
Lower Bounds for the Signature Size of Incremental Schemes

Marc Fischlin

Fachbereich Mathematik (AG 7.2)/Informatik
Johann Wolfgang Goethe-Universität Frankfurt am Main

Postfach 111932
60054 Frankfurt/Main, Germany

e-mail: marc@ mi.informatik.uni-frankfurt.de

URL: http://www.mi.informatik.uni-frankfurt.de/

October 8, 1997

Abstract

We show lower bounds for the signature size of incremental schemes which are secure
against substitution attacks and support single block replacement. We prove that for
documents of n blocks such schemes produce signatures of Ω(n1/(2+c)) bits for any con-
stant c > 0. For schemes accessing only a single block resp. a constant number of blocks
for each replacement this bound can be raised to Ω(n) resp. Ω(

√
n). Additionally, we

show that our technique yields a new lower bound for memory checkers.

1 Introduction

Incremental Cryptography. Suppose that you have a set of documents for which you
want to create signatures. Though the documents may only differ in a few positions, with
an ordinary signature scheme you usually have to sign each document from scratch. The
idea of incremental signature schemes as introduced by Bellare, Goldreich and Goldwasser
in [BGG94, BGG95] is that you sign one document M and quickly create the signatures for
the other documents from the signature for M and the difference between the documents.
More precisely, let M = M [1] · · ·M [n] denote a document of n blocks with signature S. Let
M ′ = replace(M, σ, i) be the document where we replace the ith block M [i] in M by σ. Then
an incremental scheme supporting the replace modification allows to produce a signature for
M ′ much faster from M, S, σ and i than it would take to compute a signature from scratch.

Substitution Attacks. The construction of incremental schemes introduces a new kind
of attack, so-called substitution attacks. Performing such an attack the adversary is allowed
to alter the document before update steps. For example, given a document/signature pair
(M,S) the adversary may tamper M to M∗ and then call the incremental algorithm to
replace a block. As we want the incremental algorithm to be fast it cannot access the whole
document M (resp. M∗) but rather read, say, poly(log n) blocks. Due to this time restriction,

1

the incremental algorithm cannot check the validity of the document/signature pair. Hence,
it signs a document different from what it considers to sign.

It has turned out that substitution attacks constitute a very powerful form of attack. Until
now, there have only been two construction which are secure against substitution attacks. One
construction, IncXMACC, is based on the XOR MACs [BGR95] and can be found in [Fi97].
For documents of n blocks this scheme produces message authentication codes (MACs) of
bit length Θ(n log s), where s denotes the security parameter. It has the additional property
that the incremental algorithm merely accesses the corresponding block for each replace-
ment. We call such schemes single block accessing schemes. The other approach is the tree
scheme [BGG95] and its variation [M97]. This scheme produces signatures resp. MACs of
length Θ(ns). The tree scheme remains secure against total substitution attacks, where the
adversary may tamper the signature as well as the document before update steps. Beside
replacement, both approaches support additional text modifications like single block insertion
and deletion.

Our Results. For single block accessing schemes which are secure against substitution at-
tacks and support the replace modification, we show that for all n there exists a document of n
blocks such that the incremental scheme produces a signature of size Ω(n) with positive prob-
ability. Thus IncXMACC is optimal up to a factor O (log s). In fact, a quantitative analysis
shows that there are Ω(2n/4) documents of n blocks such that the incremental scheme cre-
ates Ω(n)-bit signatures with constant probability for each of these documents. For schemes
reading several blocks in every update step, we show a lower bound of Ω

(
n1/(2+c)

)
for any

constant c > 0, yet leaving a large gap in comparison to the tree scheme. In this case, the
number of documents with n blocks that cause large signatures with probability Ω(1/ log n)
is at least Ω(2n1/(2+c)/4). If the incremental algorithm only reads a constant number of blocks
then our technique yields the stronger bound Ω(

√
n) for the signature size.

For instance, our result shows that we cannot design incremental hash-and-sign schemes
that withstand substitution attacks and produce short signatures. An incremental hash-and-
sign scheme consists of an incremental hash function and an ordinary signature scheme. The
signature for document M is a pair (hM , Sh), where hM is the hash value of M and Sh is
a signature for h. To update this signature, update the hash value fast by the incremental
property and sign the new hash value with the ordinary scheme. We remark that our bounds
even hold in the random oracle model [BR93] where signer and adversary share a public
random hash function (see discussion in section 3.2). Finally, we prove a new lower bound
for noninvasive off-line checkers. See section 5.

Communication Complexity. The lower bounds for the signature size follow by reduction
to Yao’s randomized two-party communication model [Y79]. Namely, two processors A and
B, each one getting a secret input x resp. y ∈ {0, 1}n, want to compute fn(x, y) for a boolean
function fn : {0, 1}2n → {0, 1} by communicating as few bits as possible. It is well known
that Ω(n) bits are necessary for some functions, even if we allow a small error probability.
More concretely, througout this paper we’ll use the disjointness function disjn which is 0 if
and only if there exists an i such that the ith bits in x and y are both 1. In other words, if we
view x, y as the characteristic vectors of two sets, each of n elements, then disjn(x, y) = 1 iff
the sets are disjoint. The lower bound Ω(n) for disjn has been shown by Kalyanasundaram

2

and Schnitger [KS92]. Their proof has been simplified by Razborov [R92].
In a nutshell, our construction can be outlined as follows. Processor A signs an appropriate

document Mx containing x ∈ {0, 1}n with the incremental scheme and sends this signature
to B. Depending on his input y processor B does several incremental signature generations
(performing a substitution attack). Then B sends the final signature to A who verifies that
this signature is valid for Mx. With high probability this holds if and only if x and y are
disjoint. Thus, we compute the disjn function with small error probability. Let m be the
number of blocks in Mx, e.g. we’ll use m = n + 1 and m = n2+c. As the communication
complexity of disjn is Ω(n) we conclude that one of the exchanged signatures must have Ω(n)
bits in the worst case. Substituting the document length m by n yields the lower bound Ω(n)
resp. Ω

(
n1/(2+c)

)
.

Related Work. In [Fi97] we show a lower bound for substitution detecting schemes, where
the incremental algorithm verifies in each update step whether relevant parts of the document
have been tampered or not. These schemes produce signatures of Ω(n/I(n)) bits, where I(n)
denotes the maximum number of accessed blocks for each replacement. This bound has
been transfered from the memory checker model of Blum et al. [BEG+94]. For these special
schemes, the bound in [Fi97] is tighter than our result, while our bounds are applicable to
incremental schemes in general.

Chor, Geréb-Graus and Kushilevitz [CGK95] have already applied lower bounds in com-
munication complexity to obtain impossibility results for so-called private protocols. They
show that some functions over the integers cannot be computed privately. Otherwise we could
design an efficient protocol for the identity function contradicting lower bounds for the com-
munication complexity of this problem. See [K92, BCKO93] for further applications of the
communication model to private protocols. For other aspects of communication complexity
we refer the reader to [KN97].

Pedersen and Pfitzmann [PP97] show that the Shannon entropy of fail-stop signatures —
and therefore the average bit size in a good approximation — must be, roughly speaking, at
least twice the security parameter. Lower bounds for authentication codes have been shown
by several authors. See Stinson’s book [S95] and Pei’s work [P95] for surveys. In contrast to
our approach all these lower bounds have been proved by applying combinatorial or entropy
techniques directly.

