when

p,S/ continues simulating the Paterson-srinivasan protocol.) Note that from any starting

state until a synchronization, our system simulates P5'. This implies that our system stops

simulating P5' when a processor starts up, since that processor will immediately start a

synchronization. Then P,9' is simulated again once a starting state is reached' Lemmas 1

and 2 describe the behavior of PS'and are based on a theorem of Paterson and Srinivasan'

Lemma I Suppose that PSt is run with a {);}r<;<"-dominated arriual distribution for r {
n4o steps. Tiin the expected, detay of ony po"i"l that arriue.s is O(1). Furthermore, the

probability that any paciet has d.elay more than n7 f 2 is at most n-6o.

proof: The lemma follows from the proof of Theorem 2 of l7l. Note that an extra factor

of 2 in the defi.nition of .\ allows the theorem to apply to P.9/ iwith the extra step every n2

steps).

Lemma 2 suppose that PSt is run with a {l;}rs;s,-dorninated arriual distri'bution for r I
nao steps and-tiat a packet arriaes ot proceiso, g it step tt 1- r. Then the etpected delay of

ony poik"t that arrfues rs O(1). Further-more, the probobility that any packet has delay rnore

than n7 f 2 is at most n-6o.

proof: Another extra factor of 2 in the definition of) and the constraint on b ensure that

the expected number of packets in a node of the tree at level 0 (even with the extra packet)

can be handled by the protocol. Thus, this Lemma follows from Lernma 1' D

Lemma B Giuen a rand,om uariable X taking on non-negatiue integer ttalues, and tuo euents

A and B ouer the sarne s2t&ce, EIXIAA B] < DlXlBJlPr(AlB)'

11

Proof: Note for any event C that Pr(ClB) 2 Pr(C A AIB) = Pr(ClAn B)Pr(AlB). Flom
this we see that

F,[X]A^B) : f rPr[X:rlAAB]
r)0

r)0

tr

Lemmas 4 to 8 outline the analysis of the normal operation of the synchronization phase

of our protocol.

Lemma 4 Suppose that the protocol is run with a sequence of processor start/stop times in
which no processor starts or stoqts between steps t and t*W . If the system is in a synchronizing

state just before stept, then euery liue processor sets sync-stage lo FINDING-LBADtrR Tusf
before some step in the range {t,. . .,t + W}.

Proof: First note a processor can have state = SYNCHRONIZII'{G and sync-stage =
JAMMING for only W f 2 steps. Then note that every processor with state : SYNCHRONIZING,

sync-stage: POLLING, and clock < Wn3 - n2 will set sync-stage to JAMMING after at

most n2 stepsl every processor with state = SYNCHRONIZING sync-stage = POLLING,
and clock) Wn3 - n2 wlIl either set sync-stage to JAMMING within n2 steps, or switch

to state : NORMAL within n2 steps, and set sync-stage to JAMMING after at most an

additional na steps (since when state = NORMAL, a queue step is taken only once every n2

steps); and every processor with state : NORMAL will set sync-stage to JAMMING after

at most na steps. The lemma follows by noting that n2 + na < Wf2, and that a processor

remains in sync-stage = JAMMING for Wf 2 steps. D

Lemma 5 Suppose that the protocol is run with a sequence of processor start/stop times

in which no processors start or stop between steps t and t + 4W. If euery processor sets

sync-stage: FINDINGJEADER before some step in the range {t,...,t*W}, then with

probabili,ty at least I - e-n" , eractly one processor Eets sync-stage = SETTING-CLOCK
just before some step in the range t + 2W * 1, . . . ,t + 4W and euery other processor sets

sync-stage = COPYING-CLOCK just before some step in the range t * W, . . . ,t + 2W .

Proof: First note that at most one leader is elected since after elected, it does not

allow any processors to access the channel for 2W steps. Also note that no processor

will have sync-stage = FINDINGJEADER just before step t + 2W, since sync-stage :
FINDINGJEADER for at most 17 steps.

Suppose P is the last processor to set sync-stage = FINDING-LEADER. Then as long

as no leader has been elected, the probability that P is elected at a given step is at least

(tln)(t - (t|-il)"-L > tl@n). Th-us the probability that no leader is elected is at most

(I - ll@n))w, which is at most e-'r". Then the leader will spend 2W steps with sync-stage =
ESTABLISHING-LEADER before setting sync-stage to SETTING-CLOCK, while the other

processors will directly set sync-stage to COPYING-CLOCK. o

L2

Lemma B Suppose that the protocol is run with a sequence of processor stctrt/stop times irt

which, no processor starts or stops between steps r - 3W and r I 20W n2 ' If emctly one':

processor s€ts sync-stage = SBTTING-CLOCK just before step r € {t + 214/,-..,1 + 4lI'}
and, euery other proce.ssor sels sync-stage : COPYING-CLOCK just before sonte st,ep in tlr'e

range r - JW, . . . , r , then with probability at least | - 4W ne-" . all processors set sync-stage :
POLLING with clock = 0 just before step r l20Wn2.

Proof: The statement in the lemma is clearly true for the processor that sets sync-sta$e :
StrTTING-CLOCK. Suppose that P is some other processor. For each i in the rangc 0 (
i < 4W, if P's clock : f mod 4tr4l when the leader's clock = 0 mod 414l, possibletime[i]

will be yes. If not, p has at least l(20wn2 -zw)l@14/)J chances to set possibletime[i] to

No, i.e., it has that many chances to poll when its clock : i mod 4W and the leader has

already set sync-stage - SETTING-CLOCK. Now, 5n2 - i < l(20wn2 - 3w)l(414/)i. The

probability that P is successful on a given step is at least 3(#)' and so the probability that

it is unsuccessful in 5n2 - 1 steps is at most (t - -z-\s""-r I e-n. The lemma follows by

summing failure probabilities over all processors and moduli of 4w. n

Lemma 7 Suppose that the protocol is run with a sequence of processor start/stop tintes

in which no processors start or stop between steps r and r * Wn3. If all processors sel

sync-stage : POLLING with clock = 0 just before step r then with probability at least | -
147ra"-"ito all processors sel state = NORMAL and, clock = 0 just before step r * I'I/r23.

