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Linear-Time Recognition of Circular-Arc Graphs1

Ross M. McConnell2

Abstract. A graph G is a circular-arc graph if it is the intersection graph of a set of arcs on a circle. That
is, there is one arc for each vertex of G, and two vertices are adjacent in G if and only if the corresponding
arcs intersect. We give a linear-time algorithm for recognizing this class of graphs. When G is a member of
the class, the algorithm gives a certificate in the form of a set of arcs that realize it.
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1. Introduction. The intersection graph of a family of n sets is the graph where the
vertices are the sets, and the edges are the pairs of sets that intersect. Every graph is the
intersection graph of some family of sets [16]. A graph is an interval graph if there is a
way to order the universe from which the sets are drawn so that each set is consecutive.
Equivalently, a graph is an interval graph if it is the intersection graph of a finite set of
intervals on a line. A graph is a circular-arc graph if it is the intersection graph of a
finite set of arcs on a circle. (See Figure 1.) A realizer of an interval graph or circular-arc
graph G is a set of intervals or circular arcs that represent G in this way.

An interval graph is a special case of circular-arc graphs; it is a circular-arc graph that
can be represented with arcs that do not cover the entire circle. Some circular-arc graphs
do not have such a representation, so the class of interval graphs is a proper subclass of
the class of circular-arc graphs.

Interval graphs and circular-arc graphs arise in scheduling problems and other combi-
natorial problems. Before the structure of DNA was well understood, Benzer [1] was able
to show that the set of intersections of a large number of fragments of genetic material
in a virus were an interval graph. This provided strong evidence that genetic information
was arranged inside a structure with a linear topology.

Being able to determine whether a graph is an interval graph or circular-arc graph
constitutes recognition of these graph classes. However, having a representation of a
graph with intervals or arcs can be helpful in solving combinatorial problems on the graph,
such as isomorphism testing and finding maximum independent sets and cliques [4], [14].
Therefore, a stronger result than just recognizing the class is being able to produce the
representation whenever a graph is a member of the class. In addition to its other uses,
the representation constitutes a certificate that the graph is a member of the class.
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Fig. 1. A circular-arc graph is the intersection graph of a set of arcs on the circle, while an interval graph is
the intersection graph of a set of intervals on the line.

Fulkerson and Gross [10] gave an O(n4) algorithm for solving this problem on interval
graphs. Booth and Lueker later improved this to linear time [3]. Until now, a linear-time
bound for circular-arc graphs has been elusive.

The reason that the problem is harder on circular-arc graphs than on interval graphs is
that there are two ways to travel from one point to another on a circle, as opposed to just
one on a line. When attempting to construct a realizer of a circular-arc graph, one must
choose one of these when joining an adjacent pair of arcs, and the correct choice is not
always obvious. The necessity of making these choices is absent in the interval-graph
recognition problem. In an interval graph the maximal cliques correspond to regions of
maximal overlap among the intervals, and there are therefore O(n)maximal cliques. This
plays an important role in Booth and Lueker’s algorithm. This is not true of circular-arc
graphs. For instance, three arcs can intersect pairwise around the circle, yet have no point
in common. The number of maximal cliques in a circular-arc graph can be exponential
in n [29].

It was initially conjectured by Booth [2] that recognition of circular-arc graphs was
NP-complete. Tucker disproved this with an O(n3) algorithm [29]. Hsu improved this to
O(nm), where m is the number of edges [14], and Eschen and Spinrad further improved
this to O(n2) [9].

In the current paper, which appeared in preliminary form in [17], we give an O(n+m)
time bound. Because this is linear in the size of the graph, further improvements to the
time bound are not possible. Like the previous algorithms, this one produces a set of arcs
that realize the graph whenever it is a circular-arc graph.

The algorithm is based on modular decomposition, transitive orientation of compara-
bility graphs, and algorithms on permutation graphs and interval graphs. For overviews
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of these topics, their applications, and their relationships to circular-arc graphs, see the
books by Golumbic [12] and Roberts [25], and the survey article by Möhring [22].

2. Preliminaries. We may assume without loss of generality that no endpoints of arcs
coincide, since in any realizer where they do, the endpoints can be moved by small
amounts to make this true. To avoid cumbersome terms, we call the clockwise endpoint
of an arc the left endpoint, and the counterclockwise endpoint the right endpoint. We can
remember this relationship by thinking of the arc as “facing” the center of the circle. If
x is a vertex of the graph, l(x) and r(x) denote the left and right endpoints of its arc. In
contexts where the realizer is understood, we find it convenient to let x stand both for a
vertex in G and for the arc [l(x), r(x)] in the realizer.

If G is a circular-arc graph with realizer R, and X is a subset of the vertices, then
R|X is the restriction of R to X , namely, the result of removing from R those arcs
corresponding to vertices not in X . Clearly, R|X is a realizer of G|X .

We will operate on a realizer that is equivalent to a geometric one, namely, a circular
ordering of {l(x) : x ∈ V } ∪ {r(x) : x ∈ V }. The circular ordering represents the order
of left and right endpoints as one travels counterclockwise around the circle. The circular
ordering can be represented by an ordered list, where an incremental rightward movement
is a movement from position i to position i + 1 (mod 2n). We call this the circular-list
representation of the realizer. A circular-arc graph may have more than one realizer;
when counting its realizers, we consider two realizers to be the same if one is a cyclic
permutation of the other, and different otherwise. If G is an interval graph, we adopt the
convention of circularly permuting the realizer so that an uncovered part of the circle
occurs immediately following the last endpoint in the list. We call this the ordered list
representation of an interval realizer. We consider two sets of intervals to be equivalent if
their ordered-list representations are identical. Let the mirror transpose RT of a realizer
be the result of reversing the order of elements in the ordered list representation and
reversing the roles of left and right endpoints.

Let G = (V, E) be a graph. By n(G) and m(G) we denote the number of vertices
and edges, respectively, of G. We use n and m for these if G is understood. Let E ′ ⊆ G
denote that E ′ ⊆ E , and let e ∈ G denote that e ∈ E . Ḡ denotes the complement of
G, whose vertices are V and whose edges are the nonedges of G. If G is a digraph, GT

denotes its transpose, which is obtained by reversing the directions of all of its directed
edges. If v is a vertex in G, let N (G, v) denote the neighbors of v in G. When G is
understood, we may use N (v) to denote this. N [G, v] denotes the closed neighborhood,
N (G, v) ∪ {v}, and N [v] denotes this when G is understood. Let N̄ (G, v) denote the
set V − N [G, v] of non-neighbors of v, and let N̄ (v) denote the same thing when G is
understood.

If A is a matrix, we let Ai j denote the value in row i and column j of A. If X ⊆ V ,
G|X denotes the restriction of G to X , namely, the graph G ′ = (X, E ∩ (X × X)).
Similarly, if A is an n × n matrix and X is a subset of {1, 2, . . . , n}, then A|X is the
|X | × |X | matrix of entries whose rows and columns are both in X . An n × n matrix
can be represented with a directed edge-labeled graph on n vertices numbered 1 through
n. The label of the directed edge from vertex i to vertex j is just the entry in row i and
column j of the matrix. We may therefore refer to the vertices and edges of a matrix.
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A transitive orientation of an undirected graph is an assignment of directions to its
edges so that the resulting digraph is a transitive dag. A graph is a comparability graph if
there exists a transitive orientation of it. Finding a transitive orientation of a comparability
graph takes O(n+m) time [18]. The complement of an interval graph is a comparability
graph.

A permutation graph is a graph that is a comparability graph, and whose complement
is also a comparability graph. The union of a transitive orientation of a permutation
graph and a transitive orientation of its complement gives a linear order on the vertices.
Reversing the orientations in the complement and again taking the union of the two gives
another linear order. Two vertices are adjacent in the graph iff their relative order is the
same in both of these orderings. This permutation realizer gives a way to represent a
permutation graph with two orderings of the vertices.

3. Intersection Matrices. If G is a circular-arc graph and R is a realizer, we can clas-
sify each ordered pair (x, y) of vertices with x �= y according to the type of intersection
of their arcs in R, as follows [29], [14], [9]:

• Single overlap: arc x contains a single endpoint of arc y.
• Double overlap: x and y jointly cover the circle and each contains both endpoints of

the other.
• Arc x is contained in arc y.
• Arc x contains arc y.

Let v1, v2, . . . , vn be a numbering of vertices of V . A circular-arc matrix of a realizer
R is an n× n matrix T where Ti j is a label that tells the type of the relationship between
arc vi and arc vj in the realizer. (See Figure 2.) R is a realizer of T if it realizes not
just the graph implied by T but also the intersection types claimed by T . A circular-arc
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Fig. 2. The intersection matrix of a circular-arc realizer gives the types of intersections between arcs. The
types consist of two arcs overlapping at one endpoint, G1 (1), two arcs overlapping at two endpoints, G2 (2),
two arcs not intersecting, Gn (n), one arc being contained in the other Dc (c) and one arc containing the other
(Dc)

T (t). The pairs of each type give the graphs G1, G2, Gn , Dc , and (Dc)
T, respectively. The matrix has a

skew symmetry, where t in row i column j corresponds to c in row j column i .
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matrix is an interval matrix if there is a realizer for it that does not cover the circle; in
this case G is an interval graph, since a circular-arc realizer can be cut at an uncovered
point on the circle and rolled out onto a line. An intersection matrix is a matrix whose
entries give the alleged intersection types in some circular-arc realizer, but where it is
not a requirement that the realizer exist. In general, we refer to a circular-arc matrix as
an intersection matrix, except when we wish to emphasize that a realizer is required to
exist.

From these types, we get a partition of the complete graph into the following undi-
rected graphs on V :

• G1: single overlaps.
• G2: double overlaps.
• Gc: containments.
• Gn = Ḡ: nonintersections.

We will use multiple subscripts to denote unions of these. For example G = G12c,
the union of edges of G1, G2, and Gc. An edge of Gc can be viewed as two directed
edges with the following classifications:

• Dc: edges of the form {(x, y) : x is contained in y}.
• (Dc)

T: edges of the form {(x, y) : x contains y}.
The non-neighbors of a vertex x are its neighbors in Gn , its overlap neighbors are its

neighbors in G1, its double-overlap neighbors are its neighbors in G2, and its containment
neighbors are its neighbors in Gc. G(T ) denotes the graph that gives the pairs that
intersect, hence G(T ) = G12c. Its neighbors are the neighbors in G(T ).

A departure of our approach from previous ones is the use of a simple operation on
the intersection matrix, which we call a flip. Recall that we consider a realizer to be a
circular list giving the order of left and right endpoints of the vertices’ arcs around the
circle. Let a geometric flip on a vertex be an exchange of the positions of l(x) and r(x)
in this list. This is equivalent to making x’s arc travel between the same endpoints as
before, but around the opposite part of the circle as before (Figure 3). This changes the
types of relationships involving x’s arc as follows:

• (x, y) ∈ G2 becomes (x, y) ∈ Dc and (x, y) ∈ Dc becomes (x, y) ∈ G2.
• (x, y) ∈ Gn becomes (x, y) ∈ (Dc)

T and (x, y) ∈ (Dc)
T becomes (x, y) ∈ Gn .