2 Preliminaries

For two strings x, y ∈ {0, 1}∗ we write x · y or xy for the concatenation of x and y. Denote
by xm the m-fold concatenation of x and let xi ∈ {0, 1} be the ith bit in x.

2.1 Incremental Schemes

We give all definitions and results for digital signature schemes only. We remark that the
lower bounds hold for message authentication schemes, too. Documents M ∈ {0, 1}∗ are
divided into blocks M = M [1] · · ·M [n] such that M [i] ∈ Σ = {0, 1}b. We assume wlog. that
every document length is a multiple of b. Otherwise the signature scheme pads each document

3

by some standard technique, e.g., append 10 · · · 0 to each document for a minumum number
of zeros.

For a signature scheme we let s denote the security parameter, k the key size, d the signature
key and e the verification key. For simplicity, we assume that b and s are recoverable from
k and that b, k = poly(s). Moreover, we suppose that all documents M [1] · · ·M [n] ∈ Σ∗

with n = poly(s) are admissible.1 To simplify notation, we give a very succinct definition of
incremental signature schemes supporting the replace modification exclusively. See [BGG95,
Fi97, M97] for more general definitions.

Definition 2.1 (Incremental Signature Scheme)
A replace-incremental scheme S is a tuple (KGen, Sig, IncSig, Vf) of probabilistic poly(s)-time
algorithms such that:

• KGen generates on input 1s (the security parameter in unary) a pair of k-bit keys (d, e).

• On input an admissible document M ∈ Σ∗ and key d, the probabilistic algorithm Sig
outputs a signature S and stores (M,S).

• Given a position i, a block σ ∈ Σ and keys d, e, algorithm IncSig reads the last stored
pair (M,S) and produces a signature S′ for M ′ = replace(M, σ, i) and stores (M ′, S′).

• Given a document M , a signature S and key e, the verifier Vf returns a bit A with
A = 1 for “accept” and A = 0 for “reject”.

The scheme S is called complete iff for all keys (d, e) produced with positive probability by
KGen the following two conditions hold: For all admissible documents M and signatures
S = Sig(d,M) we have Vf(e,M, S) = 1 and, secondly, for all admissible documents M and
bit strings S such that Vf(e,M, S) = 1 we have Vf(e,M ′, S′) = 1, where M ′ = replace(M, σ, i)
and S′ = IncSig(d, e, M, S, σ, i).

The completeness condition says that signatures which have been produced by Sig from
scratch resp. IncSig from a valid document/signature pair must be valid. This requirement
can be relaxed by allowing a small error probability. Note that S can be stateful, i.e.,
store information about previous signatures and documents. Our lower bounds hold if this
information takes only a few bits, say O (log s), or if the state information can be determined
by the number of signature generations (e.g., if S holds a counter). We’ll elaborate this
when discussing the protocols. We remark that all known incremental schemes merely use a
counter as state information. We omit the keys d, e from the inputs for Sig, IncSig and Vf
if they are clear from the context. Furthermore, we abuse notation and say that IncSig gets
inputs replace(M,σ, i) and S if the input is σ, i and (M, S) is the stored document/signature
pair that IncSig reads.

Our protocols can be easily adapted to work with single block deletion. On the other hand,
replace is probably the most simple modification one can think of. This has been confirmed by

1It’s crucial for our result that the document space contains every polynomial bit string from Σ∗ (though
Σ = {0, 1} resp. b = 1 suffices). Otherwise we cannot apply the lower bound for the disjointness problem.

4

the design of all incremental algorithms so far. For instance, if a scheme supports single block
insertion and deletion then it also supports replacement. Simply delete the corresponding
block and insert the new value.

We want IncSig to be fast. Therefore we assume that this algorithm accesses only a few
document blocks for each update step. To be concrete, IncSig can only read I(n) blocks from
the stored document M [1] · · ·M [n]. Typically, I(n) = poly(log n). In this case, we show a
lower bound for the signature size of Ω

(
n1/(2+c)

)
for any constant c > 0. Our approach also

yields a lower bound of Ω
(
nd/2

)
for I(n) ≤ n1−d for all constants d > 0.

An adversary is a family C = (Cs)s∈N of polynomial size circuits performing an adaptive
chosen message attack [GMR88]. That is, for s ∈ N the scheme S is initiated by a pair of keys
(d, e) produced by KGen(1s). Then adversary Cs queries oracles Sig and IncSig for documents
and parameters of his choice, where the ith query depends on e, the coin tosses and the
previous i− 1 signatures and documents. During the attack, the adversary may tamper the
last stored document M by an alter(M∗) command. That is, he replaces M by M∗ regardless
of the current content of M . However, the signature S and the state information of S remain
unchanged. This form of attack is called a message substitution attack.2

We introduce virtual documents [BGG95] to define successful attacks. According to Gold-
wasser, Micali and Rivest [GMR88], an ordinary signature scheme is broken if the adversary
produces a signature for a “fresh” document, i.e., a document that hasn’t been signed pre-
viously. Considering incremental schemes and substitution attacks, it is not obvious what
a “fresh” document is. For instance, if the adversary tampers document M to M∗ before
calling IncSig then it’s not clear which document is supposed to not be viewed as “fresh”
anymore. The notion of virtual documents enables us to associate each signature to a docu-
ment content and, therefore, to designate “fresh” documents. Informally, virtual documents
are documents which S considers to have signed in an attack. More formally, if Sig creates a
signature for a document M then the corresponding virtual document virt(M) is M itself. If
IncSig creates a signature for M ′ = replace(M, σ, i) we let virt(M ′) = replace(virt(M), σ, i).
If the adversary issues an alter(M∗) command for M then we set virt(M∗) = virt(M). An
adversary is successful if he produces a signature for a document which hasn’t appeared as a
virtual document before. See [BGG95] for discussions about virtual documents.

A replace-incremental signature scheme is called ε-secure against message substitution at-
tacks for ε : N → R, if for all adversaries C the probability that Cs performs a successful
message substitution attack is at most ε(s) for all s ∈ N. For the rest of this paper, we assume
that S is a complete, ε-secure, replace-incremental scheme with ε(s) < c

2 for a constant c < 1
and all sufficient large s (so that ε(s) is bounded away from 1

2 by a constant factor). Note that
signature schemes, incremental and ordinary ones, usually achieve the better security level
ε(s) < 1/poly(s) for all sufficient large s (under some standard cryptographic assumption).

2This terminology is taken from [Fi97]. To avoid confusion, in this paper we call strings to be signed
documents, while messages are strings being exchanged in the communication model. Thus, we would better
say “document substitution attacks”.

5

2.2 Communication Complexity

The communication model consists of two processors A and B, where A gets input x ∈ {0, 1}n

and B gets y ∈ {0, 1}n. They want to compute the value fn(x, y) of a boolean function
fn : {0, 1}2n → {0, 1} with low communication cost, i.e., by exchanging as few bits as possible.
Both processors share a public random tape and are computationally unbounded. Though
in this work, they always run in polynomial time. A protocol P defines the messages that
are exchanged. The ith message depends on the first i− 1 messages, the coin tosses and the
corresponding input of the processor. Let A give the output bit. Denote by P (x, y) ∈ {0, 1}
the random variable describing the output distribution of the protocol for inputs x, y. Here,
the probability is taken over the public coin tosses.