proof: Say a sequence of n2f2 steps is bad,for processor P if P does not have a successful

transmission on any step in the sequence. Then the probability that a given processor P is

the first to set sync-stage = JAMMING is at most the probability that it has a bad sequence

of n2f2 steps, assuming all other processols still have sync-stage: POLLING' This is at

most the probability that it either doesn't send, or is blocked on each step of the sequence,

which is
| 1 r /t\Y"12 (- 21n2lz

L' -#-#(;)l'- =('- #) <"-n/'lo

The lemma follows from summing over all steps (actually this overcounts the number of

sequences of n2 f2 steps) and all processors. tr

Lemma 8 Suppose that the protocol is run with o sequence of processor start/stop ti'mes

in which no processor starts or stops between steps t and t * 13n7. If the sy.stem is in a

synchronizi,ng state just before step t, then with probability at least L -2Wnae-nlro , there is a

ti in the *ng" {t +'L2n7 , . . .,t + il"r1 such that it is in the starting state just before step tt '

Proof: The lemma follows from Lemmas 41 5r 6 and 7. tr

Lemmas 9 to 14 outline the analysis of the robustness of the synchronization phase'

Lemma g shows that no matter what state the system is in (i.e., possibly normal, possibly

in the middle of a synchronization), if some processor starts a synchronization (possibly

because it just started), then within Wf 2 steps, every processor will be in an early part

of the synchronization phase. Then Lemma 10 shows that with high probability, within a

reasonable amount of time, all processors will be beyond the stages where they would jam

the channel, and furthermore, there is a low probability of any going back to those stages

13

(i.e., a low probability of any synchronization starting). Finally, Lemma 11 shows that soon

all processors will be in the polling stage. At this point, as shown in Lemma 12, they will
either all proceed into the normal state, or if a synchronization is started, they will all detect
it and with high probability proceed into a good state as in Lemma B.

Note that these lemmas require the assumption that no processors start or stop. This
is because they are used for showing that the system returns to a normal state from any

situation, even from a bad situation such as a processor just having started in the middle
of a synchronization phase. If another processor starts before the system returns to normal,
then we would again use these lemmas to show that the system will return to normal within
a reasonable amount of time after that processor started.

Lemma 9 If the protocol is run and some processor sels sync-stage = JAMMING just before

step t, and that processor does not stop forWf 2 steps, then there is at' in the ranget,...,tt
(W12) such that just before steptt, no processor hos state = NORMAL, and euerg processor

that has sync-stage = POLLING hcs clock SW12.

Proof: Bvery processor P that has state : NORMAL or sync-stage : POLLING just

before step t will detect the channel being jammed and set state = SYNCHRONIZING and

sync-stage:JAMMING justbeforesomestepintheranget*1,...,t*(W12). TheLemma

follows.

Lemma IO Suppose that the protocol is run with a sequence of processor start/stop times

in which no processor starts or stops between steps t and t * SnW. If, just before step t,

no processor has state = NORMAL and euery processor uith sync-stage = POLLING has

clock (Wf2, then, with probability at least 1- |Wnze-nlro, there is a tt in the range

t,. . .,t * 5nW such that just before step tt , each processor has state = SYNCHRONIZING
with sync-stage sel to SETTING-CLOCK, COPYING-CLOCK, WAITING, or POLLING.

Furthermore, if a processor has sync-stage = POLLING, it has clock (SnW *Wl2 and

either it has clock (n2 f 2, or it has had a success in the last n2 f2 steps.

Proof: Say a processor is calm at a given step if it has state = SYNCHRONIZING and

sync-stage set to SETTING-CLOCK, COPYING-CLOCK, WAITING, or POLLING and if
sync-stage = POLLING, then its clock is at most Wl2+|nW. Note that each processor

is uncalm for at most 4W steps in tr...,t*\nW, so there is a sequence of W steps in

t,. . . ,t * 1nW in which every processor is calm. Let t' be the random variable denoting the

(r'/Z f l)st step in this sequence.

Sry a sequence of n2f2steps is bad,for aprocessor P if P has sync-stage = POLLING just

before every step in the ,"qo"n.", and all of its transmissions during the sequence are blocked

by other calm processors. The probability that a processor with sync-stage = POLLING adds

a failure to .t on a given step, either due to not transmitting or due to being blocked by a calm

processor, is at most L - Ll$n) + (t/(32))(1/3) = I - 2lQn). Thus, the probability that a

girr"o ,"qrr"nce of n2 f 2 stepsis bad for a given. processor is at most-(t - Zl@n))"2 /2 < "-n/to
.

Thor, with probability at least 1 - 5Wn2e-"/1o, no sequence of n2 f 2 steps in tr. . .,,t * \nW
is bad for any processor. In particular, the sequence of n2 f2 steps preceding t' is not bad

for any processor, so any processor that has syncJtage = POLLING just before step t' with

clock > n2 f2has a success in the sequence of. n2 f 2 steps preceding t/. tr

TE

Lemma ll Suppose that the protocol is run with a sequence of processor start/stop times in

whiclt no processor starts or stops between steps t and t l SnW * (Wl2) * 20Wn2 ' IJ sonte

processor sefs syncstage = JAMMING just before step t then with probabilitE at least | *

2IWrt"-.lto, ihere is at, in the ranget,...,t*5nW +(W12)*20Wn2 such that just before

step tt , each processor has sync-stage : POLLING '

proof: We know by Lemmas 9 and 10 that, with probability at least 1-bWn2e-'l10, there

is a r in the range t,...,t *
'nw

+ (wl2), such that just before step r, each processor has

state = SYNCHRONIZING and sync-stage set to SETTING-CLOCK, COPYING-CLOCK'

WAITING, or POLLING. Furthermore, if a processor has sync-stage = POLLING, it has a

clock S SnW *W12. and either it has clock S n2f2,or it has had a successful poll in the

last n2/2 polls.
Note now that unless a processor sets sync-stage = JAMMING in the next 20IAn2 steps,

there will be a step l/ such that each plocessor has sync-sta$e = POLLING' But to set

sync-stage : JAMMING, a processor with sync-stage : POLLING must be unsuccessful in

all transmission attempts during some n2 f 2 consecutive steps' For a single plocessor and

" ,i"Sf" set of n2 f 2 consecutive steps, the probability of this is at most
"-n/ro

(as in thc

proof"of t"m-u Z). For all processors and all possible sets of n2f2 consecutive steps itr

;,. . .,r * 20Wn2, ihi, probubility is bounded by 2yWn3e-nllo. The Lemma follows' tr