• (x, y) ∈ G1 remains unchanged.

If T is an intersection matrix, we can compute the intersection matrix T ′ for the
realizer that results from a flip on x without any knowledge about the realizer, other than
what is given directly by T . It requires only a simple relabeling of some of the entries
of x’s row and column in T . We call this relabeling of T an algebraic flip on x .

One matrix being obtainable from another by a sequence of algebraic flips is an
equivalence relation on intersection matrices. We call this relation flip-equivalence. Every
flip-equivalence class on circular-arc matrices contains an interval matrix: in a circular-
arc realizer of a matrix T , if one picks a point on the circle that does not coincide with
an endpoint of an arc and flips all arcs containing the point, the resulting set of arcs will
fail to cover the circle at that point, and realize the interval matrix T ′ obtained from T
by the equivalent algebraic flips.
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Fig. 3. A geometric flip consists of rerouting an arc’s path between its endpoints; in this case arc a is flipped.
(Compare with Figure 2.) An algebraic flip is the corresponding operation on the intersection matrix. An
algebraic flip swaps the roles of n and t, and 2 and c in a row, and swaps the roles of n and c, and 2 and t in a
column.

3.1. Relationship to Previous Work. It is tempting to try to transpose parts of our
problem to another class of graphs. Eschen and Spinrad [9] compute the intersection
constraints by transposing this problem into the domain of chordal bipartite graphs.
Hsu [14] approaches the recognition problem by transposing much of it to the domain of
circle graphs. The significance of flip operations is that they allow us to transpose much
of the problem to the domain of comparability graphs, where we make use of existing
analytical and algorithmic tools for that graph class.

The insights of Tucker [29], Hsu [14], and Eschen and Spinrad [9] are critical to
obtaining our result. Tucker recognized the importance of the intersection types. Eschen
and Spinrad developed a set of algorithmic techniques for computing intersection types
efficiently in circular-arc graphs, of which we make extensive use in Section 7. Hsu
showed that Tucker’s intersection types can all be satisfied simultaneously.

There is a relationship between flipping of arcs and an operation applied by Tucker [28]
to a subset of circular-arc graphs, and applied by Booth and Lueker [3] to circular-ones
testing of matrices. A matrix has the consecutive-ones property if there is a way to
arrange the columns so that the ones are consecutive in every row. It has the circular-
ones property if there is a way to arrange the columns so that either the ones or the zeros
are consecutive in each row. The operation consists of complementing those rows in a
circular-ones matrix that have a one in a particular column, in order to obtain one that
has the consecutive-ones property. This resembles the operation of picking a point on
the circle in a circular-arc model and flipping arcs that contain it in order to obtain an
interval model. However, though the circular-ones variant of the trick can be used to
recognize certain subclasses of circular-arc graphs, such as Helly circular-arc graphs, it
is not suitable for the general problem.
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4. Summary of the Circular-Arc Graph Recognition Algorithm. In Section 5 we
show that it is possible to check in time linear in the size of a graph G plus the size
of a circular-arc realizer R whether G is the graph realized by R. Our approach to
recognizing circular-arc graphs is then to give an algorithm that has, as a precondition,
that its input be a circular-arc graph G, and that produces a circular-arc realizer of G in
linear time whenever the precondition is met. As long as this algorithm halts when its
precondition is not met, it suffices to recognize circular-arc graphs: we may check whether
its output, if it produces any, is a circular-arc realizer of G. Since no circular-arc realizer
can realize G if G is not a circular-arc graph, the test succeeds iff G is a circular-arc
graph.

We now consider the time bound. If G is a circular-arc graph, our recognition algorithm
runs in linear time. That is, there exists some constant c such that the algorithm halts
before c(n+m) operations have been executed. Therefore, there exists an algorithm that
runs our algorithm and halts, rejecting G, if the number of operations executed exceeds
c(n + m). This proves that circular-arc graphs can be recognized in linear time. This
result is the primary goal of the paper.

It is worth noting that a programmer who wishes to implement the algorithm would
wish to have conventional halting conditions that do not require counting operations or a
careful analysis of the constant hidden in our big-O bound. However, for most steps, the
analysis of the time bound does not depend on whether the input graph is a circular-arc
graph. Other steps have a precondition that be met if the input is a circular-arc graph, so
that the input graph may be rejected early if the precondition is not met. Henceforth, we
assume throughout the analysis that G is a circular-arc graph, except where we address
this issue.

Algorithm 4.1 summarizes the approach to producing a circular-arc realizer.

ALGORITHM 4.1. Constructing a circular-arc realizer.

1. Find an intersection matrix T that can be shown to be realized by some realizer of G.
2. Perform a set of algebraic flips on T to obtain an interval matrix T ′.
3. Find an interval realizer R′ of T ′.
4. Invert the flips used to obtain T ′ from T , but apply them as geometric flips to R′, to

obtain a circular-arc realizer R of T .

The fourth subproblem is trivial. We summarize the approach to the other three now,
and give the full details in later sections.

4.1. Step 1: Finding an Intersection Matrix that Gives the Intersection Types for Some
Realizer of G. A universal vertex is a vertex x with N [x] = V . A module of an
undirected graph is a set X of vertices such that for every vertex y �∈ X , either y is a
neighbor of every member of X or it is a neighbor of none of them. A clique module is
a module of G that is a (not necessarily maximal) clique in G.

We use a reduction that allows us to assume that G has no universal vertex or clique
module. The following then gives the basic recipe for producing the desired intersection
matrix.
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DEFINITION 4.2. Let T (G) denote the n×n matrix T of labels that is defined as follows:

1. If x and y are nonadjacent, then Txy = n.
2. Else if N [x] ⊂ N [y], then Txy = c.
3. Else if N [y] ⊂ N [x], then Txy = t.
4. Else if N [x]∪ N [y] = V and for each z ∈ N [x]− N [y], N [z] ⊂ N [x] and for each

z′ ∈ N [y]− N [x], N [z′] ⊂ N [y], then Txy = 2.
5. Else Txy = 1.

Hsu has shown that if G is a circular-arc graph without universal vertices or clique
modules, any realizer of the intersection matrix T (G) given by Definition 4.2 is a realizer
of G [14]. It is not hard to see why this might be the case. If N [x] ⊂ N [y], then in a
realizer where arc x is not contained in arc y, one endpoint of x may be shortened to make
it be contained in y without causing x to lose any neighbors. If x and y have a double
overlap, then they jointly cover the circle, hence N [x]∪N [y] = V . However, even when
N [x]∪ N [y] = V , x and y cannot have a double overlap if there exist z ∈ N [x]− N [y]
and z′ ∈ N [y]−N [x] that are adjacent to each other. The x and y must fail to contain the
intersection of arcs z and z′, hence they cannot jointly cover the whole circle. The subtle
point of Hsu’s result is showing that there is a single realizer of G that simultaneously
obeys all of these constraints.

This reduces the step to the problem of evaluating the boolean expressions of parts 2,
3, and 4 of Definition 4.2 at each edge xy of G.

We use a sparse representation of the matrix where we label the edges of G with their
intersection types, which must fall into Cases 2–5. This saves us from having to spend
time on entries of the matrix corresponding to Case 1. When we flip a vertex a, we must
therefore add, delete, and relabel edges from this graph. This requires keeping a pointer
from each adjacency-list entry (a, b) to its twin (b, a), and implementing the adjacency
lists with doubly-linked lists.

Eschen and Spinrad have given O(n2) bounds for evaluating N [x] ⊂ N [y], N [y] ⊂
N [x], and N [x] ∪ N [y] = V at all pairs {x, y} of vertices. We show how to apply their
technique in O(n+m) time if one needs to evaluate it only at the m adjacent pairs of G.

This allows us to produce T (G), except that it does not allow us to distinguish between
Cases 4 and 5 if N [x]∪N [y] = V . That is, it does not allow us to tell in this case whether
two adjacent arcs have a single overlap or a double overlap. The key insight for solving
this problem is that if x and y have a double overlap, then flipping y causes y’s interval to
be contained in x’s, hence it causes N [y] to become a subset of N [x]. Flipping y reduces
the problem to the foregoing one of testing whether a neighborhood containment applies
between a pair of adjacent vertices, but on a modified graph where x is flipped.

The details of this step are given in Section 7.

4.2. Step 2: Finding a Set of Flips to Turn T into an Interval Matrix. The goal of this
step is to identify the set of vertices whose arcs contain a point on the circle in a realizer
of the intersection matrix. Flipping them vacates this part of the circle, giving an interval
matrix.

What makes the step difficult is that, unlike in the case of an interval graph, the vertices
of a clique do not have to have a common intersection point. For instance, the arcs [0, π ],
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[2π/3, 5π/3], and [3π/2, π/2] form a clique but have no common intersection point on
the circle. Therefore, it does not suffice to identify a maximal clique.

However, suppose that a vertex v0 has no incident edges in Gd and Gc. Then every
neighbor of the vertex in G is a neighbor in G1. In a realizer, every neighbor contains
one and only one endpoint of this vertex’s arc. Those that contain one endpoint have a
common intersection and those that contain the other have a common intersection. We
then need only to identify the neighbors that contain one of the endpoints.

Such a v0 might not exist initially, but it is easy to obtain one with some initial flips in
order to isolate it in Gd and Gc. The one that we create has degree O(m/n). This allows
us to spend O(n) time on each neighbor of the vertex without violating the linear time
bound. This is adequate to be able to perform an arbitrary set of flips on neighbors of v0.

To identify which neighbors of v0 cover one endpoint, we use a combination of
constraints imposed by their relationships to each other and by their relationships to the
non-neighbors. For instance, two neighbors that have a Gd or Gn relationship to each
other must cover opposite endpoints. Let W be the non-neighbors. Suppose x and y are
neighbors of v0 that have properly overlapping sets of neighbors in W . That is, N [x]∩W
and N [y] ∩ W intersect but neither of these sets contains the other. Then x and y must
obviously cover opposite endpoints of v0 in a circular-arc realizer.

In practice, our approach is to begin to partition neighbors of v0 according which
endpoint of v0 they cover. Partway through this process, we observe that the set of arcs
that contain a third point on the circle is easy to identify. This allows us to quit early,
since this set of arcs is also a solution to the problem.

The details of this step are given in Section 8.

4.3. Step 3: Finding an Interval Realizer of an Interval Matrix. It is easily seen that
if T is an interval matrix, Gn is a comparability graph: the order of left endpoints in an
interval realizer is a linear extension of a transitive orientation. (See Figure 4.) G1n is
a comparability graph for the same reason. In an interval matrix, G2 is empty, since a
double overlap of two arcs covers the entire circle. Therefore, Gc is the complement of
G1n . Since it also has a transitive orientation, namely Dc, it follows that Gc and G1n are
complementary comparability graphs, hence permutation graphs.

In [18] an algorithm is given for interval-graph recognition that uses a linear extension
of a transitive orientation of Ḡ = Gn . Thus, we can get an interval realizer of G in this
way. Unfortunately, because of the added constraints in the types of intersections imposed
by T , this might fail to be a realizer of T .