Define err(fn, P) = max {Prob[P (x, y) 6= fn(x, y)] | x, y ∈ {0, 1}n } to be the error prob-
ability of P . Let C(P, x, y) be the maximum number of bits communicated by protocol
P for inputs x, y, where the maximum is taken over all random strings. Then C(P) =
max {C(P, x, y) | x, y ∈ {0, 1}n }. For 0 ≤ δ < 1

2 define the bounded error communication
complexity for fn by

Rpub
δ (fn) = min {C(P) | P is protocol with err(fn, P) ≤ δ}

We have Rpub
δ (disjn) = Ω(n) for all constants δ with 0 ≤ δ < 1

2 by [KS92, R92]. The super-
script “pub” indicates that the communication complexity is defined in the public coin model
(as opposed to the private coin model [KN97]). In Appendix A we present an introduction
to other notions of the communication complexity of a Boolean function, which we need in
sections 3.3 and 3.4.

3 A Lower Bound for Single Block Accessing Schemes

In this section we show a lower bound for replace-incremental signature schemes where IncSig
merely reads the jth block for a replace(·, ·, j) command. We assume that n = n(s) = poly(s)
is a fixed function of the security parameter s. Then we can identify the function disjn for
parameter n and the adversary Cs for security parameter s.

The key observation for the protocol is that disjn(x, y) = 1 if and only if xj = 0 for all
j ∈ {1, 2, . . . , n} with yj = 1. Party A signs x and sends the signature to B.3 For all positions
j with yj = 1 party B calls IncSig to replace the jth bit by 0 producing a sequence of at most
n signatures. In each update step, B guesses that the original bit xj was 0. That is, B first
substitutes x by 0n. Since IncSig only reads the corresponding block for each update step,
substituting x by 0n in fact means to exactly alter those bits xj with yj = 1 to 0. Then B
generates the incremental signatures as described above and finally sends the last signature
to A, who outputs 1 if and only if this signature is valid for x.

If disjn(x, y) = 0, or equivalent if xj = 1 for some j with yj = 1, then B has altered the
corresponding bit. As S is secure against these attacks the signature won’t be valid for x
with high probability, i.e., P (x, y) = 0. On the other hand, if disjn(x, y) = 1 resp. xj = 0

3To be precise, A signs x · 0. We omit the technical nuisances in this informal, introductory description.

6

for all j with yj = 1, then B’s guesses have been correct and since S is complete, we have
P (x, y) = 1.

3.1 The Protocol

Wlog. suppose that the block size b is one. Otherwise pad each bit with b − 1 zeros. We
augment x and y by a bit ‘0’ to obtain documents X = x ·0 and Y = y ·0, each of n+1 blocks
resp. bits. We use this extra bit to show that intersecting inputs yield a successful attack on
the incremental scheme for a document which hasn’t appeared as a virtual document.

A and B seperately run KGen(1s) with their common random tape to generate the same
pair (d, e) of k-bit keys. Then A signs X with Sig to obtain a signature SA. A sends this
signature to B. Now B works as follows. Let J = {j ∈ {1, . . . , n} | yj = 1}. For notational
convenience, we assume that J is arbitrarily ordered and that Ji denotes the ith element in
J . Furthermore, we let Z = 0n+1. Then

disjn(x, y) = 1 iff Xj = Zj = 0 for all j ∈ J . (1)

B alters X to Z. Note that B doesn’t need to know X for this. Let S(0) = SA.
For h = 0, . . . , |J |−1 algorithm B runs IncSig for replace(Z, 0, Jh+1) on signature S(h) to ob-

tain a new signature S(h+1). Observe that Z = replace(Z, 0, Jh+1), i.e., Z remains unchanged
by this operation. Finally, B sets the last bit in Z by calling IncSig for replace(Z, 1, n+1) and
S(|J |) to obtain a signature SB. Then B sends this signature SB to A. Receiving signature
SB processor A runs Vf for x · 1 and SB and outputs 1 iff Vf accepts.

A and B share the same signature scheme S. This construction works, for example, if
the state information of S is predictable by the number of signature generation, i.e., the
state information consists of a counter. Then we can assume wlog. that B always makes
n + 1 update steps (e.g., by repeating replace(Z, 0, J1) modifications). Therefore, A and B
know the state of S when receiving a signature. Alternatively, we can communicate the state
information with each signature. In this case, our lower bounds remain valid up to a constant
factor as long as the bit length of the state information is o(n). For example, S could recycle
random bits. In this case the coin tosses are part of the state information. All algorithms
of S are polynomial time. Hence, the number of random bits that have been used in A’s or
B’s phase can be written down with O (log n) bits. Communicating this number with each
message suffices because A and B share a common random string. We remark that the state
information usually is part of the signature because we cannot expect the verifier to know
the previous signature generations. Hence, if it is too large then we will have long signatures
anyway.

In our protocol, we call IncSig to replace a bit ‘0’ by ‘0’ again. It is reasonable to assume
that IncSig refuses to produce a new signature in this case. Fortunately, we can easily fix
this by first replacing the bit ‘0’ by ‘1’ and then resetting the bit to ‘0’ again. Hence, for the
analysis we presume that the incremental algorithm supports this kind of replacement.

3.2 Analysis

We show that the protocol computes disjn with small error probabilty.

7

Lemma 3.1 (Completeness)
If disjn(x, y) = 1 then P (x, y) = 1.

Proof. Since disjn(x, y) = 1 we have Xj = Zj = 0 for all j ∈ J by equation (1).
Thus, running IncSig for replace(Z, 0, Jh+1) is equivalent to running IncSig for document
X = replace(X, 0, Jh+1) for all h. Here we exploit the fact that IncSig merely reads the
corresponding block for update steps. Because Xn+1 = Zn+1 = 0, this holds also for
the last step where B replaces the augmented bit ‘0’ by ‘1’. As S is complete we obtain
Vf(x · 1, SB) = P (x, y) = 1. ¥

Lemma 3.2 (Soundness)
If disjn(x, y) = 0 then P (x, y) = 1 with probability at most ε(s).

Proof. Let C = (Cs)s∈N be a family of polynomial size circuits. Then Cs gets as non-
uniform polynomial advice x, y with disjn(x, y) = 0 such that x, y maximize the probability
that P (x, y) = 1. Circuit Cs simulates the protocol using its oracle access to Sig and IncSig
(after these algorithms have been initiated with a random pair of keys). Obviously, this can
be done in polynomial size.

We show that Cs produces a valid forgery with the single Vf query given that P (x, y) = 1.
From equation (1) we obtain that Xj = 1 for some j ∈ J . The virtual documents appearing
in the execution are W (0) = X, W (h+1) = replace(W (h), 0, Jh+1) for h = 0, . . . , |J | − 1 and
W = replace(W (|J |), 1, n + 1). The latter one is the only virtual document having ‘1’ at
position n + 1. But Wi = 0 for all i ∈ J and therefore Wj = 0 6= 1 = Xj = xj . Thus, x · 1
hasn’t appeared as a virtual document. By assumption, P (x, y) = Vf(x · 1, SB) = 1. Hence,
this is a successful message substitution attack on S which happens with probability at most
ε(s). ¥

Observe that our construction works in the random oracle model [BR93], too. In this case,
we have a public random hash function which we can simulate using the public random tape.