Lemma 'J-2 Suppose that the protocol is run with a sequence of processor
-start/stop

tintes

in which no processor starts or stops between steps t and t + Ian3 + 13n7. If the sy.stent

is in a state in which euery processor has state = N}RMAL or sync-stage = POLLING

just before step t then, with probability at least 7 - 2Wnae-nlto, there is a tt in the range
"r,

. . . ,i + Wn{ + lZnT such tiat the system is i,n a normal state just before step tt '

Proof: If no processor sets sync-stage: JAMMING during steps {t, ...,t*Wn3 - t}
then the system reaches a normal state before step t +Wn3'Otherwise, suppose that some

processor sets sync-stage = JAMMING just before step f/' I t * w n3 - 1. By Lemma B, with

probability rt iuurtl])1a7n+u'tro the system will enter a starting state by step f" * r3n7 '

tr

Observatio n 13 Suppose that the protocol is run uith a sequence of processor start/stop

times in which no p*""rror starts betueen steps t and t+2IW n2 -1. Suppose that no processor

sefs sync-stage = JAMMING d,uri,ng stepst,...,t*2LWn2 -L. Then euery processor has

state : NORMAL or syncrtage = POLLING just before step t * 2LWn2.

Lemma L4 Suppose that the protocol is r:un uith a sequence of processor start/stop times in

which no proces1or starts or stops between steps t.and t + n8. Giaen any system state just

before step t, w;th probabitity at least L -\Wnai-"/Lo, there is a tt in the ftrnge {t,' ' ', t + n8}

such that the system is in a normal state iust before step t''

Proof: The Iemma follows from Lemma 12, Observation 13 and Lemma 1l-' tr

Lemma lb through Theorem 19 show that if the protocol is run with a {);}r5;3"-
dominated packet arrivals distribution then the system is usually in a good state, (i'e'' syn-

chronized and running the P.9' protocol), and thus the expected time that packets wait in

the buffer is constant.

15

Lemma L5 Suppose that the protocol is run with a sequence of processor start/stop times

in which no processor starts or stops during stepst,...,t*n31f4-l. Giuen any system

state just before step t, with y2robability at least I - 6Wnae-nl1o, there is a tt in the range

{t,... ,t + nsr f4} such that the system is in a starting state just before step tt.

Proof: By Lemma 14, no matter what state the system is in at step l, rvith proba-

bility at least 1 - SWnae-nllo it *ill be in a normal state within n8 steps. Then the
probability that it doesn't enter a synchronizing state within n31/B steps is at most (1 -
n-3o)(n31 /8)-(""n /e) <

"-nlro.
Then by Lemma B, once it enters a synchronizing state, with

probability l-2Wnae-nlro il will be in a starting state within 1327 steps. The lemma follows

directly from summing failure probabilittes.

Lemma LG Suqtpose that the protocol is run with a sequence of processor start/stop times

in which no processor starts or stops between steps t and t + n31 - 2n8. Giuen any system

state just before step t, with probabitity at least I - 4Wnae-"11o there is a tt in the range

{t,. ..,t + n3r - 2nt} such that the sgstem is in a synchronizing state just before step tt.

Proof: From Lemma 14, with probability at least I - SWnae-nl7o, the system rvill be in

a normal state at some time steps in {t,. . . t + n8}. Once the system is in a normal state, on

every step excepr one out of every n2 steps, with probability at least n-so a processor will
switch to a synchronizing s^tate.^The probability of this not happening in the next n3r -3n8
steps is at most (1- nao;{"", -3n6-n2s) S s-nlz. The lemma follows from summing the failure

probabilities. tr

Lemma L7 Let r be a non-negatiue integer less than n4o - n7 . Suppose that the protocol is

run with o {);}r<,<" -dominated arriual distribution and a sequence of processor start/stop
times in which ,i pror"ttor starts or stops between steps t and t + r. If the system is in a

starting state just before step t then with probabitity at least I - (13.5)n-22, the system is in
a good state just before step t { r.

Proof: Consider the following experiment in Figure 1, in which the protocol is started

in a starting state just before step t and run according to the experiment' If none of

{FAILI,..., FAIL4} occurs then the system is in a good state just before step t*r. As in the

proof of Lemma 6, the probabiJity that a given element of ,L is "success" is at \east 2f (9n),

so the probability that FAIL1 occurs is at most rne-nle. By Lemma 1-, and the fact that at

most nio fW starting states occur in the experiment (so PSl is started at most n4o lW times),

the probability that FAIL2 occuls is at most (nao lW)n-6o - n-24. In the experiment, the

clocks of the processors never reach nao . $. the state is normal, all processors have the same

value of c, every processor with ll,l >n212 has a success in the \ast n2f2 elements of -t, and

every processor has no packet that has waited more than n7 f 2 steps,, then the probability

that a given processor sets state = SYNCHRONIZING on a given step is at most n-il. Thus,

the probability that FAILS occurs is at most L3n-22. By Lemma 8, the probabi.lity of failing

to successfully restart after a given syirchronization state is at most 2147na"-n/10. Hence, the

probability of FAIL4 occurring is at most 2r147na"-n/to- tr

Lemma L8 Suppose that the protocol is run wi,th a {};}rS;S"-dominated arriual distribution

and a sequence of processor start/stop times in uhi,ch no processor starts or stops between

16

i<-t
resyncing *- false
Do forever

Simulate a step of the Protocol
If (resyncing : false)

If some packet has rvaited more than nz f 2
"teps

F'AIL2
If some processor with ll,l > n212 has no success in the last n2f2 elements of -L

FAILl
If the new state of the system is synchronizing

If(i>ttr-13?27) FAIL3
EIse

resyncing <- true
j *o

Else
If (the new state of the system is a starting state)

resyncing +- false
j*jtr
If ((j > L3n7) and (resyncittg - true)) PAIL4

i:i*1
If(i>t+r)succtrED

Figure 1: Experiment for proof of Lemma 17

t7

stepst andt+7. Giuen any system state just before stept, with probability at leastl-l4n-22,
the system is in a good state just before step t 1- T.

Proof: The lemma follows from Lemma 16. Lemma B, and Lemma 17. !

Theorem 19 Supqtose that the protocol is run with a {);}r<;S"-dominated arriual distribu-
tion and a sequence of processor start/stop times in which no processors start or stop during
stepsft-7,...,t*n7). Giuen any system state just before stept-7, suppose that a packet

is generated at step t. The erpected time that the packet spends in the buffer is O(1).