The permutation-graph recognition algorithm of [18] uses the transitive orientation
algorithm to compute linear extensions of transitive orientations D and D′ of a permuta-
tion graph H and its complement H̄ . It then finds the linear orders D∪D′ and D∪ (D′)T
in linear time, which gives the permutation realizer. Running this algorithm gives a linear
extension of Dc and a linear extension of a transitive orientation G1n , and therefore gives
a permutation realizer of G1n . It is easy to see that these two permutations are the order
of appearance of left endpoints and the order of appearance of right endpoints in an
interval realizer of G. However once again, this may fail to be an interval realizer of T .

The key observation we use is that every realizer of T gives a single orientation of
G1n that is simultaneously transitive in G1n and Gn . Finding a transitive orientation of
G1n that is simultaneously transitive in Gn further constrains the possible solutions, and
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allows us to get the orders of appearance of left and of right endpoints of a realizer of T .
Interleaving these orders to produce the full realizer is a trivial operation. We show how
the transitive orientation algorithm of [18] can be modified to produce the simultaneous
transitive orientations of G1n and Gn .

The details of this step are given in Section 6.

5. Verifying a Proposed Realizer. The correctness of our analysis depends on the
claim, made earlier, that it is possible to verify in time linear in the size of G plus the size
of a realizer R that R realizes G. We assume that R is presented as a list of arc endpoints
and the vertices to which they belong, in the order in which they occur counterclockwise
about the circle. When G is a circular-arc graph, our algorithm produces the realizer in
this format.

ALGORITHM 5.1. Checking whether a circular-arc realizer realizes G.
Pick a starting point on the circle and make a doubly linked list L of all arcs that

contain that point, in O(n) time. Then travel counterclockwise, updating L whenever
an endpoint of some arc x is encountered, so that it reflects the set of arcs that contain
the current point. This requires adding x to L in O(1) time if the encountered endpoint
is a left endpoint, and removing it in O(1) time (L is doubly linked) if the encountered
endpoint is a right endpoint. Regardless of whether the endpoint is a left or right endpoint,
generate the following edge records: {(y, x) : y ∈ L} and {(x, y) : y ∈ L}. Halt when
either the starting point on the circle has been reached again, or the total number of
generated edge records exceeds 8m. Reject the realizer if the number of generated edge
records exceeds 8m. Otherwise, radix sort the generated edge records and throw out
duplicates. Then concatenate the adjacency lists of G and radix sort them. Verify that
these two operations produce identical lists.

For the correctness and time bound, note that if x and y are adjacent, each contains at
most two endpoints of the other. Therefore, if the realizer is valid, at most four copies of
(x, y)will be generated, and at most four copies of (y, x)will be generated. The realizer
can be rejected if the number of generated edge records exceeds 8m. The radix sorts
takes O(n + m) time, and comparing the lists establishes whether G is identical to the
graph represented by the realizer. The algorithm takes O(n) time for all updates of L ,
and O(1) time for each generated edge record, for a total of O(n + m).

6. Details of Step 3: Finding an Interval Realizer of an Interval Matrix. Even
though this section deals with the third step of Algorithm 4.1, we give it before the
sections on the first two steps. It is of greatest interest to most readers, and develops a
result that is used in a less obvious way in Step 2. (However, Section 6.4.5 is of interest
primarily to specialists, and can be skipped without loss of continuity.)

Recall that an interval matrix is the intersection matrix of an interval realizer. In this
section we deal with the problem of finding an interval realizer of an interval matrix.
Since intervals on a line cannot realize a double-overlap relation, we may assume that
the matrix is devoid of entries labeled 2 for the G2 relation.



Linear-Time Recognition of Circular-Arc Graphs 103

6.1. Basic Tools. An undirected graph is a special case of a directed graph where each
undirected edge consists of two oppositely directed edges. In this paper we consider an n×
n matrix A to be synonymous with a complete graph on vertex set V = {v1, v2, . . . , vn},
where each directed edge (vi , vj ) is labeled with Ai j .

A module of a matrix corresponds to a set X of vertices such that for every vertex
y �∈ X , all directed edges in X × {y} have the same label, and all directed edges in
{y}× X have the same label. In this case, y fails to distinguish members of X . A module
of a graph or digraph G = (V, E) is a module in its boolean adjacency matrix. That is,
it is a set of vertices such that for each y �∈ X , every element of X × {y} is an edge or
none is, and every element of {y} × X is an edge or none is. Modules of matrices are
studied in [6] and [7]. They were previously known in the special case of graphs, and
first studied in [11].

The set V and its singleton subsets are trivial modules. A graph or matrix with only
trivial modules is called prime.

A modular partition of V in a matrix is a partition of V where every partition class is
a module. If X and Y are disjoint modules, then every element of X × Y has the same
label. The modular quotient induced by the parts is the matrix obtained by making one
vertex for each part, and letting the label of each ordered pair (X, Y ) of parts be the
labels of the edges from X to Y . One way to represent a modular quotient is with the
submatrix induced by any set P consisting of one vertex from each part. Similarly, if R
is a circular-arc realizer, then the quotient is realized with the smaller realizer R|P .

Two sets A and B overlap if A∩ B, A− B, and B− A are all nonempty. A module is
strong if it overlaps no other module. The transitive reduction of the containment relation
on strong modules of a graph G = (V, E) is a tree, and is called the modular decomposi-
tion. The root of the modular decomposition is V and the leaves are its singleton subsets.
If G is undirected, at most one of G and its complement, Ḡ, can be disconnected. If one
of them is disconnected, the children of the root are the connected components, and V
is a degenerate node. The remaining nodes are prime nodes. The family F of modules
of G consists of those sets that are nodes of the tree, and those sets that are a union of
siblings that have a degenerate parent. Let MD(G) denote the modular decomposition
of an undirected graph G.

The modular decomposition of a symmetric matrix is defined in the same way, except
that the root is degenerate if the complement of the graph consisting of those edges with
one label is disconnected. Let MD(T ) denote its modular decomposition of a symmetric
matrix T .

An undirected graph can be viewed as a special case of a directed graph, where each
undirected edge ab represents two directed edges, (a, b) and (b, a). If (a, b) and (c, d)
are two directed edges, we say that (a, b)�(c, d) iff a = c and b and d are nonadjacent,
or b = d and a and c are nonadjacent. If G is a comparability graph, then (a, b)�(c, d)
implies that in any transitive orientation of G, either both of (a, b) and (c, d) appear as
directed edges, or neither does. To understand why, suppose that (a, b)�(c, d), but (a, b)
and (d, c) are directed edges in an orientation of G. Suppose without loss of generality
that a = c. Then (d, c) and (c, b) require a transitive directed edge (d, b), but d and b
are nonadjacent, so this is impossible.

The transitive closure of the � relation is an equivalence relation on directed edges,
and the equivalence classes are groups of directed edges, called implication classes, that
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must either all appear in or all be absent from any transitive orientation of G. Therefore,
if G is a comparability graph, (a, b) and its transpose (b, a) cannot be in the same
implication class. The implication class containing (a, b) consists of the transposes of
the directed edges in the implication class containing (b, a). The union of an implication
class and its transpose is a color class. The color classes are a partition of the undirected
edges of G.

There is a type of dual relationship between the modules of G and its color classes.

LEMMA 6.1 (see, for example, [22]). If X and Y are disjoint nodes of the modular
decomposition of G, then X × Y is a subset of a single implication class.

The vertices spanned by a color class are always a module of G. Moreover, if M is a
module, an edge of G that is in G|M is always in a different color class from an edge
that is not in G|M . Because of this, given a transitive orientation of G and its modular
decomposition, one may obtain a new transitive orientation by reversing the directions
of all edges inside a node of the modular decomposition tree. In a degenerate node whose
children are nonadjacent in Ḡ, a transitive orientation of G determines a linear order on
the children. Reversing the orientations of all edges between a pair of children that are
adjacent in this linear order gives a new transitive orientation. All transitive orientations
of G are obtainable from a single one by applying these two reversal operations in
different places in the modular decomposition tree.

It is not the case that every interval realizer of an interval graph G realizes the
intersection matrix given by a particular realizer R of G. This is because its partition of
edges of G into Dc, G1, and G2 relations given by a different realizer R′ of G may not be
faithfully reflected by the types of intersections in R’s matrix. Therefore, an intersection
matrix places additional constraints on possible realizers that G does not place, and not
all realizers of G satisfy the requirements of Step 3.

6.2. Interval Orientations. Let T be an interval matrix and let R be an interval realizer
of T . If ab ∈ G1n , we say that a precedes b in R if l(a) < l(b), even if they overlap
at one endpoint. (Because ab ∈ G1n , this happens iff r(a) < r(b).) Let the interval
orientation of G1n given by a realizer R be the orientation of its edges such that for
each edge ab ∈ G1n , (a, b) appears as a directed edge in the orientation iff a precedes
b in R. (See Figure 4.) We call matrix T ′ an interval orientation of T if it is obtained by
replacing elements of T labeled G1 with D1 or (D1)

T, elements labeled Gn with Dn or
(Dn)

T, so that the elements labeled D1 and Dn give an interval orientation of G1n , and
the elements labeled (D1)

T and (Dn)
T are its transpose.

An interval orientation of G1n gives a simultaneous transitive orientation of both Gn

and of G1n . To see why, note that if ab, bc ∈ Gn , then a and b are nonadjacent and b and
c are nonadjacent. If a comes before b in a realizer and b comes before c, then a and c are
nonadjacent, and a comes before c, providing a transitive edge (a, c) for the orientations
(a, b) and (b, c) given by the linear extension. A similar argument applies to G1n .

Therefore, Gn and G1n are comparability graphs. In an interval matrix, G2 is empty,
so Gc is the complement of G1n . Gc is also a comparability graph, since it has Dc as a
transitive orientation. Since Gc and G1n are complementary comparability graphs, they
are permutation graphs.



Linear-Time Recognition of Circular-Arc Graphs 105

a

b c

d e

f g

Orientation of G
induced by R

a

b c

d e

f g

Orientation of G
induced by R

1n

a

b c

d e

f g

a

b c d gf

e

n D  (containments in R)c

Interval realizer R

Fig. 4. An interval realizer of an intersection matrix yields an interval orientation of G1n : edges are oriented
from earlier to later intervals. An interval orientation is transitive, and its restriction to Gn is also transitive.
The union of Dc and an interval orientation is a linear order, and gives the order of left endpoints in the realizer.
Similarly, the union of (Dc)

T and the interval orientation gives the order of right endpoints.

The union of D1n and Dc is a linear order, and gives the relative order of left endpoints
in the realizer, and, similarly, the union of D1n and (Dc)

T gives the relative order of right
endpoints. This is essentially the permutation-graph recognition algorithm of [18], but
places the additional restriction that the transitive orientation of G1n be an interval
orientation. It is easy to interleave the two resulting linear orders to recover the realizer.

This reduces the problem of finding a realizer of an interval matrix to one of finding an
interval orientation. This has the advantage that it allows us to apply tools and concepts
that were developed for the transitive orientation problem.

