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We use the known linear lower bound for Tseitin’s tautologies for estab-
lishing linear lower bounds on the degree of Nullstellensatz proofs (in the
usual boolean setting) for explicitly constructed systems of polynomials of a
constant (in our construction 6) degree. It holds over any field of character-
istic distinct from 2. Previously, a linear lower bound was proved [14] for an
explicitly constructed system of polynomials of a logarithmic degree.

Introduction.

In the theory of effective Nullstellensatz the double exponential upper bound
d2°™ [15] on the degrees for general ideals and d°(™ [2], [8] for the unit ideal
are well known (here d is the degree and n is the number of variables of the
input polynomials). These bounds are known to be sharp due to [13] for the
first bound and for the second bound due to the example of Lazard-Mora-
Philippon (see [2]).

In the proof system theory (see e.g. (3], (7], [6], [4], [14], [10] ) a similar
question is studied when among input polynomials fi,..-, fx € F[X1,..., Xn)
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necessarily the polynomials X? — X;, 1 < i < n appear (let us call such z sys-
tem of input polynomials a boolean system). Then the known methods [13],
[5] for obtaining lower bounds on the degrees of g1,...,9x € F[X1,..., X,]
such that 3~ f;g; = 1 (the latter representation is called a boolean Nullstel-
lensatz refutation), provided it does exist (i.e. fi,..., fx have no common
zero), fail.

Notice that one could assume all g; to be multilinear, in particular, their
degrees are at most n. So, the goal is to establish the linear in n lower bounds
on the degrees of gy, ..., gk.

In [14] the first such method was designed which allowed to prove linear
lower bounds (even for the polynomial calculus, being a more powerful proof
system rather than the Nullstellensatz proofs) for a system of polynomials of
a logarithmic degree which describes a modification of the into pigeon-hole
principle (an exposition of this method see also in [10]). It holds over an
arbitrary field. But for many other systems of polynomials the issue of lower
bounds still remains open. Let us also mention that in the earlier papers [3],
[7], [6], [4] the methods for obtaining somewhat weaker than linear bounds
were exhibited.

It seems to be an interesting general question, how to obtain lower bounds
for boolean Nullstellensatz refutations. In this paper we develop an approach
which allows to produce explicitly a system of polynomials of degree 6 and
to prove a linear lower bound on the degree of its boolean Nullstellensatz
refutation. This approach borrows an idea from [13] to reduce the issue of
Nullstellensatz refutations to Thue systems. First, we introduce and study
(see section 1) boolean multiplicative Thue systems (basically, they consist
of binomials necessarily containing among them the polynomials X? — 1,
1 <4 < n). They extend slightly Tseitin’s tautologies [16], [9], [17], [18].
We exploit the construction of the Tseitin’s tautologies ([9], {17], [18]), based
on expanders ([1], [11], [12]) and give a somewhat simpler proof of a linear
lower bound for the case of used in section 1 notion of refutations (lemma 4).
Relying on it, we first prove a linear lower degree bound for Nullstellensatz
refutations for the systems which include the polynomials X2 —1,1<i<n
(theorem 1) and thereupon, for the more customary boolean case of the
polynomials X? — X;, 1 <14 < n (corollary 1 in section 2).

Some shortcoming is that theorem 1 (and thereby, corollary 1) does not
hold over fields of characteristic 2. To get rid of the latter restriction, at the
end of section 2 we consider boolean Thue systems relative the polynomials
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X? — X;, 1 <t < n. Unfortunately, in this case the best established bound
is merely 2(logn).

In section 3 we consider boolean Nullstellensatz refutations for the Knap-
sack problem over any infinite field and prove a linear lower bound for it.
For zero-characteristic fields a similar result for the subset sum problem was
shown in [10].

1 Boolean Multiplicative Thue Proof Systems

Let F be a field with characteristic distinct from 2.