Proof: Let X be the time that the packet spends in the buffer and let G be the event

that the state just before step f is good and has clock less than T. Note that X is ahvays

at most n7. Thus, EtX] < nz Vr[G) + trlxlc]. Now, Pr[G] is at most the probability that
the state just before step f is not good plus the probability that the state just before step I
has clock at least ?. By Lemma 15, the latter probability is at most 61,ynar-n110, alld,
by Lemma 18, the former probability is at most l4n-22. Thus, E[X] < O(1) + E[X|G]'
Then E[XlG) = Dr, EIXlcr,] Pr[G1'lG], where G1, is the event that the good state just before

step I has clock tt < T. Let A1, be the event that a packet p' is born in step f/ of the P5'
protocol. Let B be the event that prior to that step t/ (in the PSl protocol), no packet

has waited more than z7 steps, and at step t/ no packet in the buffer has waited more

that n7 f 2 steps. Let Y be the random variable denoting the number of steps required to

transmit p' (i^ PSI). Then D[XlGt,] < trlYlAt, A B]. (It would be equal except tliat in our

protocol, it is possible to be transferred to the queue before it is successfully sent from the

buffer.) so by Lemma 3, tr[xlcr,] < trlYlAt, A Bl < ElYlAt,)l P{BlAyl. Then by Lemma 2,

tr[Xlct,] < 2E[YlAt,J S O1t; for all t' < T. Then E[XIG) = O(I). o

Lemma 20 through Theorem 33 show that the probability of a packet entering a queue is

low, the probability of a queue being very full is low, and the rate at which the packets are

sent from the queue is high enough so that the expected time any given packet spends in the

queue is low. (Note that most packets will spend no time in the queue.)

Lemma 2O Suppose that the systern state just before step t is giuen in a particular run of the

protocol. With probability at leastI-6Wnae-"lro, there is att i'n the range {t,...,t+n32}
such that the systern is in a starting state iust before step tt.

Proof: Divide the interval of n32 steps into subintervals of n3rf 4 steps each. Since at

most n processors can start or stop during the interval, and those that start continue for the

remainder of the interval. there must be a subinterval in which no processors start or stop.

Then use Lemma l-5.

Lemma 2L Suppose that the protocol is run with a {tr;}r<;S'-dominated ar'riual distribution

and a giuen allowed sequence of processor start/stop times in which no processor starts or

stops between stepst-T andt+n712. Giuen any system state justbefore stept-7, suppose

that a packet R arr'fues at processor P at step t. The probabi,lity that R enters the queue is

at most I6n-22.

Proof: Let X be the event that R enters the queue. Let G be the event that just before

step l, the state is good and has clock less than f. Then by Lemma 18 and Lemma 15,

18

pr[x] t 1pr[G] + pr[xlc] I r4n-22 * TWnae-nlro 1 Pr[XlG]. Note that Pr[XlG] :
yi erlr1c1,lprlG7,lGl, where G1, \s the event that the good state just before step I has

clock t,. Consider the experiment in Figure 2. This experiment models the system beginning

at a start state, and going for f'+ ,7 12 < T + r'12 steps, but assuming that there are no

arbitrary synchronizations, and that there is a packet I? generated at P at clock l'' The

experiment fails at step i =ttif the system enters a state which is not good at that point. It
failsatastepi<ttortt<i<t'+n7 12ifthesystemdoesanon-arbitrarysyncirronization
at that point. It fails at step i = tt + n7 12 if the packet ,R has not been sent successfully.

Let A be the event that FAIL1 occurs) B be the event that FAIL2 occurs, C be the event that

FAIL3 occurs, and ,9 be the event that the experiment does not fail during steps 1, ...,t'.
The probability that -R is still in the buffer after step t + nt 12 f 1, or the real system syti-

chronizes before step t +n7 l2f 1, conditioned on the fact that the state just before step I is

good and has clock f/ and on the fact that packet l? is generated at P at step l', is at rnost

th" ru- of (1) Pr[c | ^t], (2) Pr[A | 5], (3) Pr[B | S],_and (a) the probabilitv that there

is an arbitrary synchronization during steps l, '..,t * rz 12 - 1, Probability () is at most

n(n7 lZ)(n-3o) - n-2212. Now note that Pr[A | ^9]
< Pr[A]/Pr[.9]. By the proof of Lemma 17

(using Lemma 2),

Pr[^9]) 7 - [nao(ne-n/s) +rr-uo] 2]'
and

Pr[A] (n4o(ne-nle) +tr-uo.

Thus Pr[A | ,9] < 2n-6o.
Note also that Pr[B ls] < P{BllPr[^9]. By Lemma 2,Pr[B) S n-60. (Ttlis can onlv be

decreased by a queue step causing a synchronization.) Then Pr[B | 5] < ,n-uo:
Finally, pr[C lS] = 0, since all packets at step l/ have waited for at most nr f2 steps' and

the experiment stops at step { + n7 f 2. Thus, Pr[XlG] < ,-2', which completes the proof. n

Lemma 22 Let i be an integer inl}, . . .,I41. Suppose that the protocol is run with a {);}tS;<'-
dominated arriual distribution and, a sequence of processor start/stop times in which no pro-

cessors start or stop d,uring steps tr...,t * nl4+i - l. If the system is in a starting state just

before step t then the probabili,ty that the system enters a synchronizing state during steps

t, . . . ,t + n14+i - 1 is at most 2n-15*i .

proof: The probability that an arbitrary synchronization occurs during steps l, ' ' ',t *
nr4+; - 1 is at most n. z-3o . nr4+i - n-15+r. Following the proof of Lemma 17, we see

that the probability that a non-arbitrary synchronization occurs during these steps is at
---t

"l*'+ nrs+i"Ln/s. (The probability that a packet waits in a buffer more than n7 steps

is at most n-6o by Lemma L and the probability that some processor gets n2 failures on 't is
at most nr4+i . n-. e-nls.\ D

Lemma 28 Suppose that the protocol is run wi,th a {}i}rS;S*- dorninated aniual d,istribution

and a sequence of processor stirt/stop times in which no pro"essor starts or stops during the

interaal [t,..., t-q- nzz - 1]. If the system is in a starting state just before step t then the

probabili,iy that either some step in the interual is an out-of-sync step or that the sys.tem is in

a starting state just before more than nz steps in the interval is at rnostg147nrr"-nlro.