A module of a graph can be viewed as the result of a substitution operation that is
depicted in Figure 5. As we have mentioned in Section 2, the edges that are internal
to a module in a comparability graph may be oriented independently of those that are
not when one wishes to compute a transitive orientation. (One must be careful not to
create directed cycles among edges internal to different modules, however.) The modules
completely specify the sets of edges that can be oriented independently of others [11],
[22]. There is a structure that has an analogous role in the problem of finding interval
orientations of G1n , and which we call 
 modules.

To get an intuitive notion of a
module, we define an operation on interval realizers
that is analogous to the substitution operation on graphs, and which is depicted in Figure 6.
R3 is the result of substituting R2 for x in R1, by replacing the left endpoint of x with the
left endpoints of intervals in R2 and the right endpoint of x with the right endpoints of
intervals in R2. A requirement when the two endpoints of x are not consecutive in R1 is
that all left endpoints of R2 all precede all right endpoints in R2, hence the interval graph
represented by R2 is a clique. Note that R2 becomes a module in the resulting interval
matrix. A second substitution operation that does not require R2 to represent a clique is
illustrated by R4; a requirement of this substitution operation is that the two endpoints
of the replaced interval in R1 are consecutive.
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Fig. 5. A module of a graph can be viewed as the result of a substitution operation on two graphs G and G ′,
where a vertex y of G is replaced with G ′, and each vertex in G ′ inherits the adjacencies of y in G (A, B).
If G and G ′ are transitively oriented, the result of the substitution is also transitive (C, D). The transpose of
a transitive orientation of G ′ is also transitive, so a new transitive orientation of the composite graph may be
obtained by reversing the orientations of edges internal to a module (E).

A 
 module is a module of an intersection matrix that can result from one of these
two allowed substitution operations. In either case, reversing the interval orientations of
edges of R2 before performing the substitution results in a new interval orientation of the
final matrix. Thus, the 
 modules give sets of edges that can be oriented independently
of other edges when computing an interval orientation of an interval matrix. The 

modules are always modules of the interval matrix for the set of intervals that result
from the substitution operation. However, not all modules of the interval matrix are 

modules. An example of this is given in Figure 7. We show below that the 
 modules
completely specify the sets of edges that can be oriented independently when computing
interval orientations, just as modules do this for transitive orientations.

LEMMA 6.2. If T is an interval matrix, then for any interval orientation, there is exactly
one realizer.

PROOF. There must be at least one realizer by the definition of an interval orientation.
It remains to show that there is only one.

Let a and b be two distinct vertices. If ab ∈ G1n , then l(a) < l(b) and r(a) < r(b)
iff (a, b) is the orientation of ab in the interval orientation. If ab ∈ Gc, then l(b) < l(a)
and r(a) < r(b) iff (a, b) ∈ Dc. Since the intersection matrix is an interval matrix,
ab �∈ G2. The relative order of left endpoints is uniquely constrained by Dc and the
interval orientation, and so is the relative order of right endpoints.
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Fig. 7. The pair {a, b} cannot be oriented independently of other pairs when computing an interval orientation.
There are only two possible interval orientations in this example, so an orientation assigned to {a, c} forces
the orientation of {a, b}. The reason for this is that even though {a, b} is a module, it fails to be a 
 module.
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We now examine the relative order of pairs consisting of one left endpoint and one
right endpoint. Let x and y be two vertices. If x = y, then l(x) < r(y). Otherwise,
suppose without loss of generality that l(x) < l(y). Then l(x) < r(y). In addition,
r(x) < l(y) iff xy ∈ Gn , and l(y) < r(x) otherwise. The relative order of all pairs
consisting of one left endpoint and one right endpoint are uniquely constrained.

6.3. A �-Like Relation for Interval Orientations. Let us define an analog 
 of the
� relation for the problem of finding an interval orientation instead of just a transitive
orientation. (The� relation involves two edges joined at one end, resembling the letter�,
while 
 involves three relationships that make a triangle.) Let �n denote the � relation
on Gn , let �1 denote the � relation on G1, and let �1n denote the � relation on G1n .

DEFINITION 6.3. Let {a, b, c} be three vertices. Then (a, b)
(a, c) and (b, a)
(c, a)
if one of the following applies:

• (a, b)�n(a, c) (i.e., ab, ac ∈ Gn and bc ∈ G1c);
• (a, b)�1n(a, c) (i.e., ab, ac ∈ G1n and bc ∈ Gc);
• ab ∈ Gn and bc, ac ∈ G1.

We call the last of the conditions in the definition of 
 a straddle relationship, since
the edges ac, bc ∈ G1 “straddle” edge ab ∈ Gn .

By analogy to �, we let the 
 implication classes be the equivalence classes of
the transitive symmetric closure of 
, and the 
 color classes be the union of each
equivalence class and its transpose.

THEOREM 6.4. Every interval orientation of G1n in an interval matrix consists of one

 implication class from each 
 color class.

PROOF. For every edge ab ∈ G1n , exactly one of (a, b) or (b, a) appears in any interval
orientation. An interval orientation is a transitive orientation of Gn , so if (a, b)�n(a, c),
then both or neither appear in any transitive orientation of �n . It is also a transitive
orientation of G1n , so if (a, b)�1n(a, c), then both or neither appear in any transitive
orientation of �1n . If (a, b)
(a, c) by the straddle condition, with ab ∈ Gn and ac, bc ∈
G1, then a and b contain opposite endpoints of c in any interval realizer. The order of
left endpoints must be (a, c, b) or (b, c, a). Either both or neither of (a, b) and (a, c)
appear in any interval orientation.

We now show that
 has the same dual relationship with the
modules as � has with
modules of a graph. Every
module is a module, but some modules are not
modules.
Like the set of modules, the 
 modules have a decomposition tree where every node is
prime or degenerate, and where a set is a member of the family iff it is a node of the tree
or a union of children of a degenerate node. The tree is not the modular decomposition
tree, however. Just as in the case of �, the spans of the equivalence classes induced by

 are nodes of the tree and pairs of children of degenerate nodes.
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DEFINITION 6.5. Let T be an interval matrix. Let U (T ) denote the matrix obtained
from T by replacing each instance of Dc or (Dc)

T with Gc, thereby “unorienting” the
directed edges in Dc. (We define U (T ) so that we may avoid dealing with details of the
modular decomposition of a matrix that is not symmetric.) We say that a set M of vertices
overlaps a set E ′ of edges of T if T |M contains some members, but not all members, of
E ′. A module of T or of U (T ) is a 
 module if it is a module that is a clique of G(T ),
or else a module X such that for no y ∈ V − X , {y} × X ⊆ G1.

It is well known that no module of a graph overlaps a� color class [12]. The following
is an analogous result about 
 modules and 
 color classes:

LEMMA 6.6. No 
 module overlaps a 
 color class.

PROOF. A module M of U (T ) is a module of Gn and a module of G1n . Therefore, it
cannot overlap a pair of edges that are related by the first two conditions of the definition
of 
. For the third condition, M must be a module of G1. If it contains {a, c}, it must
contain {b, c}, which implies that it contains {a, b}. If it contains {a, b}, then it is not a
clique. If c ∈ V − M , then {c} × M ⊆ G1, and it is not a 
 module of U (T ).

DEFINITION 6.7. A family F of subsets of a set V is a tree-decomposable family if it
satisfies the following properties:

1. V and the members of {{x} : x ∈ V } are members of F .
2. Overlap closure: If X and Y are properly overlapping members of F , then X ∪ Y ,

X ∩ Y , X − Y , Y − X , and (X − Y ) ∪ (Y − X) are members of F .

The strong members ofF are those members that properly overlap with no other member
of F .

THEOREM 6.8 [23], [24], [6], [7]. If F is a tree-decomposable family, then the transi-
tive reduction of the containment relation on strong members of F is a tree. There is a
unique way to label the nodes of this tree prime and degenerate so that a set is a member
of F iff it is a node of the tree or a union of children of a degenerate node.

We call this tree the tree decomposition of F . The modular decomposition of an
undirected graph or a symmetric matrix is just the tree decomposition of its modules,
which are a tree-decomposable family.

THEOREM 6.9. The 
 modules of U (T ) are a tree-decomposable family.

PROOF. The modules of a symmetric matrix are a tree-decomposable family [6], [7].
Let X and Y be overlapping
modules. Since they are modules, X ∪ Y , X ∩ Y , X − Y ,
Y − X , and (X − Y )∪ (Y − X) are modules. If X and Y are both cliques of G(T ), then
vertices in X − Y have edges in G(T ) to X ∩ Y , hence to all of Y . X ∪ Y is a clique, so
all modules that are subsets of X ∪ Y are 
 modules, and the claim holds.
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We therefore assume in the remainder of the proof that X is not a clique.
We now show that X ∩Y is a
module. If X ∩Y is a clique, then, since it is a module,

it is a 
 module. Otherwise, neither X nor Y is a clique. Since both of these sets are 

modules, there exists no G1 edges from members of X to vertices outside of X , or G1

edges from members of Y to vertices outside of Y . An edge from a vertex of X ∩ Y to a
vertex outside of X ∩ Y either goes from a member of X to a nonmember of X , or from
a member of Y to a nonmember of Y . Therefore, there is no edge of G1 from X ∩ Y to
a vertex outside X ∩ Y . Since X ∩ Y is a module, it must be a 
 module.

Next, we show that X −Y is a
module. If X −Y is a clique, it is a
module, since
it is a module. If X−Y is not a clique, then since X is a
module, anyw ∈ V −(X−Y )
such that {w} × (X − Y ) ⊆ G1 must reside in X ∩ Y . Suppose such a w exists. Since w
resides in Y and Y is a module, (X − Y )× Y ⊆ G1. For w′ ∈ Y − X , {w′} × X ⊆ G1,
a contradiction, since X is a 
 module. The same analysis applies to Y − X .

Finally, we show that U = (X − Y )∪ (Y − X) is a
module. If U is a clique, it a

module, since it is a module. Otherwise, any vertexw ∈ V −U such that {w}×U ⊆ G1

must lie inside X , since X is a
module and not a clique. Therefore, w ∈ X ∩ Y . Since
X is a module and (Y − X)× {w} ⊆ G1, (Y − X)× X ⊆ G1. (X − Y ) ∪ (Y − X) can
only fail to be a clique if X − Y or Y − X fails to be a clique. Suppose X − Y fails to
be a clique. Then X fails to be a clique. (Y − X)× X ⊆ G1 contradicts the assumption
that X is a 
 module.

DEFINITION 6.10. We call the tree decomposition of U (T ) the Delta tree of U (T ), and
denote it 
(U (T )).

Just like the modular decomposition, let the 
(U (T )) tree be represented in O(n)
space by creating a node of size O(1) to represent each node of 
(U (T )), giving each
node a label to indicate whether it is prime or degenerate as well as a list of pointers to
its children in the transitive reduction of the containment relation. The quotient induced
by children of a degenerate node in their parent is complete in Gn , G1, or Gc, so each
degenerate node may be labeled according to which of these cases applies. The set U
represented by a node can be retrieved in O(|U |) time by visiting its leaf descendants,
so there is no advantage to labeling a node with a list of its members. Figure 8 gives an
example.

Theorems 6.11–6.13 show that
modules satisfy the remaining properties of a class
of set system described by Möhring in [23] and [24].