Definition 1 A boolean multiplicative Thue system over F' in variables Xj,
..., X, is a family T which consists of terms of two types:

X? forall1<i<m (1)

oXP . Xl g, 0n€{0,1}, oe{-11} (2)

The system T is satisfiable if all the terms from (1), (2) equal to 1 for certain
Xi,..., Xn (evidently, all Xy,..., X, belong to {-1,1}).

Using (1) repeatedly one can reduce each term 0. X ... XJ» with integer
j1,...,jn to the form (2), throughout this section we consider terms in this
reduced form, then the multiplication of monomials X7' - - - X corresponds
to the sum of their exponent vectors (ji,- -, jn) over GF(2).

Definition 2 A refutation for T is a sequence of (reduced) terms m, ..., mn
such that m;_ym; is one of the terms from (2) (after the reductions by (1))
for each 1 <i < N and —my =mgy = 1. The degree of the refutation is the
magzimum of the degrees of my,...,mn.

Obviously, if there is a refutation then T is not satisfiable. The complete-
ness proof in the next lemma is standard, cf. e.g. lemma 5.3 [18].

Lemma 1 a) If T is not satisfiable then there is a refutation.
b) There is a polynomial-time (moreover, from NC) algorithm for testing
satisfiability.



Proof Consider the following linear system L7 over GF(2) in the variables
21,...,2n. For each term of type (2) include in Lr the following linear equa-
tion: jiz1 + -+ jnzn = x(0), where x(1) =0, x(—1) = 1. The system Lr
is solvable if and only if T is satisfiable. If L is not solvable then a suitable
linear combination (or in other words, the sum of a subset of the set) of its
equations gives 0 at the left side and 1 at the right side. Then the product
of all the terms corresponding to this subset, provides a refutation. Lemma
is proved.

Boolean multiplicative Thue systems extend slightly Tseitin’s tautologies
[16], and a refutation could be viewed as a special form of resolutions, we need
just this form for the lower degree bound on the Nullstellensatz refutations
in the next section. We exploit the construction [9], [17], [18] of the Tseitin’s
tautologies, based on expanders with a linear degree lower bound and give
for it a somewhat simpler proof for the sake of self-containdness.

Remind (see e.g. [1]) that an expander G, is a bipartite graph with two
parts of vertices A = {Ay,..., A}, B={Bi,..., Bn}, where |A| = |B| =n
such that G, is 6-regular and for some constant ¢ > 0 (the calculations in
[11), [1] show that one could take ¢ = (61/5 — 5)/18, but we will not use it)
any subset D C A, contains at least (1 +c (1 — J%)) |D| adjacent vertices
in B (the roles of A and B could be interchanged).

The system T, under producing has 6n variables Xi,..., X¢n. Every
variable among X1, ..., X¢, we identify with a corresponding edge of G,. To
any vertex A; € A, 1 < i < n corresponds the monomial X% (having the
degree 6) from T, (of type (2)), being the product of the edges incident to
A;, where a; € (GF(2))®". Renumerating (if necessary) the variables one can
assume that X is incident to By, € B. Then include in T,, the monomials
Xt ... X% (each of degree 6) similar as above and the monomial X; X"
of degree 5. Finally, add to (2) the term —X;. The obtained system T, is
not satisfiable because the product of all its terms of type (2) equals to —1
(obviously, X% -+- X% = X% ... X = X, - X¢,). Denote X X=X,

For any GF(2)-linear combination aya; + - - - QnGn + Bib] + Babo + - - +
Bubn € (GF(2))%™ we define its degree as the number of ones (thus, the degree
of the corresponding monomial (X®)e1 ... (X%)on(Xb)A1 ... (XP)A) and
its weight as the number of ones among a, ..., an, b1, - - , B

Lemma 2 a) The vectors ay, ..., an, 01, by, ..., by are linearly independent.



b) For any constant 0 < ¢; < 1 there ezists a constant co > 0 such that
any linear combination with a weight between cin and (2—c1)n has the degree
greater than con.