Theorem 3.3
For every n there exists a document M of n + 1 blocks such that Sig or IncSig produces with
positive probability a valid signature for M with bit size Ω(n).

Note that substituting the document length n+1 by n doesn’t change the asymptotic bound.

Proof. Let δ be a constant with ε(s) < δ < 1
2 for large s. We know that Rpub

δ (disjn) =
Ω(n). Assume towards contradiction that the signature length of all documents with n + 1
blocks is less than 1

2Rpub
δ (disjn) (minus the size for the state information). Then protocol

P communicates less than Rpub
δ (disjn) bits. By Lemma 3.1 and 3.2, the protocol computes

disjn with error probability at most ε(s) < δ and we derive a contradiction.
So far we’ve only proved that (the valid) signature SA for X or signature SB has Ω(n)

bits. However, SB might not be valid. But we can conclude that there must be x, y such that
SA has at least Ω(n) bits or disjn(x, y) = 1 and therefore SB is a valid signature with Ω(n)

8

bits. If this were not the case, then for all constants c the following would hold for infinitely
many n: For all x, y ∈ {0, 1}n with disjn(x, y) = 1 we would communicate less than cn bits.
Thus, we could design a protocol that stops after having exchanged at most cn bits, because
then A and B would already know that disjn(x, y) = 0. This would be a contradiction to the
lower bound for disjn. ¥

Theorem 3.3 only states that the incremental scheme produces signatures with Ω(n) bits
with positive probability for one document. However, we remark that for all known schemes
the signature size does not depend on the specific document nor the random bits (up to a
constant factor, see [M97] for an example where the size varies). Anyhow, the quantitative
analysis in section 3.4 shows that there are Ω

(
2n/4

)
documents for which the incremental

scheme produces large signatures with constant probability.

3.3 From Non-Uniform to Uniform Adversaries

We have defined security of signature schemes in terms of non-uniform adversaries. This
enables us to “wire” an appropriate pair (x, y) ∈ {0, 1}2n into circuit Cs. Razborov [R92]
has proved the lower bound for Rpub

δ (disjn) by presenting a distribution ρ on {0, 1}2n for
which the distributional complexity (see [KN97] or Appendix A) is Ω(n). For simplicity let
n = 4L− 1. Then x, y are generated as follows:

• Choose a random partition (Tx, {i}, Ty) of {1, . . . , n} such that |Tx| = |Ty| = 2L− 1.

• Let x and y be random sets of size L drawn from Tx ∪ {i} and Ty ∪ {i}, respectively.

Clearly, we can sample x, y in polynomial time (in n). Observe that each of the inputs x
and y has L ≤ dn/4e bits ‘1’. If n(s) is efficiently computable by a Turing machine on
input 1s, then we can replace circuit family (Cs)s∈N by an uniform adversary. Note that
the error probability of our protocol is still ε(s). However, it is not straightforward that the
communication complexity remains Ω(n), because the probability space now consists of the
distribution of the random tape and the input. But the lower bound for the distributional
complexity holds in this case as well (see [KN97]). Hence, even incremental signature schemes
which are “only” secure against uniform adversaries produce large signatures.

3.4 A Quantitative Version of Theorem 3.3

In this section we analyze the number of documents that cause large signature and the
probability for it. The quantitative theorem 3.4 below remains valid in the uniform setting.

Theorem 3.4
For every n there are Ω

(
2n/4

)
documents of n blocks such that for each of these documents,

Sig or IncSig produces a valid signature with bit size Ω(n) with constant non-zero probability.

In particular, the average signature size for these documents is Ω(n). The proof of theorem
3.4 is given in Appendix C. We investigate the ratio of documents with large signatures. Party

9

A signs a document X with L blocks ‘1’. Hence there are
(

n
L

)
possibilities. Party B signs

the real document 0n · 1 and virtual documents having L or L − 1 bits ‘1’. Thus, the total
number of (real and virtual) documents for which we produce signatures SA, SB is at most
[GKP89,ch.9,ex.42]

1 + 2 ·
(

n

L

)
+

(
n

L− 1

)
≤ 1 + 9 ·

(
n

bn/4c
)
≤ 2nH(1/4)−1

2 log2 n+O(1).

where H(α) = −α log2 α− (1−α) log2(1−α) is the binary entropy function. Since H(1/4) ≤
.812 there are at most O

(
2.812n

)
possible documents while we have Ω

(
2.25n

)
documents for

which S produces large signatures with constant probability.

4 A General Lower Bound

In this section we show that every incremental scheme accessing at most I(m) blocks in
update steps for documents with m blocks must produce signatures of Ω

(
`−1(n)

)
bits for all

invertible functions `(n) satisfying

n2 · I(`(n))
`(n)

< c` (2)

for a positive constant c` < ln 2 and all sufficient large n. For example, if I(m) = O(logd m)
for constant d then `(n) = n2+c resp. `−1(n) = n1/(2+c) satisfies equation (2) for any constant
c > 0:

n2 · I(`(n))
`(n)

=
O((2 + c)d · logd n)

nc

n→∞−−−→ 0.

Note that for c = 0 this bound would be `−1(n) =
√

n. A more careful analysis shows that
`(n) = cn2 logd n for an appropriate constant c is sufficient. In this case we have `−1(n) =
Ω

(
(n/ logd n)1/2

)
. If I(m) = O(m1−d) for a constant d > 0 we may set `−1(n) = Ω(nd/2).

For I(m) ≤ d let `−1(n) =
√

n
2d = Ω(

√
n).

To motivate our construction we explain why we cannot apply the idea from the previous
section directly. There, B assumed that all xj with yj = 1 must be 0. Otherwise we have
xj = yj = 1 and an error occurs (unless we break the incremental scheme). Here, IncSig
might read additional blocks to update the signature. The major problem is that B would
have to guess all the values IncSig reads. More precisely, assume that B wants to replace
block j with yj = 1 by 0. Let yh be another block that IncSig would read for this update
step and suppose that yh = 0. Then B has to guess xh. If he’s wrong (e.g., if xh = 0 but B
tries 1) then the final signature SB won’t be valid with high probability though the inputs
might yet be disjoint. Note that bits yh = 1 don’t cause problems. For these bits, B tries
xh = 0 which will be correct if x, y are disjoint and leads to the desired message substitution
otherwise. This example shows that the “dangerous” bits are those with yi = 0. For these
bits, B will guess by default that the corresponding bit xi is 1. Hence we’ll only be wrong
for blocks with xi = yi = 0.