THEOREM 6.11. If X is a 
 module of U (T ) and Y is a subset of X , then Y is a 

module of U (T ) iff it is a 
 module of U (T )|X .

PROOF. If Y is a clique, the claim holds because of the corresponding theorem about
modules of a matrix [6], [7]. If Y is not a clique, then neither is X , and since X is a 

module, there exists no y ∈ V − X with an edge of G1 to any member of X , hence to
any member of y. Then Y fails to be a 
 module in U (T ) iff there exists y ∈ X − Y
with G1 edges to Y , which also determines whether it is a module of U (T )|X .
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Fig. 8. An interval realizer, U (T ), the modular decomposition of U (T ), and the 
 tree 
(U (T )).

THEOREM 6.12. If X is a
 module of U (T ) and Y ⊆ V intersects X , then X ∩ Y is a

 module of U (T )|Y .

PROOF. The analogous theorem for modules of a matrix is given in [6] and [7]. Thus,
X ∩ Y is a module of U (T )|Y . X can only fail to be a 
 module of U (T )|Y if X ∩ Y is
not a clique and there exists w ∈ Y − X such that {w} × (X − Y ) ∈ G1. However, this
would imply that X is not a clique in U (T ) and {w} × X ∈ G1 in U (T ), contradicting
X ’s status as a 
 module in U (T ).

THEOREM 6.13. If P is a modular quotient on U (T ) consisting of
modules of U (T ),
and P ′ ⊆ P , then P ′ is a 
 module of U (T )/P iff

⋃
P ′ is a 
 module of U (T ).

PROOF. By Lemma 6.6, if
⋃
P ′ is a 
 module, then there is no straddle relationship

containing edges of U (T )|⋃P ′ and other edges. By Theorem 6.12, applied to the
submatrix induced by one representative from each member of P , this is also true of
P ′ in U (T )/P . On the other hand, if P ′ is a 
 module in U (T )/P , then there exists
y ∈ V −⋃

P ′ such that {y} ×⋃
P ′ ∈ G1 iff this is true for P ′ in U (T )/P . If there

exists such a y, then P ′ is a clique of U (T )/P , and
⋃
P ′ can only fail to be a module if

it fails to be a clique. This would imply that there is some X ∈ P ′ that is not a clique.
However, because y ∈ V − X and {y} × X ⊂ G1, this would contradict the assumption
that X is a 
 module.

LEMMA 6.14. The set of vertices spanned by a
 color class in an interval matrix T is
a 
 module of U (T ).



112 R. M. McConnell

PROOF. G2 is empty in T , since T is an interval matrix. Let S be the set of vertices
spanned by a color class C . Suppose that S is not a module. Then there exists x ∈ V − S
that has different relationships in T to members of S. C is connected, as only coincident
edges are related by 
. Therefore, x has different relationships between two vertices
y, z ∈ S such that yz ∈ C . At least one edge from x to {y, z} is an edge of G1n; without
loss of generality, suppose that xy ∈ G1n . If xz ∈ Gc, then (x, y)�1n(z, y), and xy ∈ C
contradicting x’s nonmembership in S.

Therefore, xy and xz are edges of G1n . Without loss of generality, suppose xy ∈ G1

and xz ∈ Gn . If yz ∈ Gn , then (x, z)�n(y, z), and we again get the contradiction x ∈ S.
If yz ∈ G1, then (y, z)
(x, z) by the straddle rule, and again we get the contradiction
x ∈ S. Since x does not exist, we conclude that S is a module.

Suppose that S is a module that is not a 
 module. Then it is not a clique, and there
exists w ∈ V − S such that {w} × S ⊆ G1. There exist s1, s2 ∈ S such that s1s2 ∈ Gn .

Suppose s1s2 ∈ C . Then (w, s1)
(s2, s1), w is among the vertices spanned by C ,
hence w ∈ S, a contradiction. We conclude that C consists exclusively of edges of
G1, and s1, s2 ∈ S such that s1s2 ∈ Gn and s1s2 is in a different color class C ′. Let
P = (s1 = x1, x2, . . . , xk = s2) be a simple path from s1 to s2 whose edges are drawn
from C .

To obtain a contradiction with s2xi−1 ∈ G1, we show by induction that for each i
from 1 to k − 1, s2xi ∈ Gn and s2xi ∈ C ′. This is true for i = 1, since s2s1 ∈ G1

and s2s1 ∈ C ′. Suppose by induction that i > 1 and that it is true for i − 1. Then
xi−1xi ∈ G1, xi−1xi ∈ C , s2xi−1 ∈ Gn , and s2xi−1 ∈ C ′. If s2xi ∈ Gc or s2xi ∈ G1, then
xi−1xi
xi−1s2, contradicting C ′ �= C . Thus, s2xi ∈ Gn , and (s2, xi )
(s2, xi−1), hence
s2xi , like s2xi−1, is an element of C ′.

THEOREM 6.15. A set of edges of G1n is a 
 color class iff it is the set of edges of G1n

connecting children of a prime node in the 
 tree of U (T ) or the set of edges of G1n

connecting a pair of children of a degenerate node. If X and Y are two children of a
node of the tree, then no
 implication class contains both directed edges in X × Y and
directed edges in Y × X .

PROOF. Let uw be an edge of G1n . If uw connects two children of a prime node A, then
all 
 modules that contains u and w contain A. The color class C containing uw must
span A by Lemma 6.14. C cannot span a larger set or contain edges that are internal to
a child of A, by Lemma 6.6, and the claim follows for C . If uw connects two children
B1 and B2 of a degenerate node, an identical argument applies.

For the claim about the orientations of edges between X and Y , suppose first that X
and Y are two children of a degenerate node Z . If Z is a Gc node, the claim is vacuous.
Otherwise, suppose that a, b ∈ X and c ∈ Y such that (a, c) and (c, b) are in one impli-
cation class. Let A and B be the partition of X such that A× {c} and {c} × B are in the
same implication class. If Z is a Gn node, then by transitivity of orientations of Gn in
interval orientations, A× B ⊂ Gn , and B ∪Y is a
module of U (T ), contradicting X ’s
status as a strong 
 module. If Z is a G1 node, then X and Y are cliques of G(T ). By
transitivity of interval orientations of G1n , A× B ⊆ G1, and B∪Y is a
module, which
is again a contradiction. If Z is 
 prime, that is, it has only trivial 
 modules, then by
Theorem 6.13, the submatrix induced by one representative vertex from each child of Z
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has only trivial modules. The orientation of an edge of this substructure cannot be re-
versed in an interval orientation without reversing all edges in it. If a is the representative
of X and c is the representative of Y , then replacing a with b gives an interval orienta-
tion of an isomorphic submatrix that differs only in the orientation of a single edge, a
contradiction.

LEMMA 6.16. Let T be an intersection matrix. Let x be a vertex, let M be a maximal
module of U (T ) that does not contain x , and let y �∈ M . Then there exists a sequence
(x = x1, x2, . . . , xk = y), such that for each i from 1 to k − 1, xi ∈ V − M and has a
different relationship to xi+1 from the relationship it has to M .

PROOF. We give a procedure to construct such a sequence. If x = y, the sequence is
(x). Otherwise, let A = V − {x}. Since M is a maximal module that does not contain
x , it follows that while A �= M , there exists some vertex w �∈ A that has different
relationships to the members of A. Partition A into maximal groups of vertices that have
the same relationship to w. Since M is a module, M is a subset of a resulting part P of
A. Reset A := P , and iterate, halting when A = M .

We now show how to construct the required sequence from right to left. Since y =
xk �∈ M , let xk−1 be the vertex w that caused y to separate from members of M . Since
xk−1 was not a member of A at that time, there is another vertex, xk−2 that served as w
when xk−1 separated from M . If xk−2 �= x , there is another vertex xk−3 that served as
w when xk−2 was split apart from M . Iterating, we eventually halt with xk−(k−1) = x ,
having constructed the sequence (x1, x2, . . . , xk).

LEMMA 6.17. Let x be a source or sink in some interval orientation of G1n , and let P
denote {x} and the maximal modules of U (T ) that do not contain x . Then every member
of P is a 
 module.

PROOF. Suppose M is a member ofP that is not a
module. Then M is not a clique of
G(T ), and there exists y ∈ V−M such that {y}×M ⊆ G1. Let s1, s2 be two nonadjacent
vertices of M , and assume that s1’s right endpoint precedes s2’s left endpoint in a realizer
where x is a source or sink.

By Lemma 6.16, there exists a sequence (x = x1, x2, . . . , xk = y) such that for each i
from 1 to k−1, xi ∈ V −M and has a different relationship to xi+1 from the relationship
it has to M .

Next, we show by induction from right to left in this sequence that for each xi ,
[l(xi ), r(xi )] is contained in [l(s1), r(s2)]. This is true for xk = y, since s1 and s2 are
disjoint intervals and y properly overlaps each of them. Suppose that it is true for xi ,
where i ≤ k. Since M is a module, xi−1 has the same relationship to s1 and s2, and
so does xi . If xi−1 has a G1 relationship to s1 and s2, then, like xk , xi−1 is contained
in [l(s1), r(s2)]. It cannot be the case that xi−1 is contained in both intervals s1 and s2,
since they are disjoint. If xi−1 contains both intervals, then it contains xi also, and has the
same relationship to all three, contradicting the definition of the sequence (x1, . . . , xk).
If it has a Gn relationship to s1 and s2, then, since it must intersect xi in order to have
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a different relationship to it, interval xi−1 lies between intervals s1 and s2. In any case,
[l(xi−1), r(xi−1)] is contained in [l(s1), r(s2)].

We conclude that interval x = x1 is contained in [l(s1), r(s2)]. It is neither contained
in s1 and s2 nor contains them, so its relationship to them is in G1n . However, then s1

is a predecessor of x and s2 is a successor of x in the corresponding interval orientation
of G1n . Therefore, x cannot be a source or source or sink in any interval orientation of
G1n , a contradiction.

LEMMA 6.18. Let T be an interval matrix, let R be an interval realizer of T , and let
D1n be the interval orientation assigned to G1n by R.

1. If Y is a node of
(T ) that is a clique of G(T ), the left endpoints of Y are consecutive
in R and the right endpoints of Y are consecutive in R.

2. If Z is a node of 
(T ) that is not a clique, the endpoints of Z are consecutive in R.

PROOF. The lemma follows almost immediately from Theorem 6.15. For part 1, the
left endpoints of Y precede the right endpoints of Y , since it is a clique. Let x ∈ V − Y .
If {x}×Y ⊆ Dc, then the endpoints of x lie between the left endpoints of Y and the right
endpoints of Y . If {x} × Y ⊆ (Dc)

T, then the left endpoint of x precedes all endpoints
of Y , and the right endpoint of x follows all endpoints of Y . If {x} × Y ⊆ Gn , then x is
disjoint from all intervals in Y . If {x}×Y ⊆ G1, then, by Theorem 6.15, one endpoint of
x lies in the common intersection of intervals in Y , and the other is disjoint from them;
otherwise the interval orientation would contain a mixture of directed edges from x to Y
and from Y to x . Since x is an arbitrary member of V − Y , no endpoint of a nonmember
of Y appears among left endpoints of Y or among right endpoints of Y .

