
How to Go Beyond the Black-Box Simulation Barrier

Boaz Barak
Department of Computer Science, Weizmann Institute of Science

Rehovot, ISRAEL
boaz@wisdom.weizmann.ac.il

Abstract

The simulation paradigm is central to cryptography.
A simulator is an algorithm that tries to simulate the in-
teraction of the adversary with an honest party, without
knowing the private input of this honest party. Almost
all known simulators use the adversary’s algorithm as
a black-box. We present the first constructions of non-
black-box simulators. Using these new non-black-box
techniques we obtain several results that were previously
proven to be impossible to obtain using black-box simu-
lators.

Specifically, assuming the existence of collision
resistent hash functions, we construct a new zero-
knowledge argument system for NP that satisfies the
following properties:

1. This system has a constant number of rounds with
negligible soundness error.

2. It remains zero knowledge even when composed
concurrently n times, where n is the security pa-
rameter.

Simultaneously obtaining 1 and 2 has been recently
proven to be impossible to achieve using black-box
simulators.

3. It is an Arthur-Merlin (public coins) protocol.

Simultaneously obtaining 1 and 3 was known to be
impossible to achieve with a black-box simulator.

4. It has a simulator that runs in strict polynomial
time, rather than in expected polynomial time.

All previously known constant-round, negligible-
error zero-knowledge arguments utilized expected
polynomial-time simulators.

1. Introduction

The simulation paradigm is one of the most impor-
tant paradigms in the definition and design of crypto-
graphic primitives. For example, this paradigm occurs
in a setting in which two parties, Alice and Bob, inter-
act and Bob knows a secret. We want to make sure that
Alice hasn’t learned anything about the secret as the re-
sult of this interaction, and do so by showing that Alice
could have simulated the entire interaction by herself.
Therefore, she has gained no further knowledge as the
result of interacting with Bob, beyond what she could
have discovered by herself.

The canonical example of the simulation paradigm is
its use in the definition of zero knowledge proofs, as pre-
sented by Goldwasser, Micali and Rackoff [20]. Sup-
pose that both Alice and Bob know a public graph G,
and in addition Bob knows a hamiltonian cycle C in this
graph. In a zero knowledge proof, Bob manages to prove
to Alice that the graph G contains a hamiltonian cycle,
and yet Alice has learned nothing about the cycle C, as
she could have simulated the entire interaction by her-
self.

A crucial point is that we do not want Alice to gain
knowledge even if she deviates arbitrarily from the pro-
tocol when interacting with Bob. This is usually formal-
ized in the following way: for every algorithm V ∗ that
represents the strategy of the verifier (Alice), there ex-
ists a simulator M∗ that can simulate the entire interac-
tion of the verifier and the honest prover (Bob) without
access to the prover’s auxiliary information (the hamil-
tonian cycle).

Consider the simulator’s task even in the easier case
in which Alice does follow her prescribed strategy. One
problem that the simulator faces is that in general it is
impossible for it to generate a convincing proof that the
graph G is hamiltonian, without knowing a hamiltonian
cycle in the graph. How then can the simulator generate
an interaction that is indistinguishable from the actual
interaction with the prover? The answer is that the simu-

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

lator has two advantages over the prover, which compen-
sate for the serious disadvantage of (the simulator’s) not
knowing a hamiltonian cycle in the graph. The first ad-
vantage is that unlike in the true interaction, the simula-
tor has access to the verifier’s random tape. This means
that it can actually determine the next question that the
verifier is going to ask. The second advantage is that,
unlike in the actual interaction, the simulator has many
attempts at answering the verifier’s questions. This is
because if it fails, it can simply choose not to output
this interaction but rather retry again and output only the
take in which it succeeds. This is in contrast to an ac-
tual proof, where if the party attempting to prove failed
even once to answer a question then the proof would
be rejected. The difference is similar to the difference
between a live show and a taped show. This second
technique is called rewinding because the simulator who
fails to answer a question posed by the verifier, simply
rewinds the verifier back and tries again.

Most of the known zero knowledge protocols make
use of this rewinding technique in their simulators.
However this technique, despite all its usefulness, has
some problems. These problems arise mainly in the con-
text of parallel and concurrent compositions. For exam-
ple, using this technique it is impossible to show that a
constant-round zero-knowledge proof1 is closed under
concurrent composition [8]. It seems also very hard to
construct a constant-round zero-knowledge proof with a
simulator that runs in strict polynomial time (rather than
expected polynomial running time) or a constant-round
proof of knowledge with a strict polynomial time knowl-
edge extractor. Indeed, no such proofs were previously
known.

The reason that all the known simulators were con-
fined to the rewinding technique is that it is very hard
to take advantage of the knowledge of the verifier’s ran-
dom tape when using the verifier’s strategy as a black-
box. Let us expand a little on what we mean by this
notion. As noted above, to show that a protocol is zero
knowledge, one must show that a simulator exists for
any arbitrary algorithm V ∗ that represents the verifier’s
strategy. Almost all the known protocols simply used a
single simulator that used the algorithm V ∗ as an oracle
(i.e. as a black-box). Indeed it seemed very hard to do
anything else, as using V ∗ in any other way seemed to
entail some sort of “reverse-engineering” that is consid-
ered a very hard (if not impossible) thing to do.

It can be shown that for black-box simulators, the
knowledge of the verifier’s random tape does not help
the simulator, because a verifier can have its random-
ness “hardwired” into its algorithm (for instance in the

1Here and throughout this paper, we only consider zero knowledge
proofs or arguments that have negligible soundness error.

form of a description of a hash/pseudorandom func-
tion). Therefore, black-box simulators are essentially
restricted to using the rewinding technique, and so suf-
fer from its consequences. Indeed, several negative
results have been proved about the power of black-
box simulators, starting with the results of Goldreich
and Krawczyk [18] regarding non-existence of black-
box 3-round zero knowledge proofs and constant-round
Arthur-Merlin zero-knowledge proofs, to the recent re-
sult of Canetti, Kilian, Petrank and Rosen [8] regard-
ing impossibility of black-box constant-round concur-
rent zero-knowledge.