10

We sketch the underlying idea of our solution. We stretch x, y by an expansion factor
E(n) = `(n)

n by appending `(n) − n blocks ‘0’. Denote these extended documents by X
and Y . Using their common coin tosses A and B agree on a random permutation π over
{1, . . . , `(n)}. Let π(X) and π(Y) denote the documents obtained by applying π to X resp. Y .
See figure 1. Note that disjn(x, y) = disj`(n)(π(X), π(Y)). Then we adapt the protocol of the
previous section for π(X) and π(Y). Namely, A signs π(X) and sends the signature SA to B.
Party B iteratively calls the incremental algorithm to replace all blocks in π(X) such that a
bit yi = 1 has been mapped to the corresponding position in π(Y). By the choice of `(n) and
as the bits with xi = yi = 0 are distributed in a substring of π(X) of size at least `(n) − n
the incremental algorithm IncSig won’t pick such a block with high probability.

y

n `(n)− n

x -π

-π
¾ ¾ --

0

0

Figure 1: Expanding and Permuting the Documents

4.1 The Protocol

Let X = x·0`(n)−n and Y = y ·0`(n)−n. A and B use their public coin flips to jointly generate a
random permutation π over {1, 2, . . . , `(n)}. We write π(X) for Xπ−1(1)Xπ−1(2) · · ·Xπ−1(`(n)).

A signs π(X) with Sig and sends the signature SA to B. Again, let J = {j | yj = 1} and
Ji be the ith element in J (for some fixed order). Denote {π(Ji) | i = 1, . . . , |J | } by π(J). B
sets Z ∈ {0, 1}`(n) according to

Zi =

{
0 if π−1(i) ∈ {n + 1, . . . , `(n)} ∪ J

1 else

Then Z equals π(X) on bits π(n+1), . . . , π(`(n)) and is set to 1−yi for π−1(i) ∈ {1, . . . , n}.
Party B alters π(X) to Z. Let S(0) = SA. For h = 0, . . . , |J | − 1 algorithm B runs
IncSig on replace(Z, 0, π(Jh+1)) and signature S(h) to obtain S(h+1). We have again Z =
replace(Z, 0, π(Jh+1)) for all h. Finally, let SB be the signature produced by IncSig for
replace(Z, 1, π(n + 1)) and S(|J |). Receiving signature SB, party A runs Vf for X ′ and SB

where X ′ = replace(π(X), 1, π(n + 1)) and outputs 1 iff Vf accepts.

4.2 Analysis

Assume that A and B have agreed on a permutation π. Let H = {h ∈ {1, . . . , n} | xh = 1}
and J = {j ∈ {1, . . . , n} | yj = 1}. Note that H∩J = ∅ if and only if x, y are disjoint. We say
that a block i in π(X) is forbidden with respect to (x, y, π) iff π−1(i) ∈ {1, 2, . . . , n}\(H∪J).
Informally, a block is forbidden if some xh with xh = yh = 0 has been mapped to that position.
A protocol execution is called good iff IncSig doesn’t access a forbidden block with respect to

11

(x, y, π). If the execution is good then all blocks i /∈ π(J) in π(X) which IncSig reads equal
Zi. In this case, whether running IncSig for Z or π(X) is equivalent or not, only depends on
the values xj for j ∈ J . We can therefore apply the idea of the previous section.

We start by showing that the execution is good with high probability. We abbreviate E(n)
by E and I(`(n)) by I. The proof of the following Lemma is given in Appendix B.

Lemma 4.1
The probability that an execution is good is at least exp

(
− nI

E−I−1

)
for all sufficient large n.

By equation (2) we have exp
(
− nI

E−I−1

)
> c

2 for a constant c > 1 and all sufficient large n,

i.e., the probability is bounded away from 1
2 by a constant factor.

Lemma 4.2 (Completeness)
If disjn(x, y) = 1 then P (x, y) = 1 with probability at least exp

(
− nI

E−I−1

)
for all sufficient

large n.

Proof. Suppose that the execution is good. This happens with the claimed probability.
First observe that party B only replaces blocks π(j) in π(Y) with yj = 1 and we have xj = 0
for all such j by assumption disjn(x, y) = 1. Additionally, other blocks that IncSig reads
equal the corresponding values in Z because the execution is good. Now the claim follows as
in Lemma 3.1. ¥

Lemma 4.3 (Soundness)
Let `(n) = poly(n). If disjn(x, y) = 0 then P (x, y) = 1 with probability at most ε(s).

Proof. The proof is similar to Lemma 3.2. Since `(n) = poly(n) circuit Cs can simulate
the protocol in polynomial size. Note that we don’t rely on a good execution. ¥

Now we substitute the document length `(n) by `−1(`(n)) = n. The proof of the following
theorem is similar to the proof of theorem 3.3.

Theorem 4.4
Let `(n) = poly(n) be an invertible function satisfying equation (2). Then for every n there
exists a document M of n blocks such that Sig or IncSig produces with positive probability a
valid signature for M with bit size Ω

(
`−1(n)

)
.

The quantitative version can be derived as before. Though, we were only able to show a
lower bound of Ω(1/ log n) for the probability that Sig or IncSig produces a large signature.

Theorem 4.5
Let `(n) = poly(n) be an invertible function satisfying equation (2). Then for every n there
are Ω(2`−1(n)/4) documents of n blocks such that for each of these documents, Sig or IncSig
produces a valid signature with bit size Ω

(
`−1(n)

)
with probability Ω(1/ log n).

12

In this case, the number of documents with large signatures is Ω(2.25`−1(n)) compared to
the total number of O

(
2.812n

)
documents. With the same technique as in section 3.3 we

can replace circuit family C by an uniform adversary if n(s) and `(n) are polynomial-time
computable. The proof of theorem 4.5 appears in Appendix D. It requires a careful analysis
because we now have a distribution on the documents, too. This distribution is due to the
random permutation we apply to the stretched inputs. In Appendix E we sketch how to
improve the bounds for schemes where IncSig has a very simple access strategy.

5 Lower Bounds for Memory Checkers

Consider the data structure RAM (random access memory) with readable and writeable bit
cells. If we store values via RAM on an insecure memory they could be tampered by an
adversary causing read operations to give wrong answers. A memory checker provides a
method to detect such errors. Instead of giving our operations to RAM directly we pass
it to the checker who cares about storage and retrieval. To verify the correctness of the
output of RAM the checker can keep information in his private memory which the adversary
cannot read or tamper. A checker is called invasive if it stores additional information on
the insecure memory. Otherwise it is called noninvasive. An on-line checker gives a warning
immediately when an error occurs, while off-line checkers may output “error” at a later point
of the execution. More formal definitions are given in [BEG+94] and [Fi97].

Blum et al. [BEG+94] give lower bounds for the size of the checker’s private memory
for RAMn, i.e., random access memory with n cells. Namely, they show that (invasive
and therefore noninvasive) off-line checkers must have Ω(log n) bits private memory. For
noninvasive on-line checkers they prove the lower bound Ω(n/I(n)) where I(n) denotes the
maximum number of cells which the checker reads for each operation. This bound can be
easily transfered to substitution detecting incremental signature schemes [Fi97]. To best of
our knowledge there haven’t been proved any lower bounds for noninvasive off-line checker
so far (except for the bound Ω(log n) for invasive checkers).