For part 2, if Z is not a clique, then it has no incident overlap edges, since it is a
node of 
(U (T )). If there existed x ∈ V − Z such that {x} × Z ⊆ Dc, this would
force all intervals in Z to contain both endpoints of x , making Z a clique. Thus, for
every x ∈ V − Z , Z × {x} ⊆ Dc or Z × {x} ⊆ Gn . In either case, x does not have any
endpoints between two endpoints of Z .

THEOREM 6.19. Any acyclic union of implication classes gives an interval orientation
of G1n in T .

PROOF. If W is a node of the Delta tree, then by Lemma 6.18, the endpoints of intervals
realizing W in any interval realizer can be replaced with their mirror transpose. This
reverses the orientations of edges of G1n in the interval orientation that the realizer
gives. Repeating this operation on the children leaves the net effect of reversing the
orientations of edges that go between children of W .

If A and B are two consecutive children in the interval orientation that a realizer assigns
to a degenerate node C labeled Gn or G1, then either all endpoints of A are consecutive
and followed immediately by the consecutive endpoints of B, or the consecutive left
endpoints of A are followed immediately by the consecutive left endpoints of B, and
the consecutive right endpoints of A are followed immediately by the consecutive right
endpoints of B. The orientation of edges between A and B can be inverted without
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affecting other orientations, by swapping the relative order of these groups of endpoints.
By a sequence of such swaps, an arbitrary permutation of children of C can be induced.

By Theorem 6.15, all acyclic unions of implication classes can be obtained by a series
of these swaps. By Lemma 6.6, this gives all interval orientations of G1n in T .

Johnson and Spinrad have independently developed an idea that is related to the 

tree [15]. Their tree, which they call an MD-PQ tree, has 2n leaves instead of n leaves,
and each leaf represents an endpoint of an interval in a realizer of G, rather than a vertex.
The set of permutations of the leaves represented by a set of allowable reorderings of
children of nodes on the tree represents all realizers of G, rather than realizers of an
intersection matrix.

6.4. An Algorithm for Finding a Realizer of an Interval Matrix. The approach works
by finding an interval orientation of G1n and then finding the corresponding interval
realizer. This requires us to give solutions to the following:

PROBLEM 1. Given a topological sort of an interval orientation of G1n , find the corre-
sponding interval realizer.

PROBLEM 2. Find a topological sort of an interval orientation of G1n .

Our algorithm is a variant of the transitive orientation algorithm of [18]. That algorithm
uses the � relation to constrain the orientation it produces. We adapt the algorithm to
use the 
 relation instead of the � relation to constrain the orientation.

6.4.1. Problem 1: given an interval orientation, find the corresponding interval realizer.
Given an interval orientation of an interval matrix in the form of a topological sort of
the orientation of G1n , it is easy to find the corresponding interval realizer in linear
time. The union of Dc and the orientation of G1n is a linear order on the vertices, and
gives the order of right endpoints of the intervals, since if x is a vertex, the vertices with
earlier right endpoints are those that are either predecessors in the orientation of G1n or
vertices whose interval is contained in x’s interval. Similarly, the union of (Dc)

T and
the orientation of G1n is also a linear order, and gives the order of left endpoints of the
intervals.

Let P be the given linear extension of the interval orientation. To find the left-endpoint
order L of vertices given by the union of (Dc)

T and the interval orientation of G1n , we
find the position of each vertex x in L . This is obtained by adding up the number nc of
predecessors of x in Dc, the number n1 of neighbors of x in G1 that are predecessors in
the orientation of G1n , and the number nn of neighbors of x in the orientation of Gn that
are predecessors in the orientation of Gn . The first two of these can be easily found in
O(1+ N (G(T ), x)) time. Let p(x) be the position of x in P . We find nn by evaluating
nn = (p(x)− 1)− (nc + n1). Doing this for all vertices takes time proportional to the
sum of degrees of the vertices in G(T ), or O(n + m) time. This is essentially the trick
used in [18] for finding a realizer of a permutation graph, given transitive orientations
of the graph and its complement.
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We can create the full realizer by zipping these two permutations together in a way
that reflects the adjacencies of each vertex. Let v1, v2, . . . , vn be the vertices in left-
to-right order of right endpoint. We place the right endpoint among the left endpoints
(l(v1), l(v2), . . . , l(vn)), starting with r(v1), and working up through r(vn), placing r(vi )

in the first position that is both to the right of r(vi−1) and to the right of the rightmost
left endpoint of neighbors of vi .

6.4.2. Overview of solution to Problem 2: finding an interval orientation of an interval
matrix. Recall that we are required only to give a topological sort of G1n . This saves
us from having to orient edges of Gn explicitly, which would violate the time bound.

The basic operation begins with a partition P of the vertices and refines the partition
classes until every partition class is a
module. It does this in a way that avoids splitting
apart members of any
module that is initially a subset of a class ofP . The final partition
therefore gives the maximal 
 modules that were initially subsets of classes of P .

Given a partition P of the vertices, we define an unordered pivot on partition class X
with pivot vertex w �∈ X to be the refinement of P obtained as follows. The first type of
pivot is a standard pivot, and is applied when X fails to be a module of U (T ). Let Xc

be the members of X whose relationship to w is an edge of Gc, let X1 be those whose
relationship tow is an edge of G1, and let Xn be those whose relationship tow is an edge
of Gn . Remove X from P and replace it with the nonempty members of {Xc, X1, Xn}.

For instance, supposeP = {{v1, v2, v3}, {v4, v5, v6}, {v7}}, X = {v4, v5, v6}, the pivot
vertex is v2, Xc = {v4}, X1 = ∅, and Xn = {v5, v6}. After the pivot, P = {{v1, v2, v3},
{v4}, {v5, v6}, {v7}}.

There is another type of pivot, a modular pivot, that is used only when X is a module
of U (T ) that fails to be a 
 module. This is used in this case because a standard pivot
cannot split X , even though it fails to be a 
 module. Let w be a vertex in V − X such
that the vertices in X are neighbors in G1. Since X is not a 
 module, such a w exists
and X is not a clique. Let x be a vertex with an incident edge in Gn|X , and let Y be
the neighbors of x in Gn|X . The modular pivot consists of replacing X in P with Y and
X − Y .

It is not hard to see that if a standard pivot applies to X , any 
 module that is a
subset of X is a subset of Xc, X1, or Xn , and that if a modular pivot applies, any 

module that is a subset of X is a subset of Y or of X − Y . It follows that the partition
can be refined until every partition class is a 
 module, and at this point, the partition
gives the maximal 
 modules that were subsets of a single partition class of the initial
partition.

Algorithm 6.20 gives a key procedure for our approach, UnorderedPartition,
which is based on iterated pivots.

ALGORITHM 6.20. Refine a partition with iterated pivots.

UnorderedPartition (T, v)
P := {{v}, V − {v}}
While there exists Y ∈ P that is not a 
 module

Perform an unordered pivot that splits Y
Return P
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We now modify UnorderedPartition so that it maintains an ordering on the
partition classes of P as it refines it. Initially, the ordering is ({v}, V − {v}).

When X is split with a pivot on w, we keep track of the spot formerly occupied by
X in the linear order. When Xc, X1, and Xn are inserted, they are inserted consecutively
at that spot. Their relative order within that spot is determined as follows. If w lies in a
partition class that precedes X ’s spot, then their relative order is (Xc, X1, Xn); otherwise
it is (Xn, X1, Xc). In the case of a modular pivot, we place X − Y first if the pivot w
resides in a class that is later in the ordering than X , and place it second if the pivot
resides in an earlier class.

We may call this ordered variant Partition. Henceforth in the paper we refer to
this (ordered) pivot when we use the term “pivot.”

We say an ordering of partition classes on V is consistent with an interval orientation
if all arcs in the orientation that go between partition classes are oriented from earlier to
later partition classes in the order.

To explore the key insights in a simple setting, let us suppose that T is an interval
matrix and U (T ) is 
 prime. Suppose also that we know a vertex v that is a source in
some interval orientation D1n of G1n . Then the initial ordered partition ({v}, V − {v})
is consistent with D1n . Moreover, it is easy to see by induction on the number of pivots
that every successive refinement is consistent with the interval orientation. The reason
for this is that after a standard pivot, the set E ′ of edges of G1n that go between members
of {Xc, X1, Xn} have a 
 relationship to the set E ′′ of edges that are incident to both X
and the pivot vertexw. By induction, edges in E ′′ are all oriented toward X in D1n ifw is
in an earlier class than X in the ordering on P , or all oriented toward w if w is in a later
class. Consider the relative ordering of {Xc, X1, Xn} as (Xc, X1, Xn) or (Xn, X1, Xc).
The 
 relationships between E ′ and E ′′ force members of E ′ to be oriented to the right
in this ordering, which means that the induction hypothesis remains true after the pivot.

For instance, suppose that w precedes X . Let ab be an edge of G1n such that a ∈ Xc

and b ∈ X1. Then wa ∈ Gc, wb ∈ G1, and ab ∈ G1n , hence (a, b)
(w, b). Since w
precedes b, we may assume by induction that (w, b) is in D1n , so (a, b) is also in D1n .

A similar analysis applies when a ∈ X1, b ∈ Xn , or a ∈ Xc and b ∈ Xn . We show
below that modular pivots also maintain the invariant that the ordered partition remains
consistent with the interval orientation.

Since U (T ) is 
 prime, it has only trivial modules. Thus, all partition classes are
singletons when the procedure halts. Since the ordering on these is consistent with an
interval orientation, their ordering is a topological sort of D1n . This topological sort,
together with the representation of G1n given by T , gives a representation of D1n that is
adequate for our purposes.

To get this solution, we assumed above that v was a source in an interval orientation
in order to ensure that the induction hypothesis was true initially. It remains to establish
how to find v. Somewhat surprisingly, v may be found by the same procedure. Selecting
an arbitrary vertex u, and starting Partitionwith initial partition ({u}, V −{u}) yields
an ordering on the vertices as before. The last vertex v in this ordering is a source in any
interval orientation that orients vu as (v, u). This is shown by a similar induction. The
induction hypothesis this time is that as the partition is refined, all edges of G1n from v

to vertices outside of v’s current partition class in P are oriented away from v. This is
true initially when the only such edge is vu.
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By these observations, Algorithm 6.21 gives a procedure for producing a topological
sort of an interval orientation when U (T ) is prime.

ALGORITHM 6.21. Find a topological sort of an interval orientation of G1n when U (T )
is prime.

OrientPrime (T )
Select arbitrary vertex u
P1 = Partition (T, u)
Let v be the member of the rightmost class in P1

P := Partition (T, v)
Return P as the topological sort

We now relax the assumption that U (T ) is 
 prime and generalize this procedure to
obtain a general solution to our problem. Partition(T, v) has no way to break apart
any 
 modules of U (T ) that are contained in V − {v}. Instead, it may halt with some
partition classes that are nonsingleton 
 modules. Thus, the final ordering of partition
classes leaves unspecified the order on the vertices that are contained inside such a
module.