We show that the belief that one can not construct
non-black-box simulators is not true. That is, given the
code of a (possibly cheating) efficient verifier as an aux-
iliary input, the simulator may significantly use this code
in other ways than merely running it, and so obtain goals
that are provably impossible to obtain when using the
verifier only as a black-box. Specifically, assuming the
existence of collision resistent hash functions2, we con-
struct a new zero-knowledge argument (i.e., a computa-
tionally sound proof) for any language in NP that satis-
fies the following properties:

1. It has a constant number of rounds and negligible
soundness error.

2. It remains zero knowledge if executed concurrently
n times, where n is the security parameter. We
call a protocol that satisfies this property a bounded
concurrent zero-knowledge protocol3 (the choice of
n is quite arbitrary and could be replaced with any
fixed polynomial (e.g. n3) in the security parame-
ter.)

3. It is an Arthur-Merlin (public coins) protocol.
4. It has a simulator that runs in strict polynomial

time, rather than expected polynomial time.
5. It is actually an argument of knowledge.

The above protocol should be contrasted with the fol-
lowing impossibility results regarding black-box zero-
knowledge arguments: Goldreich and Krawczyk have
shown that obtaining Properties 1 and 3 together is
impossible to achieve when using black-box simula-
tion.4 In addition, the proofs of Canetti, Kilian, Petrank
and Rosen [8] show that no constant-round protocol is

2Actually in this paper we need to require that there exist hash func-
tions that are collision resistent against adversaries of size that is some
fixed “nice” super-polynomial function (e.g., nlog n or nlog log n).
This requirement can be relaxed as is shown in [1].

3This is in contrast to a standard concurrent zero-knowledge proto-
col [10] that remains zero-knowledge when executed concurrently any
polynomial number of times.

4This is not the only reason that the existence of constant-round
Arthur-Merlin zero-knowledge arguments is interesting. Subsequently
to this paper, [2] showed that the existence of such protocols has sev-
eral implications in the resettable model.

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

bounded concurrent zero-knowledge (i.e. satisfies Prop-
erty 2) with a black-box simulator.

Moreover, this is the first zero-knowledge argument
that achieves both Properties 1 and 4. The previous
state of affairs, where one needed to allow expected
polynomial time simulators in order to have constant-
round zero-knowledge arguments, was rather unsatisfac-
tory and resolving it was suggested as an open problem
[12, Chap. 3], [16, Sec. 4.12.3].

A Brief Summary of Related Work. Zero-
knowledge proofs were introduced by Goldwasser,
Micali and Rackoff in [20]. Goldreich, Micali and
Wigderson [19] gave a zero-knowledge proof for any
language in NP. Constant-round zero-knowledge
arguments and proofs were first presented by Feige
and Shamir [13], Brassard , Crépeau and Yung [5], and
Goldreich and Kahn [17].

A non-black-box zero-knowledge argument was sug-
gested by Hada and Tanaka [21]. However, there it was
under a non-standard assumption that in itself was of a
strong “reverse-engineering” flavor.

Concurrent zero-knowledge was defined by Dwork,
Naor and Sahai [10]. They also constructed a con-
current zero knowledge protocol in the timing model.
Richardson and Kilian constructed a concurrent zero-
knowledge argument (in the standard model) with poly-
nomially many rounds [27]. This was later improved by
Kilian and Petrank to polylogarithmically many rounds
[24]. As mentioned above, Canetti et al [8] (improving
on [25] and [28]) show that this is essentially the best
one can hope for a protocol using black-box simulation.

Some of our techniques (the use of CS proofs) were
first used in a similar context by Canetti, Goldreich and
Halevi [7]. CS proofs were defined and constructed by
Kilian [22], [23] and Micali [26]. Dwork, Naor, Rein-
gold and Stockmeyer [9] have explored some connec-
tions between the existence of non-black-box 3-round
zero-knowledge arguments and other problems in cryp-
tography. Some other “non-black-box results” were
shown by Barak et al [3] in the context of code obfusca-
tion.

2. Overview of Our Construction

To give a flavor of our techniques, we present in this
section a zero-knowledge argument system for NP sat-
isfying all the properties mentioned in the introduction,
other than being bounded concurrent zero-knowledge
and an argument of knowledge.5 That is:

5The protocol, described in the full version of this paper, that sat-
isfies all 5 properties is a modified version of the protocol described in
this section.

1. The protocol has a constant number of rounds and
negligible soundness error.

2. The protocol is an Arthur-Merlin (public coins)
protocol.

3. The protocol has a simulator that runs in strict poly-
nomial time, rather than expected polynomial time.

Items 1 and 2 together imply that the simulator for
this protocol must be a non-black-box simulator, be-
cause if NP � BPP then no such protocol can be
black-box zero-knowledge [18]. Therefore, this proto-
col is inherently a non-black-box zero-knowledge argu-
ment.

Structure of this Section. Our construction uses a
general paradigm, which first appeared in a paper
by Feige, Lapidot and Shamir [11], called the FLS
paradigm. This paradigm is described in Section 2.1.
The FLS paradigm gives us a framework into which
we need to plug two components in order to obtain a
zero-knowledge protocol. The first component, called
a generation protocol, is described in Section 2.2. The
construction described there involves some novel ideas,
which account for the difference between this zero-
knowledge argument and previously known protocols.
In Section 2.3 we describe the second component that
we need to plug into the framework: this is a witness
indistinguishable proof that has some special properties.
Our construction in Section 2.3 uses previous construc-
tions of Kilian [22] and Micali [26]. In Section 2.4 we
review the protocol obtained by plugging the two com-
ponents into the framework, and sketch why it is indeed
a zero-knowledge argument with the required properties.