Proofa) Leta = a1a1+: - +Qnln, b= B+ Baby+ -+ -+ Brby and a+b = 0.

Observe that the supports of the vectors ai, ..., a, are pairwise disjoint, the
same is valid for the vectors ), bs,...,b,. Hence the weights of the vectors
a and b are equal, denote this weight by s. Let a, = -+ = &, = Bs, =

- B5, = 1. If s = n then G+ 4 an+ U by + by =(1,0,...,0),
so one can assume that s < n. Applying the property of expanders to the
set {Ay,,..., Ay} C A we get a variable X; which occurs in the monomial
X ... X% without occurring in X%: ... X%:. Thus, the j-th coordinate
of the vector a + b does not vanish.

b) Consider a linear combination a +b. Denote by s the weight of a and
by ¢ the weight of b. Let for definiteness s >t and a,, =+ =0y, = Bs, =
... =[5, = 1 (the case t > s is considered in a similar way). Then §n < s.
Applying the property of expanders to the set {A,,..., Ay} C A, we obtain
at least con = ¢ (1 - 941) 4n variables which occur in X% --- X%s and do

not occur in X% - -+ X%,

For any boolean multiplicative Thue system T it is helpful to consider
the following graph My of monomials (cf. [5]). Its 2" vertices are the
monomials X', and two monomials X!, X7 are linked by an edge if X IxX7is
one of the monomials of type (2) (after reductions by (1)). For the produced
above system T, we call an edge in Mr, between XTI and X7 distinguished
if X'X7 = X,.

Lemma 3 Refutations for T, correspond ezactly to cycles in Mg, which
pass through 1 and have an odd number of distinguished edges.

Proof Any refutation corresponds to a cycle (see definition 2) mg,...,mn
and since —1 = —mg = my = (memy)(mMamy) - - - (my_1mn), we conclude
that among the edges m;_1m; of Mr, there are an odd distinguished ones.
Conversely, any cycle with an odd number of distinguished edges provides a
refutation.

Lemma 4 The degree of any refutation in T, is at least Q(n) (cf e.g. lemma
5.9 [18]).



Proof Take any refutation my, ..., my. Denote by vy,..., vy, € (GF(2)) the

exponent vectors of the (reduced) monomials (mom,), (mima),...,(my-1mn)
ignoring all distinguished edges and preserving the order of the rest ones.

Lemma 3 implies that v, +- - -+vn, = (1,0,...,0). By lemma 2a) the weight

of the vector v; + - - - + vy, equals to 2n. For a certain ¢, < N; the weight of
the vector v, + - - - + v, equals to n. The vector v, is the exponent vector

of a monomial m,_;m, for a certain £ > ¢;. Then the exponent vector of the

monomial m; = (memy)(mims) - - - (me—1my¢) equals either to vy + -+ -+ vg

or to vg + - -+ vg,+ (1,0,...,0). Lemma 2b) entails a lower bound £(n) on

the degree of v; + - - - + vy, that proves the lemma.

2 Lower Bound on Nullstellensatz Proofs

In [13] (see also [5]) a connection between Thue systems and membership
problem for Thue ideals was exploited, and a double exponential lower bound
for the latter problem was ascertained. Our situation is different since we
study refutations (rather than the ideal membership problem), for which in
general a single exponential upper bound is known ([2], (8]).

Convert any Thue system T (see section 1) into a boolean multiplicative
polynomial ideal P C F[Xj,...,X,] replacing each term om (where 0 €
{—1,1} and m is a monomial) in (1) or (2) by the binomial 1 —om. Evidently,
T is satisfiable if and only if P is satisfiable. Denote by P, = (1-X 2. 1=
X2, fi,..., ft) the polynomial ideal converted from Tn,.

Theorem 1 Any Nullstellensatz refutation for P, has the degree Q(n) (over
any field with the characteristic distinct from 2).