The way we get around this is to start up the partitioning process recursively inside
such a 
 module in order to complete the ordering. The algorithm then makes two
calls to this recursive variant, RPartition, in place of two calls to Partition.
Algorithm 6.22 gives the algorithm, with RPartition implemented as an iterative
procedure that makes a series of calls to Partition.

ALGORITHM 6.22. Orient(T) finds a topological sort of an interval orientation of an
interval matrix T .

RPartition (T ) // vertices have been numbered
Let P = (V )
While not every partition class in P is a singleton set

Let Z be a nonsingleton class of P
Let v be the highest-numbered vertex in Z
Z := Partition (T |Z , v)
Substitute Z for Z in the ordering on P

Return the ordering of V given by P
Orient (T )

Number the vertices in any order
Call RPartition (T ) to get an ordering of the vertices
Renumber the vertices in left-to-right order in this ordering
Run RPartition (T ) to get a new ordering of the vertices
Return this ordering as the topological sort

We show below that in the second call to RPartition from Orient, the highest-
numbered vertex in Z in the loop is a source in an interval orientation of G1n|Z . We
also show that Z is a 
 module. Therefore, we do not need to worry about interactions
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between orientations of edges of G1n|Z and other edges of G1n in assigning an interval
orientation to them; the call to Partition(T |Z , v) does not need to take the rest of
P into account in maintaining the invariant that the ordering on P is consistent with an
interval orientation. The procedure halts when all partition classes are singletons, and at
this point, the order on them will be a topological sort of an interval orientation of G1n .

6.4.3. Proof of correctness of Algorithm 6.22

LEMMA 6.23. Let X , Y , x , and w be as in the definition of a modular pivot. All edges
of G1n in {Y × (X − Y )} are in the same 
 implication class as (w, x).

PROOF. All members of Y × {x} are edges of Gn . Since all members {w} × (Y ∪ {x})
are edges of Gn , all edges of Y × {x} are in the 
 relation with (w, x).

Let yq be an arbitrary edge of G1n such that y ∈ Y and q ∈ X − Y . If q = x , the
foregoing shows that (y, q) is in the same implication class as (w, x). Otherwise, note
that xq ∈ G1n; otherwise q ∈ Y , a contradiction, so yq ∈ G1n and yx ∈ Gn yields
(y, q)
(y, x), and since (y, x)
(w, x), the result follows.

LEMMA 6.24. Let T be an interval matrix.

1. If a sequence of partition classes on vertices of T is consistent with some interval
orientation D of G1n in T , then they remain consistent with D after a pivot.

2. Let X be the rightmost class in a sequence of partition classes, let X ′ be the rightmost
class after the next successful standard pivot on a rightmost subset of X and let
q ∈ X ′. In any interval orientation D′ of G1n where all edges of D′ between V − X
and {q} are oriented toward q , all edges of D′ between V − X ′ and {q} are also
oriented toward q in D′.

PROOF. For part 1, suppose that the claim of part 1 applies before a pivot on w is used
to split a partition class X . Suppose w occurs in a partition class that is earlier than X in
the ordering; the analysis is similar if it occurs in a later partition class.

If the pivot is a modular pivot, the result is immediate from Lemma 6.23. If the pivot
is a standard pivot, let ab be an edge of G1n such that a occurs in a class that is earlier in
the sequence (Xc, X1, Xn) than b does. If a ∈ Xc and b ∈ X1∪Xn , then (a, b)�1n(w, b),
implying (a, b)
(w, b). Suppose a ∈ X1 and b ∈ Xn . If ab ∈ Gn , then (a, b)�n(w, b),
implying again that (a, b)
(w, b), and if ab ∈ G1, then (a, b)
(w, b) by the straddle
condition. Therefore (a, b) is also an edge in the interval orientation. Since ab is an
arbitrary edge that goes between members of {Xc, X1, Xn}, the invariant is maintained.

For part 2, suppose the next successful pivot on X is a standard pivot. Then it is easy
to see that any edge of G1n from q to a class of Xc, X1 that does not contain q has the

 relationship to (q, w), and the result follows.

Otherwise, the next pivot is a modular pivot. Then X is a
module, as modular pivots
are only used in this case. Let w, x , and Y be as in the definition of the modular pivot.
Since X is rightmost, w is in an earlier partition class, so after the pivot, X − Y is the
rightmost partition class. If there is an edge yq in Gn for y ∈ Y , then wq, wy ∈ G1 and
yq ∈ Gn imply (w, q)
(y, q). Since (y, q) ∈ Y ×(X−Y ), it follows from Lemma 6.23
that (w, q) ∈ D′ implies that every edge of G1n in Y×{q} is in D′, and the result follows.
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The remaining case is when q does not have any element of Y as a neighbor in Gn .
Since X is a
module, the next successful pivot on X − Y will leave x in the rightmost
class and remove q from the rightmost class, so q is irrelevant to the claim.

LEMMA 6.25. If M is a 
 module of U (T ), the presence of vertices in V − M has no
effect on the relative ordering of members of M produced by RPartition.

PROOF. In each call, if a and b are two members of M , they are initially in the same
partition class, V , and in the end they are in two different partition classes, {a} and
{b}. The event that first splits them into two classes is either the replacement of Z with
({v}, Z − {v}) at the beginning of a call to Partition, or a pivot on some vertex w.
In the former case the presence of nonmembers of M has no effect on the relative order
of {a} and {b}, since this depends only on the order of the numbers assigned to a and to
b. In the latter case, w ∈ M , a pivot outside of M cannot split a partition class that is a
subset of M .

LEMMA 6.26. Let M be a 
 module of U (T ).

1. After the first call to RPartition from Orient, the rightmost vertex in M is a sink
in an interval orientation of G1n|M .

2. If M is a
module of U (T ), then after the second call toRPartition fromOrient,
the ordering of vertices in M is a linear extension of an interval orientation of G1n|M .

PROOF. For part 1, suppose by induction that the claim is true for 
 modules that are
proper subsets of M . M is first split up when a single vertex of M is removed from a
partition class Z that contains M . Partition returnsZ , where all members ofZ are

modules of U (T ). For each X ∈ Z that contains members of M , X ∩ M is a 
 module
in U (T )|M , by Theorem 6.12, and collectively, these intersections partition M into 

modules of U (T )|M . By Lemmas 6.25 and 6.24(part 2), and induction on the number of
pivots in the while loop of Partition, the rightmost class M ′ in this partition of M is a
sink with respect to edges between M−M ′ and M ′. By Lemma 6.25 and the assumption
that part 1 is true for smaller modules than M , the subsequent partition of M ′ places a
sink s in an interval orientation of G1n|M ′ in the last position of the ordering it returns.
Since M ′ is a 
 module, there can be no 
 constraints between edges of G1n|M ′ and
edges of G1n|M that are not edges of G1n|M ′, by Lemma 6.6. There is an acyclic union
of implication classes where s is a sink, by Theorem 6.19.

We now consider the second claim. M is first split up when a source in an interval
orientation of T |M is split off from M . The partitionZ returned by Partition consists
of
modules, by Lemma 6.17. Since M is a
module, the partitionM that they induce
in M consists of 
 modules of T |M , by Theorem 6.9. The ordering ofM is consistent
with an interval orientation of T |M , by Lemmas 6.24 and 6.25. By induction on the size
of a 
 module, the remaining pivots produce interval orientations of each member of
M, and since they are
modules, these orientations can be combined with the ordering
onM to give an interval orientation of T |M , by Theorem 6.19.

Since V is a
module, the second call toRPartition produces a linear extension of
an interval orientation. OnceRPartition is run, an interval realizer may be constructed
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and checked in linear time, using Algorithm 5.1. The bottleneck for the time bound is
the running time of RPartition.

6.4.4. An O(n +m log n)-time implementation. We have already shown that the time
to construct a realizer of an interval matrix is given by the running time of RPartition
on the matrix. The first call to RPartition in Algorithm 6.22 serves only to partition
the rightmost class in the ordering. Performing only pivots on the rightmost class until
it is a singleton set takes O(n + m) time, since it requires one pivot on each vertex
after it leaves the rightmost class. The second call to RPartition does not require any
modular pivots, by Lemma 6.17. Thus, in obtaining the time bound, we may focus only
on the second call and assume that all pivots are standard pivots.

Algorithm 6.27 gives an implementation of the while loop of RPartition that
allows RPartition to run in O(n + m log n) time. The algorithm is similar to the
approach of [19] and [13]. Retrieving E ′ takes time proportional to the sum of degrees
of X . The grouping operations on E ′ take O(|E ′|) time, by distributing the edges to
buckets that are initially empty, and maintaining a list of nonempty buckets to allow
retrieval of the groups without visiting empty buckets, leaving the buckets empty again.
The selection of X ensures that each time a vertex is used as a pivot, the partition class
that currently contains it is at most half as large as the class that contained it the last time
it was used as a pivot. A vertex is therefore used O(log n) times as a pivot. A pivot on x
requires O(|N (x)|) time, giving the bound.

This clever idea is due to Spinrad, and initially appeared in an unpublished but influ-
ential manuscript, which he has circulated beginning in 1985 [26]. This paper was also
the first to propose vertex partitioning as an algorithmic tool, and to recognize its impor-
tance to the modular decomposition and transitive orientation problems. Algorithm 6.27
is a variation of his time-bound argument that bounds the cost of partitioning inside all
recursive calls to RPartition, instead of just in the main loop.

ALGORITHM 6.27. Vertex partitioning.

Partition (G,P)
If |P| = 1 return P
else

Let X be a member of P that is not larger than all others
Let E ′ be the edges of G in X × (V (G)− X).
Group members of E ′ by endpoint in X
Use each x ∈ X as a pivot on all partition classes in V − X
Regroup members of E ′ by endpoint in V − X
Use each v ∈ V − x as a pivot on all partition classes in X
Let Q be the classes of P ′ now contained in X
Let Q′ be the classes of P ′ now contained in V (G)− X
Return Partition(G|X,Q) ∪ Partition(G − X,Q′)

Because of its simplicity, it would be the method of choice in a practical implemen-
tation of the algorithm of this paper, in our view. This is a bottleneck in the circular-arc
graph recognition algorithm. To get a linear time bound for recognizing circular-arc
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graphs we need a linear bound for RPartition. To do this we use a considerably
more complicated strategy, which we give below. Before we do that, we show how
RPartition can be used to obtain the 
 tree.

6.4.5. Linear-time implementation. From a theoretical standpoint, an O(n +m log n)
bound for RPartition would be a bottleneck in our circular-arc graph recognition
algorithm, and would result in an O(n + m log n) bound for it also.

To get a linear bound, we must make use of the considerably more difficult linear-
time approach to vertex partitioning that is given in [18]. In this section we prove the
following:

THEOREM 6.28. RPartition can be carried out in O(n + m) time.

This is the most difficult part of the paper, since it requires a summary description
of tricks that are explained in greater detail in [18]. There is no loss of continuity if one
accepts Theorem 6.28 provisionally on a first reading and skips to Section 8.

The following are given in [18]:

THEOREM 6.29. Let G be a prime graph, and let P be an arbitrary initial partition
of V . Partition may be implemented so that it takes O(n + m) time to halt with all
partition classes singletons.