Notation For a binary relation R, we let L(R)
def
=

{x|∃w s.t. (x,w) ∈ R}. A string w such that (x,w) ∈
R is called a witness or a solution for x. In the context
of a proof system for a language L, we may refer to a
string x as a theorem, where by proving the theorem x
we mean proving the statement “x ∈ L”.

2.1. The FLS Paradigm

Our construction follows the well-known paradigm,
introduced by Feige, Lapidot and Shamir, which we call
the FLS paradigm6. In the FLS paradigm, we convert a
witness indistinguishable7 proof into a zero-knowledge
proof by providing the simulator with a fake witness.

6This paradigm has been introduced in the context of non-
interactive zero-knowledge, but has been used also in the interactive
setting (e.g. [27]).

7For the definition of witness indistinguishable proofs see [14] or
[16, Sec. 4.6].

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

This fake witness allows the simulator to simulate a
proof, where the witness indistinguishable property is
used to ensure that the verifier cannot tell the difference
between the real interaction and the simulated one. Of
course, one must ensure that no polynomially bounded
prover will be able to obtain such a fake witness, or else
the resulting system will no longer be sound.

To be more concrete, the protocol will consists of
two phases. In the first phase, called the generation
phase, the prover and verifier will generate some string,
denoted τ . The prescribed prover and verifier both ig-
nore their input in performing this stage (and so it can
be performed even before knowing what is the theorem
that will be proved). In the second stage, called the WI
proof phase, the prover proves (using a witness indistin-
guishable proof system) that either the theorem is true
or that the generated string τ satisfies some property (in
our case the property will be that τ is a member of a
particular language L(S), for some fixed relation S)8.
For technical reasons we actually need to use a (wit-
ness indistinguishable) proof of knowledge for the sec-
ond phase, rather than just a (WI) proof of membership.
Also, for our purposes it is enough to use an argument
(i.e., a computationally sound proof) rather than a (sta-
tistically sound) proof. It should be noted that if both the
generation protocol and the WI proof of knowledge are
constant-round Arthur-Merlin protocols, then so will be
the resulting zero-knowledge argument.

The generation phase will be designed such that the
following holds:

1. On the one hand, if the verifier follows its pre-
scribed strategy, then it is guaranteed that the string
τ does not satisfy the above property (e.g. τ �∈
L(S)), or at least that no polynomial-size prover
will be able to prove that τ does satisfy the prop-
erty.

2. On the other hand for any (possibly cheating) veri-
fier V ∗, there exists a simulator M∗ that is able to
simulate V ∗’s interaction with the (honest) prover
during the generation protocol in such a way that
not only will the generated string τ satisfy the prop-
erty, but the simulator M∗ will be able to prove
that this is the case. As our property will be mem-
bership in some language L(S), this means that
the simulator will “know” a witness σ such that
(τ, σ) ∈ S. This string σ is the fake witness that
allows the simulator to simulate the second stage.

Previous protocols that used a similar framework
employed relatively simple generation protocols, and

8At this point the reader may think of S as an NP relation, how-
ever in our actual construction we will use a relation S of slightly
higher complexity.

the simulators used rewinding to obtain the solution
σ for the generated string τ (see for example [27]).
In particular, no previous generation protocol was a
constant-round Arthur-Merlin protocol, as such a pro-
tocol would necessarily have a non-black-box simula-
tor (because otherwise one could have plugged such a
protocol into the FLS framework (with a constant-round
Arthur-Merlin WI proof of knowledge) and obtain a
constant-round Arthur-Merlin protocol that is black-box
zero-knowledge).

2.2. Our Generation Protocol

Our generation protocol is a constant-round Arthur-
Merlin protocol, and so has a non-black-box simulator.
Before presenting the protocol itself, we describe more
precisely the conditions that such a protocol should sat-
isfy. For some fixed relation S we require that the pro-
tocol satisfies that:

1. (Hardness) The prescribed verifier has the prop-
erty that for any (possibly cheating) polynomial-
size prover P ∗, for τ denoting the string generated
by the interaction of the prescribed verifier with
P ∗, the probability that P ∗ outputs a solution for
τ (i.e., a string σ such that (τ, σ) ∈ S) is negligi-
ble.

2. (Easiness) For any (possibly cheating) polynomial-
size verifier V ∗, we require that there exists a simu-
lator M∗ that outputs a pair (e, σ) that satisfies the
following:

(a) The first element e is a simulation of the view
of V ∗ in a real execution with the (honest)
prover. That is, the view of V ∗ when inter-
acting with the prescribed prover is compu-
tationally indistinguishable from the first ele-
ment, e. Recall that the view of V ∗ consists
of all the messages V ∗ receives and its ran-
dom tape. Without loss of generality we as-
sume that this view contains also all messages
that V ∗ sends and so also contains the string
τ generated in this execution.

(b) For τ denoting the string generated in an ex-
ecution with view e, the string σ is a solution
for τ (i.e., (τ, σ) ∈ S).

2.2.1 The basic approach

The general approach in our generation protocol is to
try to set up a situation where finding a solution to the
generated string τ will be equivalent to predicting one
of the verifier’s messages before it is sent. We will then
obtain the hardness condition by having the prescribed
verifier choose this message at random, and so infer that

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

no prover can predict this message with non-negligible
probability. In contrast, for any (possibly cheating) ver-
ifier V ∗, the corresponding simulator, knowing (i.e. get-
ting) V ∗’s code and random tape can predict the mes-
sages that V ∗ sends.

In this subsection, we will construct a generation pro-
tocol for which the easiness property holds only with
respect to verifiers that, when run with security param-
eter 1n, the total length of their code (where by code
we mean the description of the verifier’s Turing machine
along with any auxiliary input that the verifier gets) and
random tape is at most n3. We call such verifiers n3-
bounded (the choice of n3 is quite arbitrary). We will
later modify the protocol in order to remove this restric-
tion.