Proof Let 1 = $gi(1 — X?) + Y g;f;. Consider a modified graph Mp,
with the same (as Mr,) set of 2" vertices (i.e. monomials). For each term
um’' (where 0 # u € F) occurring in g; and f; = 1 —om we draw an edge
(m'm,m’) in Mp, endowed with the weight u. Thus, the induced weight of
its incident vertex m’ equals to u, and the induced weight of the vertex m'm
equals to —ou. Clearly, no edges correspond to the polynomials 1 — X?2.
W.l.o.g. we can consider the connected component of Mp, which contains
the monomial 1. Observe that for every vertex of Mp, (except for just 1)
the sum of the induced weights by all the incident edges equals to 0, and for
the vertex 1 this sum equals to 1. If the connected component has a cycle
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with an odd number of distinguished edges (m'X;,m’) (they correspond to
the polynomial 1+ X;) then there is a cycle with the same property passing
through 1, and we complete the proof of the theorem applying lemmata 3,4.

Now suppose on the contrary that each cycle has an even number of the
distinguished edges. Then one can partition all the vertices (of the connected
component) into two parts Vp,Vi. The set Vy consists of all the vertices
reachable in Mp_ from 1 by paths with an even number of the distinguished
edges. Then any distinguished edge links a vertex from V, with a vertex from
V,. Any other edge has its incident vertices either both in Vg or in V.

We partition the sum of the weights (see above) induced by all the edges
into o + ¥, over the vertices from V; and from V;, respectively. Then each
distinguished edge gives an equal contribution into both ¥y and ¥;. Every
other edge gives the zero contribution into both ¥ and ;. Hence ¥4 = ;.
But on the other hand £; = 0 and £y = 1, which contradicts the supposition
and proves the theorem.

Now we obtain a similar lower bound for more customary (see e.g. [3],
[7), [6], [4], [14], [10]) boolean polynomial ideals (i.e. the ideals containing
polynomials X2 — X;, for all 1 < ¢ < n, rather than X2 — 1 as above).
For each variable X;, 1 < i < n making the linear transformation X; —
—9X; + 1 we transform the polynomials X? — 1 to 4(X? — X;). Denote by
P. C F[Xy,...,Xn) the system obtained by this transformation from P,
(evidently, it consists of the polynomials of degrees at most 6). Notice that
P! is not necessary a binomial system (unlike P,).

Corollary 1 Any Nullstellensatz refutation for P, has the degree Q(n) (again
over any field with the characteristic distinct from 2).

One could also study boolean Thue systems relative the polynomials X2—
X;, 1 <1 < n, rather than X?2—1. Some advantage of these systems is that it
is possible to consider them over arbitrary fields F unlike the multiplicative
systems which were useless for the fields of characteristic 2 (see section 1).

Definition 3 A boolean Thue system T' is a family of polynomials of two

types
X - X; 1<i<n (3)

a,ml _ allmll (4)

where o/, o/ € F, m',m" are monomials.
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Definition 4 A refutation of T’ is a sequence of reduced terms mg = 1,
ma,...,my = 0 such that for any 1 < i < N there is o € F' and a monomial
m such that m,_; = ac'mm’, m; = ac”"mm” for an appropriate polynomial

of type (4).

Unfortunately, the next obtained for this system lower bound (which one
can show by a straightforward induction) is weaker than the bound from
theorem 1.

Proposition 1 Consider a boolean Thue system in the variables X, ..., Xn,
Vi, ..., Y, with the following polynomials of type (4):

X, =X, Yo -YXs, . V- Yo Xn, 1 -V,

Then any refutation of this system has the degree at least (logn). Note that
this bound is sharp.