19

i,-0
Do forever

Ifi=tt
Add a packet .R to processor P
Simulate a step of the protocol (except for the arbitrary synchronizations)
If some packet has been in a buffer more than n7 f 2 steps

FAILl
If some processor with lIl > n212 has no success in the last n2f2 elements of -t

FAILl
Else

Simulate a step of the protocol (except for the arbitrary synchronizations)
If (i < f/) and some packet has waited more than n 7 steps

FAILl
If (t > t/) and some packet has waited more than n7 steps

FAIL3
If some processor with lll > n2 has no success in the last n2 elements of .L

FAILl
i:i*1
If(i>tt+n712)

If packet Q has been sent, SUCCEED
Else FAIL2

Figure 2: Experiment for proof of Lemma 21

20

Proof: If thesystemisinastartingstatez > n7 times, thenatleast r- n7f2mtst

be followed by fewer than 2n26 steps before the next synchronization phase. By Lemna 22,

the probability of fewer than 2n26 steps occurring between a starting state and the next

synchronization phases is at most 2n-3 . Thus, the probability of this happening after at least

r - n7 f 2of the r starting states is at most 2r(2n-3)x-"'l' *hirh is at most 2-"'lz.
If the system is in a starting state just before at most n7 steps in the interval, titen the

only time that the system could have an out-of-sync step during the interval is during at most

n7 -I subintervals which start with a synchronizing state and end in a starting state. By the

proof of Lemma B, the probability that a given subinterval contains an out-of-sync step is at

most 2Wn4e-nlro. Thus, the probability that an out-of-sync step occurs in the interva.l is at

most n7 (2Wr+"-nlro1 !

Lemma 24 Suppose that the protocol is run with a {};}r<;<'-dominated arriual distribution,

a giuen allowed, sequence of processor start/stop times after step t, and a giuen system state

just before step t. Diuid,e the interual starting at step t into blocks of na steps. The ltrob'

ability that the interual has more than 27n77 blocks containing non-normal steps is at m'ost

7147n12"-n/ro.

proof: Let ^9 contain the first step of the interval, and each step during the interval in

which a processor starts or stops. Then l5l 12nI1. Let 5/ contain 5 plus for each step s € 5,

all steps after s until the system returns to a normal state. By Lemma 14, with probability at

least i- (2n+I)(3wnt"-"1to1,5'can be covered by 2n*1 sequences of at most n8 steps eacir'

Then the set S/ partitions the other steps in the interval into at most 2n f 1 subintervals'

such that the state is normal just before each subinterval, and no processors start or stop

during any subinterval. We perform the following analysis for each of these subintervals'

By Lemma 8, once the system enters a synchronizing state, with probability at least

t - iwnae-n/ro i1 will be in a starting state within 13n7 steps. Once the system is in

a starting state, by Lemma 23 with prolubitity at least I - 3Wnrt"-nlto, it will enter a

synchronizing stateat most n7 +Ltimes, and each synchronizing phase will last at most 13n7

steps.
In total, the probability of not performing as stated above is at most

(2n * L)(3Wnae-n/ro I2Wnae-"/ro + \Wn""-n/to1 a ,*ntz"-"/to '

Finally, the set ,5'can intersect at most (2n*L)((n8lna) { 1) blocks of size na' Then, in each

of the 2n * I subintervals of steps between those of ,9', there are at most nz * 2 synchronizing

phases, each of which can intersect at most ((13n71n4) * 1) blocks of size na' Al1 together'

rt most 27nrr blocks of size za will contain non-normal steps' o

Corollary 25 Let x be an integer in the range0 (c < n2s -54n1r . Suppose that the protocol

is run ulih a {};}rS;S"-dominated, arriual distribution, a gi,uen alloued sequence of processor

start/stop times o\t"'i tt"p t, and a gi,uen system state just before step t. Focus on a particular

non-ernpty queue at step t. The probability that the queue remains non-empty for the nett

nn4 + 5-4irs- steps but fiwer than x packets arv delircred from it during this period is at most

7147nr2
"-n/ro

.

27

Proof: Divide the next rn4 + 54nrs (n33 steps into blocks of size na. By Lemma 24,

with probability at least I -7Wnr2e-'lro,at most 54n11 of these blocks will either contain a
non-normal step, or precede a block which contains a non-normal step. The corollary follows
by noting that if block i contains all normal steps and no synchronization is started in block
i * 1, then a packet must have been sent from the queue during block i. a

Lemma 26 Suppose that the protocol is run with a {);}r<rS,-dominated arriual distribution,
a giuen allowed sequence of processor start/stop times after step t, and a giuen system state
just before step t. Then the probability that the interual starting at t is light for a giuen

processor is at least | - 8Wnr2e-n/ro.

Proof: As in the proof of Lemma 24, with probability at least l-7Wnl2e-nlro, th.e non-

normal steps could be covered by at most (2n + I) t (2n * 1)(n7 * 2) subintervals of at most

n8 steps each, and each of the subintervals would contribute at most n8 + n7 packets to the

queue (including the at most n7 that could be transferred from the processor's buffer). If this

were the case, at most 3n16 packets would be placed in the queue during the interval. tr

Lemma 27 Suppose that the protocol is run with a {\;}t<;<"-dominated arriual distribution,

a giuen allowed sequence of processor start/stop times after step t, and a giuen system state

just before step t. The probability that the interual starting at t is productiue for a giuen

processor is at least I - 7Wn72e-nllo.

Proof: Follows from Corollarv 25.

Lemma 28 Suppose that the protocol is run with a {);}t<;S,-dominated arriual d'istribution

and, a giuen allowed sequence of processor start/stop times before step t. The probability that

*or" ihon nrz + i(rtt + n7) packets are in a queue just before step t is at most
"-;nl3o for

i)_ I and at most
"-n/3o for i: 0.

Proof: For every non-negative integer j, we will refer to the interval lt - (i 1 t)n33 *
1, . . ., t - jn"tl as "interval 7". Choose k such that the queue was empty just before some

step in interval &, but was not empty just before any steps in intervals 0-(k - 1). We say

that interval j is *bad' if it is not both productive and light for the processor. The size of

the queue increases by at most nzz 1 n7 during any interval. If interval & is not bad, then the

queue size increases by at most n17 during interval ,t. If interval j is not bad for j < k, then

the queue size decreases by at Ieast n2s f 4 - n17 during interval ,t. Thus, if b of intervals 0-k

are bad, then the size of the queue just before step t is at most

(,t + r)(n33 + n7) -(e + 1 - 6)(r,tt + nr + n2s 14 - n") + nL7.