Consider a two-round protocol in which the prover
first sends a message z and then the verifier responds
with a message v. We know that for any (possibly cheat-
ing) verifier V ∗, the message v is obtained by apply-
ing the next-message function9 of V ∗ , denoted NMV ∗ ,
to the message z; that is, v = NMV ∗(z). Given
the code and random tape of V ∗, one can construct in
polynomial-time a program that computes the function
NMV ∗ . For n3-bounded verifiers, the length of this pro-
gram will be at most n3, where 1n is the security param-
eter (and so we can assume without loss of generality
that the length of this program is exactly n3).

In a protocol of the above type, we say that the mes-
sage z predicts the message v if z is a commitment to
a program Π such that Π(z) = v. That is, z predicts
v if there exists a program Π and a string s (serving as
coins for the commitment) such that z = C(Π; s) and
Π(z) = v, where C is some fixed (perfect-binding and
computationally-hiding) commitment scheme. We see
that for any z, if the message v is chosen uniformly and
independently of z in {0, 1}n , then the probability that
v = Π(z), where Π = C−1(z) 10, is at most 2−n.

These observations lead us to the following suggestion
for a generation protocol:

Protocol 1:
• Input: 1n - security parameter

1. Prover’s first step (P1): Compute z ← C(0n3
).

Send z.
2. Verifier’s first step (V1): Choose v uniformly in
{0, 1}n. Send v.

We let the string τ generated by the protocol be its tran-
script (i.e., τ = 〈z, v〉). We define the following rela-
tion S1: for τ = 〈z, v〉 and σ = 〈Π, s〉 we say that
(τ, σ) ∈ S1 if and only if:

9Note that once we fix the random tape of V ∗, this is a (determin-
istic) function.

10That is, Π is the unique string committed to by z

1. z is a commitment to Π using coins s. That is, z =
C(Π; s).

2. Π(z) = v.

Clearly, Protocol 1 and the relation S1 satisfy the
hardness property. In fact they satisfy this property even
with respect to computationally unbounded provers, be-
cause (regardless of the prover’s strategy) as long as the
verifier follows its prescribed strategy, it will be the case
that τ �∈ L(S1) with probability at least 1 − 2−n. Pro-
tocol 1 for S1 also satisfies the easiness property with
respect to n3-bounded verifiers: Let V ∗ be such a ver-
ifier. The simulator M∗ for V ∗ will compute z to be a
commitment (with coins s) for a program Π that com-
putes next message function NMV ∗ (the simulator will
compute such a program Π of length n3 using the code
and random tape of V ∗). By the security of the com-
mitment scheme, we know that the distribution of z is
computationally indistinguishable from the distribution
of the first message of the prescribed prover. Moreover,
if we let v be V ∗’s reply to z (i.e. v = NMV ∗(z)) then
we know that it holds that (〈z, v〉, 〈Π, s〉) ∈ S1. We
see that we have a simulator that satisfies both Parts (a)
and (b) of the easiness condition. The following obser-
vation will be useful for us in the future:

Observation 2.1. For any n3-bounded verifier V ∗, the
simulator M∗ defined above actually satisfies a stronger
condition than is needed for Part (b) of the easiness con-
dition: not only that it holds that Π(z) = v, but that if
V ∗ runs in time t(|z|), then on input z, the program Π
outputs v within t(|z|)2 steps.

Observation 2.1 implies that the fact that the simu-
lator M∗’s second output σ is a solution for τ can be
verified in time which is some fixed polynomial in the
running time of V ∗. From now on we shall make this
requirement, that the simulator outputs an efficiently ver-
ifiable solution, a part of the easiness condition.

2.2.2 Difficulties and Resolving them

We have two problems with the construction above:

1. Our simulator works only for n3-bounded verifiers
(i.e., verifiers for which the total size of the code
and randomness is at most n3). In particular this
means that when we plug this generation protocol
into the FLS framework, we will obtain a protocol
that is zero-knowledge in some meaningful sense
but not with respect to verifiers with (polynomial-
size) auxiliary input. This is less desirable, be-
cause the condition of zero knowledge with respect
to auxiliary input is needed for many applications
(e.g., for proving preservation of zero-knowledge
with respect to sequential composition).

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

2. As defined above, the relation S1 is undecidable
(this can be seen via a direct reduction from the
halting problem). This is a more serious problem,
because it implies that when plugging our genera-
tion protocol into the FLS framework, we will need
to use a witness indistinguishable proof for unde-
cidable relations (which does not exist11).

The reason for the first problem is that the simulator’s
first message is a commitment to a program of about the
same size as the code and random tape of the verifier,
and a perfectly binding commitment cannot reduce the
size of its input. Our solution will be to use a collision-
resistent hash function h(·), and so have the simulator
send a commitment to a hash of the program, instead
of the program itself. By combining a commitment
with a hash function we obtain a commitment scheme
that is only computationally binding , and so the hard-
ness condition will now hold only against adversaries
of bounded computational power. As we want the hash
function to be collision-resistent also for non-uniform
adversaries, we will need to use a hash function ensem-
ble {hκ}κ∈{0,1}∗ , and so we will have the verifier send
the index κ of the hash function to be used as a prelimi-
nary step (we assume that hκ is a function from {0, 1}∗
to {0, 1}|κ|). Also, for technical reasons we require that
the hardness condition will hold against nlog n-size ad-
versaries (rather than just against polynomial-size adver-
saries), and so we will assume that the hash function re-
mains collision resistent also against nlog n-size adver-
saries12.