Notice that one can test satisfiability of a boolean Thue system T" in
polynomial time. Indeed, among the terms occurring in (4), there should be
a nonzero element of F' (otherwise, just zeros would satisfy this system). Let
it be a binomial aym; —as, ap # 0. We start recursively augmenting a subset
U of variables first including in it all the variables from m; (the variables
from U should attain the value 1 to satisfy 7"). At a recursive step if all
the variables from a term 0 # a'm’ belong to U (this holds in particular if
0 # o'm’ € F) then add to U all the variables from m” (unless o" = 0, in
this case the algorithm yields a refutation and terminates). Continue doing
this way while U is augmented. When U can’t be augmented anymore, one
can satisfy 7" putting 1 for the variables from U and putting O for the rest
of the variables.

3 Lower Bound on Nullstellensatz Proofs for
the Knapsack Problem over an Infinite Field

In [10] the lower bound [n/2] for Nullstellensatz proofs is shown for the
polynomials {Xf - X;,1<i<n, Yicicn C:X; —m} for any m and nonzero
Ci,...,Cp, actually over any field of zero characteristic. Here we prove
the lower bound n for the knapsack problem ¥;<;«, CiX; — 1 for suitable
Ci,...,Cy over an arbitrary infinite field F'. o
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Proposition 2 Let 7%0), cee 7(:)_)1 € F be linearly independent over the prime

subfield of F and ¥ = 1 — 7&0) —es = fyﬁlo_)l. Then any Nullstellensatz
refutation for the system of polynomials {X2-X;, 1 <i<n, Yicicn 7§°’Xi—
1} has the degree at least n.

Proof Let 1 = ¥ g:(X? — Xi) + g( 7 X; — 1) for some v,...,7 € F.
W.l.o.g. we can assume that g is multilinear. Suppose that degg < n.
There exist not all zero constants {c,}, 7 € {0,1}" (in fact, they lie in the
prime subfield of F’) such that 3, cyG(n) = 0 (this identity holds for any mul-
tilinear polynomial G of a degree less than n). Therefore, 3, m_—l) =0,

where n = (11,...,M,). Choosing v1,...,7, € F in such a way that ex-
actly one of the denominators vanishes (for the corresponding nonvanish-
ing coefficient c,), leads to a contradiction. For example, one can choose

750), . ,7,(10_)1, fy,(lo) as described in the proposition, taking into account that

cq,...,1) ?é 0.

4 Further Research and Open Questions

1) Over a field F of characteristic 2 which contains the field GF (4) one
could almost literally repeat the construction from section 1 and theorem
1 with the following minor changes. The monomials (1) we replace by X3,
respectively, 71, .- .,7n € {0,1,2} in (2), o € {1, 9, 6?} where 6 is a generator
of the multiplicative group (GF(4))*. In the construction of the Thue system
T., one views a;, b; as the vectors from (GF(3))®", as the distinguished term in
(2) takes 0X, (replacing —X;). Then lemmas 1,2 go through, in lemma 3 one
should replace “odd” by “not divisible by 3” and the corresponding graph
Mo, has now 3" vertices. This leads to lemma 4. In the proof of theorem
1 we partition the vertices of the connected component (which contains 1)
of the graph Mp, (now the latter has 3" vertices) into 3 parts, regarding d
(mod 3), where d is the number of distinguished edges on a path from this
vertex to 1.

But it is not clear how to prove corollary 1 if we’d like just to stick with
the boolean equations X2 — X;. Over the field GF(2) it is even less clear,
how to conduct a similar to the above construction.

2) How to extend theorem 1 and corollary 1 to the polynomial calculus

(4], [14])7



3) How to obtain better (rather than logarithmic, see proposition 1)
lower bounds for boolean Thue systems described at the end of section 27
It relates to “reversible” pebble games, in which it is allowed to propagate
pebbles also backwards. Is it possible to adjust for them the known lower
bounds (the best one is (n/logn)) for (the customary) pebble games (due
to S. Cook, W.Paul, R. Tarjan et al.)? But actually boolean Thue systems
seem to be more powerful then pebble games, and it would be interesting to
obtain for them a linear lower bound.

Acknowledgement. The author is thankful to Sasha Razborov for
drawing attention to this area.
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