This quantity is at most n17 +i(n"" 1n7) unlessb> (i12)+(kl@na)). Thus, the probability

that the queue has more than n17 + f(rtt + n7) packets just before step I is at most the

probability that for some non-negative integer rt, more than (i,12) + (kl@na)) of intervals

0-k are bad. By Lemmas 26 and 27, the probability that a given interval is bad is at most

L6Wnr2e-nlro. Let X = L6Wnr2e-nlro. Then, for i 2 1, the failure probability is at most

(,,n,,,+r*ktte*\l*,)y|(;/z)+(*/(sn1))l+r<D
&>0

22

IQA "nn
X 7(

I z) + (k I @"*))

t>0

(16 ena x 1i
l' D,ge "nox)

r'l (s"r ;

k>0

(16ena X 1i
124"4 ! 1 tO"nt-Y ;t

e>0

z(sn4)(toe ,n X)'l'

"-inl3o
.

s

For i : 0, this probability is at most

o

Lemma 29 Suppose that the protocol is run with a {);}t<;<"-dominated arriual d'istribution

and. a g,iuen allowed, sequence of processor start/stop times ifter step t * n32 . Suppose that no

processors start or stop during steps [t - T, . . .,t + n32] and that the system state just before
-stept-T

is giuen. The probabitity that an out-of-sync step occurs before a starting step aftert

is at most 4147rrL"-nlro.

proof: By Lemma 15, the probability of not having a start state just before any step in the

subinterval ir-f ,...,t-f lilis at most 6147ra"-n/ro. Then by Lemma 23,-the probability

of having an out-of-synch step before step t + n32 is at most g147ntL"-n/ro. Finally, by

Lemma i5, th" probrbility of not having a start state in the subinterval [t,...,t * T12]is at

most 6Wnn"-n/to. The Lemma follows by summing the failure probabilities. o

Lemma BO Suppose that the protocol i,s run with a {l;}tS;S"- domi'nated' arriual d'istribution,

a g,iaen allowed sequence of processor start/stop times after step t, and a giuen system state

just before step t in uhich queue Q contai'ns at least x packets. Then the etpected tirne until
-at

least x paciets haue been sent from Q is O(tna + 7115)'

proof: Our first case is when c < n"elz.Let A be the event that at least c packets are

sent in steps l, . ..,t * xn| + 54nL{- 1. We refer to the interval lt 1 rna *,54nr5 + (k -
l)rt.,...,i+ rn4 +54nts 1kn33 - L] as "interval k". Let C* be theevent that interval k

is productive. Let Erbe the expected ti*u to send the c packets. Using Corollary 25 and

(r \ ;g Lrl(a"{)J +r

\fkl(Sn')1 + t/

lQa"nn x)Lrl(8'n)l +r

k>o

(1.6 en4 X) lQa "nn
x; Lrl (s'a).1

&>0

z(tn4)Qaen4x)

"-n/3o
.

fr>0

23

Lemma 27,

E,
A>1 1<i<A-1

A>1

= o(rna + ,tt).

Our second and last case is when r > nze 12.Let r : l2rln2sl. Note that after r productive

intervals, at least r packets will be sent. Let D6 be the event that intervals 1-,k don't coutain

at least r productive intervals, but that intervals 1-(ft + 1) do contain r productive intervals.

E,
k2,

k)2r

'u'
k>_2r

k)2r

= o(n33r)

= o(rna).

E

Theorem 3l Suppose that the protocol is run with a {l;}r<;<"-dominated arciual distribu-

tion, a giuen allowed sequence of processor start/stop times in which no proces.sors start or

stop during steps[t-n33,...,1+n33]. Suppose that a packet is generated at stept' The

erpected time that the ytacket spends in the queue fs O(1).

Proof: Let hbetheinterval [t-(.n33 f 1,...,t-(t-l)rtt].Let Asbetheeventthatthe
sizeofthequeueisatmostnlT-Ijustbeforestept-n33{1,and,forf)1, letA;bethe
event that the size of the queue just before step t -n33 + 1 is in the range [nt'+(;-f)(233*
nz),nr7 +i(rt. +n7)- 1]. Let B the event that interval 11 is light. Let C be the event that

the packet enters the queue. Let t'be the random variable denoting the smallest integer such

that t/) t and the state of the system just before step f is a starting state. Let ttt be the

random variable denoting the smallest integer such that ttt > t and step f// is out-of-sync'

Let F be the event that t' < t". Let X be the random variable denoting the amount of time

that the packet spends in the queue. All probabilities in this proof will be conditioned on the

state of the fact that no processors start or stop during steps [t - tu33 r. . . rt + n33f.

We start by computing D>, E(X I A; A C)Pr(A; A C). By Lemma 28, Pr(A;) <

"-(m.x{i-1,r})n/so
so pr(A; n CfS

"-(max{i-r,r})n/zo.
By Lemma 30,, E(X I A; n C) is at

most
E(t' - t I A; AC) + O(n4(n77 +(i + 1)(n33 + "t))).

(Since l.; holds, there are at most nLr + i(n33 + z7) packets in the queue before interval -I1

and at most n33 | n7 get added during interval .I1.) By Lemma 20, E(tt - t I A; A C) is

') (* 1 ,)u*
r)((2e)TWnr2e

nt2
"-n/101k-r 1

-n/toik-r1

at most D;>rn32(6147r4"-nlro)i-t : O(rt'). Thus, E(X I Ai AC) = (i+ 1)O(n3?)' Thus,

D;>, E(X I A; A C)PI(A;A C) < D;>r "-('"x{t-1'1})n/30(i
+ t)O(n37) = O(1)'

- -W"
now comput"e E(X I lsnB nClPr(AsnBnC). BV Lemma 26, the probabilitv of B is at

most 8Wn rz"-n?to,so f r(AsAB AC) < girynrz"-n110. A, above, E(X I AoAB AC) = O(t,3t),

so E(x I Ao A E n C)Pr(As nFn C) ! (8wnrz"-n/ro)Q(tt7) = o(1).
Next, we compute E(X I Ao AFA C) Pr(As nFn C). .By Lemma 29, the probability of 1i

is at most 4147fi{"-n110,'so Pr(Ao nFn C) < aWntle-nf1'o. As above, E(X I Ao nF A C) is

at most E(t,-tlAonFn C)+O(n37). Since C occurs, thesystemis in asynchronizatiou

state just before some state in [1,. ..,t * n7]. Since F occurs, there is an out-of-s5'nc step in

It, . . .,t + I4n7l. By Lemma 20, the expected time from this out-of-sync step until a starting

stateoccurs is at most f;>, n32(6wnae-"1rc1j-r = O('32)' Thus' E(t',-tl AonFnC; =

O(rrr) and E(X I Aon'f nC1 = O(n37). Thus, E(X I AonF AC)Pr(As^F^C) <

(4W ?tt
"-"/to)O(n37) = O(1).