We briefly describe how to apply our technique to the memory checker model. We’ll deal
with the general case of arbitrary access strategies. Our improvements for special access
methods of incremental signature schemes hold in the checker scenario as well. Additionally,
our quantitative theorems can be easily adapted. Assume that we are given a noninvasive off-
line checker for RAM. Processor A runs the memory checker writing π(X) into memory. Let
MA ∈ {0, 1}mA denote the checker’s private memory after this sequence of operations. Then
A sends MA and the number rA of random bits used by the checker with mA +O (log rA) bits
to B. Note that the checker’s state is totally determined by M and the coin tosses. Party B
continues the checker’s simulation by reading all values π(j) with yj = 1. B uses the same
string Z as in section 4 to predict zhe values that the checker reads. Finally, B sends the
content MB ∈ {0, 1}mB of the checker’s private memory and the number rB of random bits
to A (and a bit indicating whether the checker has already given an error message or not).
Processor A passes “finished” to the checker that may give a few more operations to RAM
in a postprocessing phase. A simulates these additional operations using MB and π(X). It
outputs that x, y are disjoint if and only if the checker hasn’t returned a warning. The same

13

analysis as in section 4 shows that the error probability of this protocol is sufficiently small.
Hence the memory size of the checker can be Ω

(
`−1(n)− log r(n)

)
where r(n) denotes the

number of random bits used by the checker. Clearly, this bound holds for on-line checkers,
too, but it is inferior to the one given in [BEG+94].

6 Open Problems

There is still a gap between the signature size of known incremental schemes and our lower
bounds. We’ve only considered message substitutions. An interesting question is whether
we can exploit the notion of total substitution attacks to prove stronger bounds or not.
Another interesting point are time-space-tradeoffs. We’ve proved stronger bounds for schemes
accessing only a constant number of blocks in each update step. Can one derive similar results
for example for I(m) = log m? On the other hand, we’ve proved stronger bounds for simple
access strategies of IncSig. Can one show improved bounds for these access methods?

Acknowledgements

We thank Georg Schnitger for very helpful discussions. We also thank Daniele Micciancio
and the FOCS committee for valuable comments.

References

[BCKO93] R.Bar-Yehuda, B.Chor, E.Kushilevitz, A.Orlitsky: Privacy, Additional
Information, and Communication, IEEE Information Theory, Vol. 39(6),
pp. 1930–1943, 1993.

[BGG94] M.Bellare, O.Goldreich, S.Goldwasser: Incremental Cryptography: The
Case of Hashing and Signing, Crypto ’94, Lecture Notes in Computer Science,
Vol. 839, Springer-Verlag, pp. 216–233, 1994.

[BGG95] M.Bellare, O.Goldreich, S.Goldwasser: Incremental Cryptography and
Application to Virus Protection, Proceedings of the 27th Annual ACM Symposium
on the Theory of Computing, pp. 45–56, 1995.

[BGR95] M.Bellare, R.Guérin, P.Rogaway: XOR MACs: New Methods for Message
Authentication Using Finite Pseudorandom Functions, Crypto ’95, Lecture Notes
in Computer Science, Vol. 963, Springer-Verlag, pp. 15–29, 1995.

[BR93] M.Bellare, P.Rogaway: Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols, ACM Conference on Computer and Communication
Security, pp. 63–72, 1993.

[BEG+94] M.Blum, W.Evans, P.Gemmell, S.Kannan, M.Naor: Checking the Cor-
rectness of Memories, Algorithmica, Volume 12, pp. 225–244, 1994.

14

[CGK95] B.Chor, M.Geréb-Graus, E.Kushilevitz: Private Computations Over the
Integers, SIAM Journal on Computing, Vol. 24(2), pp. 376–386, 1995.

[Fe68] W.Feller: An Introduction to Probability Theory and its Applications
(Volume 1), Addison-Wesley Publishing Company, 1968.

[Fi97] M.Fischlin: Incremental Cryptography and Memory Checkers, Eurocrypt ’97,
Lecture Notes in Computer Science, Vol. 1233, Springer-Verlag, pp. 393–408,
1997.

[GMR88] S.Goldwasser, S.Micali, R.L.Rivest: A Digital Signature Scheme Secure
Against Adaptive Chosen Message Attacks, SIAM Journal on Computation,
Vol. 17(2), pp. 281–308, 1988.

[GKP89] R.L.Graham, D.E.Knuth, O.Patashnik: Concrete Mathematics, Addison-
Wesley Publishing Company, 1989.

[KS92] B.Kalyanasundaram, G.Schnitger: The Probabilistic Communication Com-
plexity of Set Intersection, SIAM Journal on Discrete Mathematics, Vol. 5(4),
pp. 545–557, 1992.

[K92] E.Kushilevitz: Privacy and Communication Complexity, SIAM Journal on Dis-
crete Mathematics, Vol. 5(2), pp. 273–284, 1992.

[KN97] E.Kushilevitz, N.Nisan: Communication Complexity, Cambridge University
Press, 1997.

[M97] D.Micciancio: Oblivious Data Structures: Application to Cryptography, Pro-
ceedings of the 29th Annual Symposium on the Theory of Computing, 1997.

[PP97] T.Pedersen, B.Pfitzmann: Fail-Stop Signatures, SIAM Journal on
Computing, Vol. 26(2), pp. 291–330, 1997.

[P95] D.Pei: Information-Theoretic Bounds for Authentication Codes and Block De-
signs, Journal of Cryptology, Vol. 8, pp. 177–188, 1995.

[R92] A.A.Razborov: On the Distributional Complexity of Disjointness, Theoretical
Computer Science, Vol. 106, pp. 385–390, 1992.

[S95] D.Stinson: Cryptography — Theory and Practice, CRC Press, 1995.

[Y79] A.C.Yao: Some Complexity Questions Related to Distributive Computing, Pro-
ceedings of the 11th Annual Symposium on the Theory of Computing, pp. 209–213,
1979.

15

A On the Notion of Communication Complexity

We give a very brief introduction to the relevant aspects of communication complexity. See
[KN97] for a comprehensive survey.

We first define two other measures of the communication complexity of a Boolean function.
In section 2.2 we have defined the bounded error complexity of a protocol with respect to
the maximum over the coin tosses. In contrast to this worst case definition, the average
complexity of a protocol averages the communication over the random coin tosses. Namely,
let C(P,w, x, y) be the number of bits which P exchanges for inputs x, y and fixed coin tosses
w. Then

CAC(P, x, y) =
∑
w

Prob[ω = w] · C(P, w, x, y)

where ω describes the distribution of the coin flips. The average communication complexity
of P is CAC(P) = max

{
CAC(P, x, y)

∣∣ x, y ∈ {0, 1}n
}

. Again, let err(fn, P) denote the error
probability of P . Then the average bounded error communication complexity of a Boolean
function fn is

RAC,pub
δ (fn) = min

{
CAC(P)

∣∣ P is protocol with err(fn, P) ≤ δ
}

In both cases, the error probability has been defined with respect to the internal coin
tosses of the parties. Now we consider deterministic protocols with random inputs. Let µn

be a distribution on inputs {0, 1}2n and let D be a deterministic protocol. We say that D
has error probability δ with respect to fn and µn iff Prob[D(x, y) 6= fn(x, y)] ≤ δ, where
the probability is taken over the distribution of (x, y) according to µn. The communication
complexity of D is the maximum over all inputs x, y (which occur with positive probability).
The distributional complexity Distrµn

δ (fn) of a function fn and distribution µn is the minumum
over all deterministic protocols D with error probability δ with respect to fn and µn.