To deal with the second problem, we will change
the definition of the relation S1 to require that on in-
put z, the program Π outputs v within nlog log n steps.
This will reduce the complexity of S1 to being an
Ntime(nlog log n) relation. As a first observation, note
that this modification does not harm the hardness condi-
tion, because for any string τ , we only eliminate some of
the solutions σ that were allowed by the previous defini-
tion. This modification also does not harm the easiness
condition: The reason is that, due to Observation 2.1,
the solution σ = 〈Π, s〉 outputted by the simulator for a
string τ = 〈z, v〉 will always satisfy that Π(z) outputs v
within the time complexity of the simulated verifier V ∗,

11This is not entirely accurate, as one might be able to use a WI
proof system with some guarantees regarding instance based complex-
ity (as opposed to worst-case complexity). In fact, our final approach
will be along these lines.

12For the sake of simplicity, in this overview section we fix the hard-
ness of the hash function ensemble to be nlog n. Actually, as is shown
in the full version of this paper, the same analysis works whenever
the hardness is a “nice” super-polynomial function (e.g., nlog log n).
In [1] it is shown that a (slightly more complicated) protocol can be
constructed under the more standard assumption that a hash function
ensemble exists with arbitrary super-polynomial hardness.

Generation Protocol

• Input: 1n - security parameter

1. Verifier’s first step (V1): Choose κ ←R {0, 1}n.
Send κ.

2. Prover’s first step (P1): Compute z ← C(0n). Send
z.

3. Verifier’s first step (V2): Choose v ←R {0, 1}n.
Send v.

The string outputted by this protocol is its transcript τ =
〈κ, z, v〉
Definition of relation S: For τ = 〈κ, z, v〉 and σ =
〈Π, s〉 we say that (τ, σ) ∈ S if and only if:

1. z is a “hashed commitment” to Π using coins s and
hash function hκ. That is, z = C(hκ(Π); s).

2. On input z, the program Π outputs v within nlog log n

steps.

Figure 1. Definitions for the generation
protocol and the relation S

and so within less than nlog log n steps. We will also need
to change the definition of S1 in order to accommodate
the hash function. We denote this modified relation by
S.

The definitions of the Ntime(nlog log n) relation S
and the generation protocol are shown in Figure 1. We
claim that this relation and generation protocol satisfy
both the easiness and the hardness condition. Observe
that the hardness condition holds against nlog n-size
provers, rather than just against polynomial-size provers
(we will later make use of this fact). Observe also
that the generation protocol is a constant-round Arthur-
Merlin protocol.

2.3. A Witness Indistinguishable Argument for
Ntime(nlog log n)

Suppose that S was an NP relation. In this case, if
we plug the generation protocol of Figure 1 into the FLS
framework, then we can use any constant-round Arthur-
Merlin WI proof of knowledge for NP for the second
phase, and obtain a zero-knowledge argument system
for NP.

Our problem is that the relation S is not an NP rela-
tion, but rather an Ntime(nlog log n) relation. A natural
question is whether a WI argument system (with poly-
nomial communication) for Ntime(nlog log n) relations
exists, and if so, does there exist such a system that is a
constant-round Arthur-Merlin protocol. The answer to

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

the first question is yes: Kilian [23] has constructed, un-
der suitable complexity assumptions, a constant-round
WI argument system for Ntime(nlog log n) relations.
However, his system is not an Arthur-Merlin protocol13,
and so we will need to construct such a system ourselves.
In fact we will need an “enhanced” WI argument for
Ntime(nlog log n), that satisfies some extra properties,
such as prover efficiency and verifier efficiency (as de-
fined by Micali in [26]). Let S′ be an Ntime(nlog log n)
relation. The properties that we will require (and our
construction will fulfill) from a WI argument system for
S′ will be the following (where Properties 1-3 are the
standard definition of WI arguments):

1. (Witness Indistinguishability) For any τ and σ, σ′

such that (τ, σ), (τ, σ′) ∈ S′, and for any
polynomial-size verifier V ∗, the view of V ∗ when
interacting with the honest prover that gets σ as
auxiliary input is computationally indistinguish-
able from its view when interacting with the honest
prover that gets σ′ as auxiliary input.

2. (Perfect Completeness) The honest prover, when
given as input (τ, σ) ∈ S′, convinces the prescribed
verifier with probability 1 that indeed τ ∈ L(S′).

3. (Computational Soundness) For any polynomial-
size strategy P ∗, and any τ �∈ L(S′), the proba-
bility that P ∗ can convince the prescribed verifier
is negligible.

4. (Verifier Efficiency) The length of all messages and
the running time of the prescribed verifier are some
fixed polynomial in the security parameter

5. (Prover Efficiency) There is a fixed Turing machine
MS′ that decides S′, such that the honest prover,
on input (τ, σ) ∈ S′, runs in time which is some
fixed polynomial in the running time of MS′ on
(τ, σ). That is, the time to prove in the WI system
is some fixed polynomial in the time to determinis-
tically verify the solution for τ .

6. (Weak Proof of Knowledge) For any polynomial-
size prover strategy P ∗ and any input τ , there ex-
ists a nO(log log n)-time knowledge extractor E such
that the probability that P ∗ can convince the pre-
scribed CS verifier that τ ∈ L(S′) is polynomially
related to the probability that E(τ) outputs a solu-
tion to τ 14.

13This is not surprising, since his protocol is in fact a black-box
zero-knowledge argument system.

14Note that we do not require that the probability of E’s success in
outputting a solution will be the same or close to the probability of P ∗
convincing the verifier. We only require that these probabilities are
polynomially related. Note also that we allow the knowledge extractor
to run in time nO(log log n) rather than just in polynomial time.