Finally, we compute E(X | 1o A B A FA C)Pr(As A B A F A C). By Lemma 21, the

probability of C is at mosi I6n-22, so Pr(As A B A F AC) 316r-zz' We norv wish to

tound E(X I AoAB AFAC). Since As and B hold, the size of the queue just before

step f is at most 2n17. Suppose that l/ > t + 2n27 + 13n7. Then, since ,1l holds, no step

i1 i,.. .,t12n21 *IJn7 i, o,rt-ot-rync. Suppose first that no step in t,...,tl2n2r tl3rtz
is out-of-sync and that the state is normal before each step in f

'
. ' . rt ! 2n2r. Then all of

the clocks will be the same, so at least 2nrz processors will be sent from the queue during

this period. Suppose second that no step in t,.. .,t I 2n2r * 73nr is out-of-sync, but that

the state is not normal just before some step in the range t, . . -,t * 2n2r . Then siuce no

state in t,...,t*2n27 itgn'is out-of-sync,tt 1t*2n2r *13n7' Finally, suppose that

tt < t+2n21].llnfl. By Lemma 30, E(X I AsnBnCnF) is a_tmost t/-l*O(n4'2n\7) = O(t").
Th,rr, E(XlAoAB AFAc)Pr(AsABA FAc)116n-22o("") = o(1)' !

Observation 82 When the protocol is run, euery packet spends at most n7 steps in the buffer'

Theorem 33 Suppose that the protocol is run with a {A;}r<;<,,-dominated arriual distribu-

tion, a gi,uen allowed, sequence of processor start/stop times. Suppot" that a packet is generated

at stept. Then the expected time that the packet spends in the queue fs O(n37)'

proof: Let X be the random variable denoting the size of the queue just before step t'

By Lemma 28, for i > L, the probabitity ttut i > nt' + i(ttt i "') is at-most ,-inl3o'

Girreo a particular value of X, Lemma 30 shows that the expected time to send the packet is

o(xna + n15). Thus, the overall expected time to send the packet is

o(rn . (n, + n3s + n71 + nt51+ ! O1z41 nt' + i(rtt + n\) 1 nts1"-(-r)n/so - o(t tt).

i>2
D

4 Results

Inthissection,weneedthefollowingdefinitions. Foranyk, let[k] denotetheset{0,"',k}'
LetV be the set of processors. For u € V, let Tube the set of steps in which processor o is

running.

25

Theorem 34 Suppose that the protocol is run with a {),}r<;<"-independent arriual distri-
bution and a giuen sequence of processor start/stop times in which each processor runs for at
least 8n7r steps euery time it starts. ThenElWsuS] : O(1).

Proof: First note that the sequence of processor start/stop times is allowed. Let 'I be the
setofstepswithinn33stepsofthetimethataprocessorstartsorstops. Lemma35provesthat
if the {);}1<;<,r-independent arrival distribution is conditioned on having at most m packets
arrive by time l, the resulting arrival distribution is {);}1a;1,.-dominated. Therefore, the
system described in the statement of the theorem satisfies the conditions of Lemma 36 with
(from Theorem 19 and Theorem 31) C' = O(1) and (from Theorem 33 and Observation 32)
C : O(n37). From the condition given in the statement of this theorem, we can see that

.s = mg,rils;r 5## <,-37 .

(The worst case for 5 is when a processor runs for 8n7r + 6(" - 1)rrtt + 2n33 steps, and the
other n - 1 processors have [ending,starting,ending,starting] times

[2in33,2("_ 1)rrtt+2in33,2(n-r)n33+2in33*8n77,4("_ l)rrtt+2in33+Srrtt],

(1 < i { n-1). Then l?l = 8("-1)rtt -12n33, including the n33 steps just after the processor

starts and the n33 steps just before the processor stops.) The theorem then follorvs directly
from Lemma 36. (Note that C and C' are actually functions of), but) is a constant.) c

Lemma 35 Consider the distribution obtained from the {),}r<;<"-independent arriuals dis-

tribution by adding the condition that at most rrt packets arriue by step t. The resulting arriual
distribution fs {.\;}11;a n- dominated.

Proof:
Let Au1, denote the probability that a message arrives at processor u at time l/ (under

the {A;}1a;<,-independent arrivals distribution). Let -E be any event concerning the arrival
of messages at steps other than t/ or at processors other than u. Let C be the event that at

mostrnmessagesarriveduringstepsl,...,f. WewishtoshowthatPr(Aul, lCAE) <4,. If
t/ > t then Pr(Au,s,lC AE) = A, bytheindependence of the {};}r<,S,-independent arrivals

distribution, so suppose that tt < t. Let Et denote the part of event E concerning arrivals

at steps I,...,t. By the independence of the {};}r<;<"-independent arrivals distribution,
Pr(Arp'ICAE)=Pr(Ao,t,lCAE').LetWbethesetcontainingeverypossiblesequence
of message arrivals during steps 1,...,1with the arrival at processor o and step l/ omitted.
Let Wt be the set of elements of l7 which satisfy E' and have fewer than rn arrivals and let

W't be the set of elements of I,7 which satisfy Et and have exactly rn arrivals.

Pr(A,,s, lC AE') = ! r4a",,, lw AC A Et)Pr(u I C AE')
u€W

= | Pr1A,,r, ltrA C)Pr(wlCAE')+ I Pr(Au,1,lwnC)Pr(trlC nE')
ueW' aaEW"

= ! Pr1A,,,, I u) Pr(tu I C A E')
ru€Wt

= l, t Pr(u.'lCAEt)
u€Wt

26

Lemma 36 Suppose that for euery rn and t a protocol running on n processors has the

property: for all processors u, if a packet P is generated at processor u at step t € T ancl

is ine of the fi,rst m packets generated, then the erpected time before packet P is sent is at

mostC,anrtifapac:ketPisgeneratedatprocessoruatstept€Tandisoneofthefirst
rn packets generated,, then the erpected, time before p"i*:t P is sent is at most ct' Then

ElWougl < 2(SC + C'), where.g : IrIaXo€v lim sup1r." {#fiffl

Proof: Recallthat) =Luev),,thatA,) 0forall a €V andthat WavE= lim-*- #tL' t't"'

where tr4/' is the delay of the ith packet generated in the system.