For notational convenience we will abbreviate the different types of protocols by average
case, worst case and distributional protocols and write PAC, PWC and D. If we talk about
protocols in general we write P . Furthermore, we abbreviate distribution µn on {0, 1}2n by
µ if n is clear from the context.

If we view a worst case protocol PWC as an average case protocol PAC, then the error
probability is preserved and the communication complexity of PAC for inputs x, y is bounded
above by that of PWC for x, y. On the other hand, if an average case protocol PAC commu-
nicates g(x, y) bits for inputs x, y on the average, then we can derive a protocol PWC that
exchanges O (g(x, y)) bits in the worst case and has the same error probability for this input.
Thus, Rpub

δ (fn) = Θ
(
RAC,pub

δ (fn)
)
.

For every distribution µ, every randomized protocol PWC with error probability δ (over
the coin tosses) can be easily turned into a deterministic one D with error probability δ
(over the random inputs) by fixing an appropriate sequence ω of coin flips. Moreover, the
communication complexity of D is bounded above by the complexity of PWC. Hence,

Rpub
δ (fn) ≥ max

µ
Distrµ

δ (fn)

and it’s not hard to show equality [KN97].

16

B Proof of Lemma 4.1

Consider the following randomized game between IncSig and our permutation generating
algorithm. In this game, IncSig tries to find a forbidden block while the generator picks a
random permutation to hide these blocks in π(X). Observe that after the ith update step
IncSig hasn’t obtain more information about the random permutation than it gets from the
state information about π(X) sent by A (including the signature for π(X)), the blocks that it
has yet read from π(X) and the query positions π(J1), . . . , π(Ji). In support of the signature
scheme we will assume that IncSig is given π(X) and π(J) in advance. Note that we even
handicap the generator by this.

IncSig reads at most nI bits from π(X). We say that IncSig is successful if it reads a for-
bidden block, i.e., finds a position h ∈ {1, . . . , `(n)} with π−1(h) ∈ {1, . . . , n} \ (H ∪ J).
Obviously, IncSig maximizes its success probability by choosing different blocks in L ={
i ∈ {1, . . . , `(n)} ∣∣ Xπ−1(i) = 0

} \ π(J). We have |L| ≥ `(n) − |H| − |J | (with equality
iff x, y are disjoint). The forbidden blocks are uniformly distributed among L. Moreover,
IncSig’s view (including π(X) and π(J)) gives no advantage in predicting their posititions. We
conclude that the probability that IncSig doesn’t access a forbidden block is distributed hy-
pergeometric [Fe68]. Namely, we have a population of at least `(n)−|H|−|J | = nE−|H|−|J |
elements of which at most n are red (i.e. forbidden bits) and at least nE−n are black (padded
bits or blocks with xi = 1 or yi = 1). Then IncSig randomly draws a set of (at most) nI
elements from the population.4 It accesses a forbidden block if and only if it picks a red
element.

Let the random variable R denote the number of red elements when R is distributed ac-
cording to the description above. Then the probability that IncSig doesn’t access a forbidden
block in the whole execution is given by the probability for R = 0:

Prob[R = 0] ≥
(
nE−n

nI

)
(nE−|H|−|J |

nI

) ≥ (nE − n) · (nE − n− 1) · · · (nE − n− nI + 1)
nE · (nE − 1) · · · (nE − nI + 1)

=
(
1− n

nE

)
·
(

1− n

nE − 1

)
· · ·

(
1− n

nE − nI + 1

)

≥
(

1− 1
E − I

)nI

From 1− 1
x ≥ exp

(
− 1

x−1

)
for x > 1 we derive

Prob[R = 0] ≥ exp
(
− nI

E − I − 1

)
.

¥
4Actually, IncSig does only dn/4e + 1 replacements, because we can restrict the inputs x, y ∈ {0, 1}n to

have at most dn/4e bits ‘1’ according to Razborov’s distribution (section 3.3).

17

C Proof of Theorem 3.4

Recall from Appendix A that we denote average case, worst case and distributional protocols
by PAC, PWC and D, respectively. Protocols in general are denoted by P . For protocol P
we call inputs x, y ∈ {0, 1}n bad if x, y are disjoint and P communicates Ω(n) bits (where
the communication complexity is defined in the corresponding setting). For disjoints inputs
x, y the signatures SA, SB refer to documents x · 0 and x · 1. Hence, the number of “bad”
documents merely depends on A’s input x. This motivates the following definition. Let

BP
n = {x ∈ {0, 1}n | (x, y) is bad for P for some y ∈ {0, 1}n }

denote the set of A’s inputs that participate in bad input pairs. Then we are interested in the
size of BP

n . In accordance with the notation above, we call x ∈ {0, 1}n bad for P iff x ∈ BP
n .

In particular, when we say that a protocol P gets a bad input x ∈ BP
n it is understood that

P gets an input (x, y) such that (x, y) is bad for P .
The proof of theorem 3.4 is divided into three parts. First, by analyzing the distributional

complexity of disjn for Razborov’s distribution ρ = ρn (see section 3.3) we show that the
size of BD

n for each distributional protocol D is at least Ω
(
2n/4

)
. Then, using that every

average case protocol can be transformed into a worst case one and that this protocol can
then be turned into a distributional one, we conclude that the size of BPAC

n for each average
case protocol PAC is Ω

(
2n/4

)
. Finally, we prove that this does not only hold with respect

to average complexity, but that Ω(n) bits must be communicated with constant non-zero
probability for inputs x ∈ BPAC

n .

Lemma C.1
Let D be a deterministic protocol with error probability δ < 1

2 and let δ = 1
4 − 1

2δ. Then with
probability at least δ (over the random choice of the inputs) the input (x, y) ∈ {0, 1}2n is bad
for D.

Proof. Assume that for all constants c there is a protocol Dc with error probability δ such
that this protocol communicates more than cn bits for disjoint inputs with probability less
than δ for infinitely many n. From Dc we construct a deterministic protocol D

c which achieves
error probability δ + δ < 1

2 and exchanges at most cn bits for infinitely many n. D
c simulates

Dc untill the output has been given or cn bits have been communicated. In the latter case,
D

c outputs that x, y intersect. The error probability and communication complexity of D
c

can be easily verified. But this contradicts the lower bound for the distributional complexity
of disjn. ¤

Lemma C.2
Let n = 4L−1 and let x, y, T = (Tx, i, Ty) denote the random variables distributed according to
Razborov’s distribution ρ. Let x0, y0 be disjoint elements from {0, 1}n and T0 = (T 0

x , {i0}, T 0
y)

be a fixed partition of {1, . . . , n} with |T 0
x | = |T 0

y | = 2L− 1. Then

Prob[(x, y) = (x0, y0) |T = T0] ≤ 9 ·
(

2L

L

)−2

18

Proof. Given the partition (T 0
x , {i0}, T 0

y) the distribution of x, y only depends on the ran-
dom choice from sets T 0

x ∪ {i0} and T 0
y ∪ {i0}. With probability 3

4 the variables x, y will be
disjoint. In this case, there are three possibilities concerning i0. Either i0 isn’t element of
both x and y, or i0 belongs to exactly one set. In the former case, x and y are random sets
of size L, each one drawn independently from a population of size 2L− 1. In the latter case,
each of the sets of size L resp. L−1 is drawn independently from a population of size 2L−1.
Thus,

Prob[(x, y) = (x0, y0) |T = T0] ≤ 3
4
·
[(

2L− 1
L

)−2

+ 2 ·
(

2L− 1
L

)−1(2L− 1
L− 1

)−1
]

The claim follows from
(
2L−1
L−1

)
=

(
2L−1

L

)
= 1

2 ·
(
2L
L

)
. ¤

Combining the two lemmata we obtain:

Corollary C.3
For each deterministic protocol D with error probability δ (over the choice of the inputs) there
are Ω

(
2n/4

)
bad x ∈ BD

n .