Sketch of our construction. The main tool that we
use to construct our WI argument system is CS proofs
(CS stands for computationally sound). A CS proof sys-
tem is a proof system that satisfies Properties 2-6 above
(that is, everything apart from the witness indistinguish-
able property). CS Proofs (by a somewhat different def-
inition) were defined and constructed by Kilian [22] and
Micali [26] based on the PCP Theorem. It follows
from [22] and [26] that under our complexity assump-
tions (namely the existence of collision-resistent hash
functions strong against nlog n size adversaries) there ex-
ists a 4-round Arthur-Merlin CS proof system for any
Ntime(nlog log n) relation. We denote the 4 messages
sent in the CS proof by α, β, γ, δ. We assume without
loss of generality that |α| = |β| = |γ| = |δ| = n2.

Let S′ be an Ntime(nlog log n) relation. Our con-
struction for a WI argument system for S′, described in
Figure 2, will consist of two phases. In the first phase,
the prover and verifier engage in an “encrypted” CS
proof that τ ∈ L(S′), when τ is the theorem that is to
be proved. Specifically, the verifier follows the strategy
of the CS verifier (i.e., sends random strings of length
n2), but the prover sends only commitments to the actual
CS prover’s messages. In the second phase, the prover
proves (using a standard15 constant-round WI proof of
knowledge for NP) that the transcript consisting of the
verifier’s messages along with the decommitments of the
prover’s messages, would have convinced the prescribed
CS verifier that τ ∈ L(S′).

2.4. Plugging Everything In

Let L = L(R) be an NP language. We claim that
if we plug the generation protocol and the relation S of
Figure 1 along with the WI argument of Figure 2 (ap-
plied to the relation S′ defined such that 〈x, τ〉 ∈ L(S′)
if x ∈ L(R) or τ ∈ L(S)) into the FLS framework,
then we obtain a constant-round Arthur-Merlin zero-
knowledge argument for L (with a simulator that runs
in strict polynomial time). We will mention some issues
that are involved in proving this statement:
• The fact that the honest prover runs in polynomial

time is proven using the prover efficiency condi-
tion of the WI argument system. This follows from
the fact that when proving that x ∈ L, the hon-
est prover gets as auxiliary input a witness w such
that (x,w) ∈ R. As R is an NP relation, check-
ing whether (x,w) ∈ R can be done in time which
is some fixed polynomial in |x|, say |x|c for some

15Actually we will need to require that the WI proof for NP sat-
isfies a slightly stronger condition called strong witness indistinguish-
ablity (see [16], Section 4.6.1.1). All standard WI proof satisfy this
condition, because it is implied by zero-knowledge and it is closed
under parallel and concurrent composition.

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

• Common Input: τ (the theorem to be proven in L(S′)),
1n: security parameter

• Auxiliary Input to prover: σ such that (τ, σ) ∈ S′.

1. Phase 1: “Encrypted” CS proof.

(a) Verifier’s first step (V1): Choose α uniformly in
{0, 1}n2

; Send α.

(b) Prover’s first step (P1):

i. Initiate CS prover algorithm with (σ, τ).
ii. Feed α to the CS prover, and obtain its re-

sponse β. (β ∈ {0, 1}n2
)

iii. Send a commitment to β: Choose s′ uni-
formly in {0, 1}n3

; Compute β̂ ← C(β; s′);
Send β̂.

(c) Verifier’s second step (V2): Choose γ uniformly
in {0, 1}n2

; Send γ;

(d) Prover’s second step (P2):

i. Feed γ to the CS prover, and obtain its re-
sponse δ. (δ ∈ {0, 1}n2

)

ii. Send a commitment to δ: Choose s′′ uni-
formly in {0, 1}n3

; Compute δ̂ ← C(δ; s′′);
Send δ̂.

2. Phase 2: An NP WI Proof of Knowledge.

(a) Prover and verifier engage in a constant-round
Arthur-Merlin witness indistinguishable proof of
knowledge that 〈τ, α, β̂, γ, δ̂〉 ∈ L(T) where T is
the following NP relationa:

(〈τ, α, β̂, γ, δ̂〉, 〈β, s′, δ, s′′〉) ∈ T if and only if
the following holds:

i. β̂ is a commitment to β using coins s′. That
is, β̂ = C(β; s′).

ii. δ̂ is a commitment to δ using coins s′′. That
is, δ̂ = C(δ; s′′).

iii. The CS transcript (τ, α, β, γ, δ) convinces the
CS verifier that τ ∈ L(S′).

aThe fact that T is indeed an NP relation is implied by the verifier
efficiency condition of the CS proof. This condition implies that membership
in T can be verified in polynomial time.

Figure 2. A Witness Indistinguishable Ar-
gument for L(S′)

c > 0. Yet the prover efficiency condition implies
that proving that either x ∈ L(R) or τ ∈ L(S)
(i.e. proving that 〈x, τ〉 ∈ L(S′)) using the WI ar-
gument system with auxiliary input w takes time
which will be some fixed polynomial in |x|c.

• Computational soundness is proven using the
(weak) proof of knowledge condition of the WI ar-
gument and the hardness condition of the genera-
tion protocol: By the proof of knowledge condition
of the WI argument, any prover that convinces the
verifier that x ∈ L “knows” either a witness w such
that (x,w) ∈ R or a witness σ such that (τ, σ) ∈ S
(where τ is the string generated in the generation
phase). Yet the hardness condition of the genera-
tion protocol implies that the probability of the lat-
ter event is negligible. This means that if the prover
convinces the verifier with non-negligible probabil-
ity that x ∈ L, then the prover must “know” a wit-
ness w such that (x,w) ∈ R and in particular it
must be the case that such w exists and so indeed
x ∈ L.

Note that we use the fact that the hardness con-
dition holds against nlog n-size adversaries, be-
cause the knowledge extractor of our WI argu-
ment does not run in polynomial time, but rather
in nO(log log n) time.