Now let A;.u.1be the event that the ith packet is generated at processor o at step l' Then

n

= t t)- elw, I A;,",rlPr(A;,,,r)Zr /J /-t
i-t t2O u€V

m

= t tf BlW lA,.,",,lPr(A;,,,1).LLZr
uev t€T! i=l

Let B*,r,1 be the event that one of the first rn packets is generated at processor o at step l'

Now, the properties of the protocol given in the lemma are equivalent to the follorving: for

any?J €V,m andl€?r,
m

t trtw; I A;,,,,1PI(A;,,,11 B*,,,t)
i=l

,TL

D elw, I A;,,,r)Pr(A;,u,1 1 B*,u,t)
i=1

Furthermore, since for i (mPr(A;,r,) - Pr(A;,r,1A B*,u,t) = Pr(A;'r,1 | B*,u,t)Pr(B^'''1)'

ln lfl

\- l.tur.r \- \- \- E[l,yd I A;,r,t)Pr(A;,r,1)LDLIITJ _ LLL'
i=l aev teT" i-_r]

= \- \- f u[fryr I A;,,,tlPr(A;,,,1 | B^,u,t) Pr(B-,,,1)LLL'
uev teT" i=l

trrr4,avsl : n
[#+." *n*,)ru [r,rr:, *n*,f =u#:5n *?trtl4.]

= t t Pr(8,n,u,1)lnlw;
uEV t€Tv d=1

/
s t (t Pr(B^,,,1)c*

u€Y \t€?nTu

m

DBlw,t
;-1

I A;,,,rfPr(A;,,,1 | B*,u,t)

\
t P{B^,u,)c'l .

t€TnT" /

Let u1 = Dv,eV),u,lTu, n [t]1, i.e. the expected number of packets generated in the system

through tir";1. note tlat'Pr(B*,r,1) aA, and for m 1u1, Pr(B*,r,1) S)'exp{-(21 -

27

m)2lQu1)\, by a Chernoff bound. Then for any T* C 7,,

I trlr-,,,,)
t€'l' t(T*,v6{2m t€T*,ut)2m

tQT*,v622m

t>0

t>0

u1 < 2mjl1 o

i{t:4<2nt

tl
'

OT,

x)

x)

Tr)

\rl7

T" n {t : u1 < 2m}l + O(1)) + C'(\,lT n'

T, n {t : u1 < 2m}l) + C'ilim r,rn 1 1 .1
rn+cD ttL

as follows.

< z*jl)

u1 < 2mjl (lT" n {t : u1 < 2m}l\
\wnF,nztdt)

.2*jl (lf nT" n {t : u1 < 2m}l\
\@)

u1 < 2m\l\ 'r- A"l?, fi {t : u1 < 2*}lzrda)?,, *
vt <z?jl\ (u,or,,o t .\,14 n {t: zt <
<2*]l /\,"-;= n'L

v, < z?\l\ /u- r,r- s- A,l?, i {t : 4 <

<2*jl ./ *-ooP ?.rG
* < zl"\l\ (r- ,,ro 4)
< Zmjl ./ \ *-o"^ m /
ut < 2m)l
< 2*jl

l"n

l"n

YCt

iut

{t,
rn

ut1
L

{t,
t:u1

{t'
t:v1

{t'
t:v1

{t'
t:u1
r{r:
t:v1
| [r]l

'll

Consequently,

1m
EIL'll.ug]

N=L

utv

ue v

We bound the factor multiplied by

1

Iimsup;t(),1?nT,n{t
m+@ ,to u€v

= limsup D-:[
!T"L

m+oo uev

: lim suP t
l'1"' n {t"i r

*** -./, n'L
UE Y

.. / lTnTon

/-. lT nT" n

= (*.*lir, lr nT"n
\u€v *'j5p -TJF

\o€v JjSP -r:r.,r.t

uev JjlP -tr"nT

= 2maxlin lr nTon
u€v

'1tJP
]?lm

= 25.

2m

2m

28

We bound the factor multiplied by C' as follows'

lim sup
m+6

lim sup
m+cx)

lim sup
ffl+ (x)

2.

References

[1] N. Abramson. The ALOHA system. In N. Abramson and F. Kuo, editors, ComprLter'

communication Networas. Prentice Hall, Englewood cliffs, New Jersey, 1973'

[2] D. Aldous. Ultimate instability of exponential back-off protocol for acknowledgement

based transmission control of random access communication channels. IEEE Trans' ort

Information Theory, IT-33(2) :21 9-223, 1987'

[3] J. Goodman, A. G. Greenberg, N. Madras, and P. March. Stability of binary exponeutial

backoff. J. Assoc. comput. Mach.,35(3):579*602, 1988. A preliminary version appeared

in STOC 85.

[a] J. Hnstad, T. Leighton, and B. Rogoff. Analysis of backoff protocols for multiple access

channels. Pre-print - a preliminary version appeared in STOC 87, 1993.

t5] F.P. Kelly. Stochastic models of computer communication systems' J' R' Statist' Soc'

B, 47 (3):379-395, 1985.

t6] R. Metcalfe and D. Boggs. Distributed packet switching for local computer networks'

Comm. ACM, 19:395-404, 1976.

[Z] M. paterson and A. Srinivasan. Contention resolution with bounded deiay. to appear in

Proc. 34th Symp. on Found. of Comp. Sci.' 1995'

lg] p. Raghavan and E. Upfal. Stochastic contention resolution with short delays. In Proc'

24th ACM Sy*p. on Theory of Computing' pages 229-237'1995'

\-
/J
u€V

\-/,
u€V
2m

ITL

I
m D (r,lt'n ?, n {t : u7 < 2*}l)

u€V

,\,17n e n tl : u1 <'2trtjl
T
\l.n^f+,,,2n.--/1ullull\L ut <\ LtttIl

= lim sup
m+Cr)

!

29