Proof. Let δ = 1
4 − 1

2δ. By lemma C.1, input (x, y) is bad with probability at least δ. To
simplify notation, we abbreviate (Tx, {i}, Ty) and (T 0

x , {i0}, T 0
y) by T and T0, respectively.

Furthermore, let T 0
y,i0

(L) denote the set of subsets of T 0
y ∪ {i0} having L elements. Similar

for T 0
x,i0

(L).

δ ≤ Prob[(x, y) is bad]

≤
∑

T0

∑

y0∈T 0
y,i0

(L)

∑

x0∈BD
n ∩T 0

x,i0
(L)

disjn(x0,y0)=1

Prob[(x, y) = (x0, y0) |T = T0] · Prob[T = T0]

≤
∑

T0

(
2L

L

) ∑

x0∈BD
n

9 ·
(

2L

L

)−2

· Prob[T = T0]

≤
∑

T0

∑

x0∈BD
n

9 ·
(

2L

L

)−1

· Prob[T = T0]

≤
∑

x0∈BD
n

9 ·
(

2L

L

)−L

≤ 9 · 2−n/4 · ∣∣BD
n

∣∣

¤

Next we show that the number of bad x is preserved under average complexity:

Lemma C.4
For each randomized protocol PAC with error probability δ there are Ω

(
2n/4

)
bad x ∈ BPAC

n .

19

Proof. Transform the average case protocol PAC into a worst case one PWC such that the
error probability is preserved. Note that PWC communicates Ω(n) bits in the worst case
for the same inputs x, y as PAC does on the average. Then turn PWC into a distributional
protocol D for ρ by fixing a suitable sequence ω of coin flips. By Corollary C.3 there are
Ω

(
2n/4

)
bad x ∈ BD

n . But then there must be Ω
(
2n/4

)
bad x for PWC and hence for PAC.

¤

We prove that Ω(n) bits are necessary not only on the average, but with constant non-zero
probability for each x ∈ BP

n . Informally, this comes from the fact that Ω(n) bits are necessary
and O (n) bits are sufficient.

Lemma C.5
For each randomized protocol P with error probability δ there are Ω

(
2n/4

)
bad x ∈ BP

n such
that for each of these bad inputs x protocol P communicates Ω(n) bits with constant non-zero
probability.

Proof. Let P be an average case protocol. Note that worst case protocols can be trans-
formed into average case protocols. Wlog. we can assume that P communicates at most O (n)
bits for each input.5 More concretely, let dn be an upper bound for the communication of P
for constant d > 1.

Fix an arbitrary bad input (x, y) and let cn be a lower bound for CAC(P, x, y). Suppose
that the probability that P exchanges more than d−1cn bits for x, y is less than 1−1/d

d c. Then

cn ≤ CAC(P, x, y) =
∑
w

Prob[ω = w] · C(P, w, x, y)

=
∑
w

C(P,w,x,y)>d−1cn

Prob[ω = w] · C(P, w, x, y)

+
∑
w

C(P,w,x,y)≤d−1cn

Prob[ω = w] · C(P, w, x, y)

< 1−1/d
d c · dn + d−1cn

= cn

and we derive a contradiction. ¤

This completes the proof of theorem 3.4. ¥

D Proof of Theorem 4.5

The proof is similar to the proof in Appendix C. In comparison to the proof there, we now
have a distribution on the documents as well (implied by the random permutation). While

5Otherwise modify P so that if more than n bits have been communicated, then party A sends his whole
input to B.

20

the documents have n blocks, the underlying disjointness problem has input size `−1(n). To
distinguish between these cases, we write Pn for a protocol that gets inputs x, y ∈ {0, 1}n

and P`−1(n) for inputs x, y ∈ {0, 1}`−1(n). Let ρ denote Razborov’s distribution. We write
P ρ

`−1(n)
for a randomized protocol that gets random inputs distributed according to ρ. Let

P π◦ρ
n denote a randomized protocol that gets n bits inputs, where the inputs are distributed

according to ρ and then stretched to n bits and permuted by a random permutation.
Assume that there is a protocol Pn with error probability δ that communicates Ω

(
`−1(n)

)

bits (in the worst case) for less than Ω(2`−1(n)/4) bad inputs x ∈ {0, 1}n. Then Pn achieves the
same error probability and communication complexity for each input (x, y) if we distribute
the inputs according to π ◦ ρ. But then we can easily derive a randomized protocol P ρ

`−1(n)

with input distribution ρ which contradicts the number of bad inputs from corollary C.3.
That is, for input x, y the two parties in protocol P ρ

`−1(n)
apply the same stretch-and-permute

technique as in section 4. Then, they run P π◦ρ
n and give the same output. Obviously, protocol

P ρ
`−1(n)

computes disj`−1(n) with Pn’s error probability. But then there must be Ω(2`−1(n)/4)
bad x for Pn. In addition, we conclude that this bound holds in the average complexity
setting, too.

Next, we prove a lower bound for the probability that the incremental scheme produces
a long signature for each of these bad inputs x. The proof is similar to the proof of lemma
C.5. Clearly, we have the upper bound O

(
`−1(n) · log n

)
for the communication complexity,

because if more than `−1(n) · log n bits have been communicated then A simply sends all the
bit positions of ‘1’ to B. The claim follows as in lemma C.5 by substituting cn by c · `−1(n),
dn by d · `−1(n) · log n and 1−1/d

d c by 1−1/d
d log nc. ¥

E Improved Lower Bounds for Special Access Strategies

n¾ -

-

-

¾ -`(n)−n
n+1

¾ ¾ ¾- - -`(n)−n
n+1

`(n)−n
n+1

`(n)−n
n+1

0 0 0 0

0 0 0 0

Figure 2: Expanding the Documents if IncSig reads only adjacent blocks

Recall that we’ve used the stretch-and-permute technique because IncSig may choose I(m)
blocks randomly. We briefly discuss how to derive stronger bounds if IncSig’s access has a spe-
cial form. Assume for example that for replace(M, σ, j) commands with M = M [1] · · ·M [m],
IncSig reads only blocks which are at most N(m) positions to the left or right from j. Let
`(n) be an invertible function with

N(`(n)) <
`(n)− n

n + 1

for large n. We expand documents x and y to `(n) bits by inserting (`(n)− n)/(n + 1) bits
‘0’ in front of every xi resp. yi and behind the nth bit. See figure 2. This time we don’t have

21

to permute the extended documents. Obviously, we can now apply our method and derive
lower bounds `−1(n) = Ω(n) for N(m) ≤ d and `−1(n) = Ω(n/ logd n) for N(m) = O(logd m).
One can easily show analogous results for similar access strategies.

22