• Zero-knowledge is proved using the witness indis-
tinguishability condition of the WI argument and
the easiness condition of the generation protocol.
The simulator for the zero-knowledge protocol uses
the simulator of the easiness condition to simulate
the first phase and then uses the solution σ pro-
vided by this simulator as an auxiliary input (i.e.,
a fake witness) to the prover strategy for the WI
argument. The simulation will be computationally
indistinguishable from a real interaction of the first
phase by Part (a) of the easiness condition. The
string σ will be a solution to the string τ generated
in this simulation by Part (b) of the easiness condi-
tion.

The prover efficiency condition for the WI argu-
ment, along with the condition stated in Obser-
vation 2.1 (i.e., that the simulator for the gener-
ation protocol outputs an efficiently verifiable so-
lution), assures us that the simulator for the zero-
knowledge protocol will run in (strict) polynomial
time. This follows from the same reasons (de-
scribed above) that the honest prover for the zero-
knowledge argument runs in polynomial time16

16Note that, in contrast to the prover that runs in some fixed polyno-
mial time, the simulator will run in time which is some fixed polyno-
mial in the running time of the verifier that is being simulated.

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

Intuitively, the simulator presented above does not
use the rewinding technique (although it is probably im-
possible to give a precise meaning to the phrase “not us-
ing the rewinding technique” for a simulator that gets as
input the description of the code of the verifier). Rather,
it uses the code and random tape of the verifier as a
“fake” witness that allows it to simulate the behavior of
the honest prover, that gets as input a real witness.

3. Conclusions and Future Directions

Arguably, our simulator does not “reverse-engineer”
the verifier’s code, although it applies some non-trivial
transformations (such as a PCP reduction and a Cook-
Levin reduction) to this code. Yet, we see that even with-
out doing “true” reverse-engineering, one can achieve
results that are impossible in a black-box model. This
is in a similar vein to [3], where the impossibility of
code obfuscation is shown without doing “true” reverse-
engineering. One may hope to be able to define a model
for an “enhanced black-box” simulator that would be
strong enough to allow all the techniques we used, but
weak enough to prove impossibility results that explain
difficulties in constructing certain objects. We’re not op-
timistic about such attempts.

There are several negative results regarding the power
of black-box zero-knowledge arguments. The existence
of non-black-box simulators suggests a reexamination
of whether these negative results holds also for general
(non-black-box) zero-knowledge. Indeed, we have al-
ready shown in this paper that some of these results do
not hold in the general setting. The case of concurrent
composition is an important example. The results of [8]
imply that (for a constant-round protocol) it is impossi-
ble to achieve even bounded concurrency using black-
box simulation. We have shown that this result does not
extend to the non-black-box settings. However, it is still
unknown whether one can obtain a constant-round pro-
tocol that is (fully) concurrent zero-knowledge. This is
an important open question.

In this work we constructed our protocols based on
the assumption that collision resistent hash function ex-
ist with some fixed “nice” super-polynomial hardness. It
would be nicer to construct the protocol using the more
standard assumption that collision resistent hash func-
tions exist with arbitrary super-polynomial hardness. In-
deed this can be done, and in [1], Barak and Goldreich
construct CS proofs (by a slightly different definition)
based on the more standard assumption. Using this con-
struction, they show that a slightly modified version of
the protocol presented here, enjoys the same properties
under the more standard assumption.

Following this work, Barak, Goldreich, Goldwasser

and Lindell [2] have shown another case where a black-
box impossibility result does not hold in the general set-
ting. Using results of the current paper, they construct
an argument of knowledge17 that is zero-knowledge in
the resettable model. As noted by [6], this is trivially
impossible in the black-box model.

There are also several negative results regarding what
can be achieved using black-box reductions between two
cryptographic primitives (rather than black-box use of
an adversary by a simulator). Although this paper does
not involve the notion of black-box reductions (and non-
black-box reductions such as [19, 13] are already known
to exist), the results here may serve as an additional sign
that in general, similarly to relativized results in com-
plexity theory, black-box impossibility results cannot
serve as strong evidence toward real world impossibil-
ity results.

The fact that we’ve shown a constant-round Arthur-
Merlin zero-knowledge protocol, can be viewed as
some negative evidence on the soundness of the Fiat-
Shamir heuristic [15]. This heuristic converts a constant-
round Arthur-Merlin identification scheme into a non-
interactive signature scheme by replacing the verifier’s
messages with a hash function.18 It is known that the
resulting signature scheme will be totally breakable if
the original protocol is zero-knowledge [9]. Thus, there
exist some constant-round Arthur-Merlin protocols on
which the Fiat-Shamir heuristic cannot be applied.

We’ve shown the first constant-round zero-
knowledge protocol with a strict polynomial-time
simulator, instead of an expected polynomial-time sim-
ulator. Another context in which expected polynomial
time arises is in constant-round zero-knowledge proofs
of knowledge (e.g., [12, Chap. 3], [16, Sec. 4.7.6.3]). In
[4] Barak and Lindell construct, using the protocol pre-
sented here, a constant-round zero-knowledge argument
of knowledge with a strict polynomial-time extractor.

Acknowledgments

First and foremost, I would like to thank Oded Gol-
dreich. Although he refused to co-author this paper,
Oded’s suggestions, comments, and constructive criti-
cism played an essential part in the creation of this work.
I would also like to thank Alon Rosen, Shafi Gold-
wasser and Yehuda Lindell for very helpful discussions.
In particular, it was Alon’s suggestion to use the FLS
paradigm to construct the zero-knowledge argument, a

17Here and in [4] we use a slightly relaxed definition of arguments
of knowledge, that allows the knowledge extractor access to the de-
scription of the prover, rather than limiting it to using the prover as an
oracle.

18This heuristic is usually applied to 3 round protocols, but it can be
applied to any constant-round Arthur-Merlin protocol.

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

change which considerably simplified the construction
and its presentation.

References

[1] B. Barak and O. Goldreich. Cs proofs under a standard
assumption. In preparation, 2001.

[2] B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell.
Resettably-sound zero-knowledge and its applications.
These proceedings., 2001.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahay, S. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. To appear in
CRYPTO 2001, 2001.

[4] B. Barak and Y. Lindell. Zero-knowledge arguments
of knowledge with strict polynomial-time extraction. In
preparation, 2001.

[5] G. Brassard, C. Crépeau, and M. Yung. Everything in NP
can be argued in perfect zero-knowledge in a bounded
number of rounds. In J.-J. Quisquater and J. Vandewalle,
editors, Advances in Cryptology—EUROCRYPT 89, vol-
ume 434 of Lecture Notes in Computer Science, pages
192–195. Springer-Verlag, 1990, 10–13 Apr. 1989.

[6] R. Canetti, O. Goldreich, S. Goldwasser, and S. Mi-
cali. Resettable zero-knowledge (extended abstract).
In ACM, editor, Proceedings of the 32nd annual ACM
Symposium on Theory of Computing: Portland, Oregon,
May 21–23, [2000], pages 235–244. ACM Press, 2000.

[7] R. Canetti, O. Goldreich, and S. Halevi. The random
oracle methodology, revisited. In Proceedings of the
30th Annual ACM Symposium on Theory of Computing,
pages 209–218, Dallas, 23–26 May 1998.

[8] R. Canetti, J. Kilian, E. Petrank, and A. Rosen.
Black-box concurrent zero-knowledge requires ω̃(log n)
rounds. Record 2001/051, Cryptology ePrint Archive,
June 2001. An extended abstract appeared in STOC01.

[9] C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer.
Magic functions. In IEEE, editor, 40th Annual Sym-
posium on Foundations of Computer Science: October
17–19, 1999, New York City, New York,, pages 523–534.
IEEE Computer Society Press, 1999.

[10] C. Dwork, M. Naor, and A. Sahai. Concurrent zero
knowledge. In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing (STOC-98), pages
409–418, New York, May 23–26 1998. ACM Press.

[11] Feige, Lapidot, and Shamir. Multiple noninteractive zero
knowledge proofs under general assumptions. SICOMP:
SIAM Journal on Computing, 29, 1999.

[12] U. Feige. Alternative Models for Zero Knowledge Inter-
active Proofs. PhD thesis, Weizmann Institute of Sci-
ence, 1990.

[13] U. Feige and A. Shamir. Zero knowledge proofs of
knowledge in two rounds. In G. Brassard, editor, Ad-
vances in Cryptology—CRYPTO ’89, volume 435 of
Lecture Notes in Computer Science, pages 526–545.
Springer-Verlag, 1990, 20–24 Aug. 1989.

[14] U. Feige and A. Shamir. Witness indistinguishable and
witness hiding protocols. In ACM, editor, Proceedings

of the 22nd annual ACM Symposium on Theory of Com-
puting, Baltimore, Maryland, May 14–16, 1990, pages
416–426, 1990.

[15] A. Fiat and A. Shamir. How to Prove Yourself: Practical
Solutions to Identification and Signature Problems. In
Proc. CRYPTO’86, pages 186–194. LNCS 263, Springer
Verlag, 1986.

[16] O. Goldreich. Foundations of Cryptography, volume 1 –
Basic Tools. Cambridge University Press, 2001.

[17] O. Goldreich and A. Kahan. How to construct constant-
round zero-knowledge proof systems for NP. Journal of
Cryptology, 9(3):167–189, Summer 1996.

[18] O. Goldreich and H. Krawczyk. On the composition of
Zero-Knowledge Proof systems. SICOMP, 25(1):169–
192, 1996. Preliminary version appeared in ICALP90,
pages 268–290.

[19] O. Goldreich, S. Micali, and A. Wigderson. Proofs
that yield nothing but their validity or all languages in
NP have zero-knowledge proof systems. Journal of the
Association for Computing Machinery, 38(3):691–729,
July 1991.

[20] S. Goldwasser, S. Micali, and C. Rackoff. The knowl-
edge complexity of interactive proof systems. SIAM J.
Comput., 18(1):186–208, 1989.

[21] S. Hada and T. Tanaka. On the existence of 3-round zero-
knowledge protocols. Cryptology ePrint Archive, Report
1999/009, 1999. http://eprint.iacr.org/.

[22] J. Kilian. A note on efficient zero-knowledge proofs
and arguments (extended abstract). In ACM, editor, Pro-
ceedings of the 24th annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, May
4–6, 1992, pages 723–732, 1992.

[23] J. Kilian. Improved efficient arguments (preliminary
version). In D. Coppersmith, editor, Advances in
Cryptology—CRYPTO ’95, volume 963 of Lecture Notes
in Computer Science, pages 311–324. Springer-Verlag,
27–31 Aug. 1995.

[24] J. Kilian and E. Petrank. Concurrent zero-knowledge
in poly-logarithmic rounds. Cryptology ePrint Archive,
Report 2000/013, 2000. http://eprint.iacr.
org/, an extended abstract appeared in STOC01.

[25] J. Kilian, E. Petrank, and C. Rackoff. Lower bounds
for zero knowledge on the Internet. In IEEE, editor,
39th Annual Symposium on Foundations of Computer
Science: proceedings: November 8–11, 1998, Palo Alto,
California, pages 484–492, 1998.

[26] S. Micali. CS proofs. In S. Goldwasser, editor, Proceed-
ings: 35th Annual Symposium on Foundations of Com-
puter Science, November 20–22, 1994, Santa Fe, New
Mexico, pages 436–453. IEEE Computer Society Press,
1994.

[27] Richardson and Kilian. On the concurrent composition
of zero-knowledge proofs. In EUROCRYPT: Advances
in Cryptology: Proceedings of EUROCRYPT, 1999.

[28] A. Rosen. A note on the round-complexity of concurrent
zero-knowledge. In CRYPTO: Proceedings of Crypto,
2000.

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