THEOREM 6.30. It takes linear time to find the modular decomposition of an undirected
graph.

By Theorem 6.29, it is immediate that we can run Partition in linear time on a
prime graph; RPartition partitions V down to singleton sets. The paper solves the
general transitive orientation problem through a reduction to prime graphs. In addition,
the algorithm is specific to undirected graphs, and it is not immediate that it can be
generalized even to prime interval matrices. For our application, we must be able to run
RPartition on U (T ), where T is an interval matrix that need not be prime, and still
get a linear time bound for RPartition.

We develop our algorithm in two steps. In the first we show how to perform
RPartition on an undirected graph that need not be prime, in linear time, and in
the second we show how to do it on U (T ), where U (T ) need not be prime.

6.4.6. Running RPartition on a graph that need not be prime. Let G = (V, E) be
an undirected graph, and letMG denote the family of modules of G. Let T be a family
of subsets of V where the transitive reduction of the containment relation is a tree, and
where V and its singleton subsets are members of T . Moreover, suppose that each node
of the tree is labeled prime or degenerate. Let F(T ) denote the family of sets where
X ∈ F(T ) iff it is a node of T or a union of siblings whose parent is a degenerate node.
T is an M tree on G ifMG ⊆ F(T ). If T is the modular decomposition of a graph, then
it is an M tree, andMG = F(T ).

In general, an M tree looks like the modular decomposition, except that when it is
interpreted as the modular decomposition, it exaggerates the number of modules of G
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Fig. 9. An M tree is a tree defined on G = (V, E). When interpreted as the modular decomposition, the family
of sets that it claims are modules contains all modules, but also some nonmodules.

(Figure 9). However, it never implies that a module of G is not a module. If T1 and
T2 are M trees, then T2 is more restrictive than T1 if F(T2) ⊂ F(T1). The modular
decomposition tree is the most restrictive one possible for G. The least restrictive M tree
possible has V as a degenerate root and its singleton subsets as its children, since then
F(T ) is the power set of V .

The modular decomposition algorithm of [18] constructs a series of length O(1) of
M trees, each one more restrictive than the previous, until the modular decomposition
is obtained. In constructing Ti from Ti−1 in the sequence, the algorithm makes use
of vertices that demonstrate that each member of F(Ti−1) − F(Ti ) are not modules.
Each of these vertices is a nonmember of some of the sets that has both neighbors and
non-neighbors in them, which discredits them as modules. The main insight behind the
transitive orientation algorithm is that these same vertices can be used as pivots during
vertex partitioning whenever a class X ∈ P arises that is a member of F(Ti−1)−F(Ti ).
We call these vertices Ti ’s pivots.

Each node of an M tree is represented with an O(1)-sized structure that has a pointer
to a doubly linked list of its children. The set that the node represents is given by its leaf
descendants.

The members of P are implemented with doubly linked lists, and when splitting
Y ∈ P with a pivot w, we remove neighbors of w from Y , and let what remains of Y
stand for the remaining partition class. This avoids the cost of touching non-neighbors
of w in Y . We call this a removal operation.

LEMMA 6.31 [18] (see Figure 9). Given an M tree T on graph G, one may perform the
following in time linear in the size of G:

1. Sort all adjacency lists so that the neighbors of each vertex x are given in order of
their left-to-right appearance as leaves of T . For each node of the tree, the members
of the node are therefore consecutive in the adjacency list of x .

2. Label each node U of the tree with a sorted list SN(U ) of vertices in V − U that
are adjacent to all members of U . SN(U ) is sorted in left-to-right appearance of its
members as leaves of T , and the sum of lengths of these lists is linear in the size of
G.

3. Label each node U that is not a module with the leftmost vertex l(U ) ∈ V −U and
rightmost r(U ) ∈ V − U that is adjacent to some members of U and nonadjacent
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Fig. 10. A restarting procedure on an M tree performs pivots in G until every partition class is a node or a
union of children of a degenerate node. The top illustration depicts a node U of the M tree that intersects more
than one partition class in the partition of V . The bottom illustration depicts the situation after the restarting
procedure for the tree is called. U now contains all partition classes that it intersects. At this point, U may be
“processed,” by performing a pivot on classes that U intersects, using the interval occupied by N (s(U ) ∩U )
in s(U )’s adjacency list.

to others; since U is not a module, at least one of these is defined. Let s(U ) denote
one of them. U is also equipped with a pointer to the consecutive interval occupied
by N (s(U )) ∩U in s(U )’s adjacency list.

The algorithm assigns a private copy of an adjacency-list representation of G to each
Ti , and applies Lemma 6.31 to each. It uses a restarting procedure on each Ti , which
initiates pivots onP , halting only whenP ⊆ F(Ti ). (See Figure 10.) To do this, it makes
a call to the restarting procedure on Ti−1. When that restarting procedure halts, it makes
use of Ti ’s pivots to split some classes, communicates these splits to Ti−1 as capricious
splits, and then calls the restarting procedure on Ti−1 to get the partitioning restarted.
The procedure fails to find any pivots to restart partitioning only if P ⊆ F(Ti ), in which
case it is allowed to halt.

The restarting procedure is linear if it may be restarted O(n + m) times without
spending more than O(n + m) total time, including the time to perform the pivots it
generates and to maintain the list of unprocessed nodes. All of the restarting procedures
in the sequence of M trees are linear ones.

Notice that a linear restarting procedure on the last tree in the sequence, MD(G), would
suffice for a linear-time implementation ofRPartition. The restarting procedure could
perform the while loop of Partition, halting when every partition class is a member
ofF(MD(G)) (i.e., a module). A new call toPartition(T |Z , v) could then initiate the
split ({v}, Z) of a module Z and restart the restarting procedure again. By the definition
of a linear restarting procedure, the time for all calls to the restarting procedure would
be linear.

General linear restarting procedures are given in [18] for all trees in the sequence
except for the very last one, which is the modular decomposition of G. This is unfortunate,
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since doing this requires only a straightforward extension of the techniques used for the
other restarting procedures, which must now be resurrected here. The reason that this
was not done is that when the modular decomposition is available, transitive orientation
of a comparability graph reduces to transitive orientation of prime graphs, and this step
was unnecessary for transitive orientation.

The reason pivoting risks being wasteful is that the class that contains a pivot vertex x
cannot be split by x , so time might be wasted traversing members of x’s class in splitting
up classes that do not contain x . After a sequence of later pivots, some of these might
lie in a different class from x , and these portions of x’s adjacency list might have to be
retraversed to look for these elements. Bounding the number of retraversals is the main
challenge.

The basic technique of [18] is to use the restarting procedure on Ti−1 to impose an
organized structure on the partition classes so that a set of classes that are to be split by
a pivot x in Ti occupy a consecutive region of x’s adjacency list, which is sorted by leaf
order in Ti . This region of the list can then be discarded as it can have no effect on the
results of future pivots. No elements in the list have to be retraversed later.

The last tree in the sequence before the modular decomposition is called an M2 tree.
An M2 tree is an M tree with the following property: for any node U that is labeled
degenerate, every union of children of U is a module of G|U (but not necessarily of G).

To get the restarting procedure for the modular decomposition, we insert a new M
tree Mp in the sequence between the M2 tree and the modular decomposition. (Mp is
the “penultimate” tree.) We do this by creating a copy of the M2 tree, and performing
the operations of Lemma 6.31 on it. For each degenerate node U , let A be its children
that are modules of G. A = {W : W is a child of U such that s(W ) is undefined}. We
install a new child A of U representing

⋃
A, and remove the members of A and their

subtrees from the list of children of U and make them the list of children of A. We label
A degenerate.

By concurrently traversing the lists {SN(A) : A ∈ A}, we may either conclude that
A is a module of G, or else find a first vertex x that is adjacent to a proper subset Aa

of A, and let An be the remaining subset that are nonadjacent to x . When x exists, we
let s(A) = x , and create two new nodes Aa and An standing for

⋃
Aa and

⋃
An . We

remove the members of Aa from the doubly linked list of children of
⋃
A in O(|Aa|)

time and make them children of Aa , and then move the remaining list of children of⋃
A in O(1) time and make it the list of children of An . We then recurse on Aa and

An , using what remains of the SN lists in each of these sets. The base case is reached
when a recursive call is made on a single member ofA or on a subsetAm ofA such that
|Am | > 1 and

⋃
Am is a module in G. The latter case is recognized when what remains

of the SN() lists of members ofAm are exhausted without discovery of a splitting vertex
x . In this case the corresponding node Am is labeled degenerate, and its children areAm .

When we are done, we sort adjacency lists in Mp’s private copy of G by leaf order in
Mp so that each node of the tree occupies a consecutive portion of each adjacency list.

The restarting procedure given in [18] for the M2 tree is called M2Resolve(). As
partitioning on P proceeds, M2Resolve a list of “unprocessed” nodes of Ti , each of
which contains every partition class that intersects it. Though it is not necessary for
the algorithm, it helps to understand it if one assumes that the list is ordered so that
ancestors appear before descendants. The list supports permanent removal of a maximal
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unprocessed node from the front of the list. (This node is used to assist in identifying
promising pivots.) When a pivot is performed, it supports identification and insertion
of all new nodes that now satisfy the requirement of containing partition classes that
intersect them, in an appropriate order at the end of the list. The list can be regarded as
an abstract data type that updates itself each time a partition class is split.

This requires an initial overhead of O(n+m) time to set up. After that, the amortized
time to update this list when a partition class Y is split by removing a set Ya from Y is
O(|Ya|), which is the cost of the removal operation. This is true whether the split is the
result of a pivot, or is a capricious split of the class that is decided upon by some other
process.

To initiate the pivoting, we call M2Resolve, beginning with the initial partition P .
When it returns, each member P in the refined partition P is either a node of the M2
tree or a union of children of a degenerate node of M2.

Let W be a maximal unprocessed node of M2. We remove W from the list. If the
vertex s(W ) that splits W does not exist, W is a module, and we proceed to the next
maximal unprocessed node in the list. The reason this is justified is that M2Resolve has
halted. Each partition class that intersects W is either W itself, or contained in one of its
children if W is prime, or is contained in a child or a union of children if W is degenerate.
If W is a partition class, the class is a module, and no further work is required on it.
A partition class that is contained in one of its children, C , will be dealt with when the
unprocessed children of W are processed. If a partition class is a union of children, then
since every union of children of W is a module of G|W and W is a module of G, each
such union is a module of G, and no further work is required on it.

If s(W ) exists, suppose first that W is prime in M2. We pivot on s(W ) by traversing
only the portion of s(W )’s adjacency list that contains members of W . We find this
portion using the pointer carried by W to N (s(W ) ∩ W ) in s(W )’s adjacency list. No
members of the partition class containing s(W ) are encountered in this region of the list,
since s(W ) is a vertex outside of W . Every partition class intersecting W is contained
in W . These elements may now be discarded from W ’s adjacency list, as they are
irrelevant to future pivots. These pivots ensure that if W is not a module, it now contains
more than one partition class. W has now been processed, and we call M2Resolve
again, which ensures that every partition class that intersects a child C of W is now
contained in C . These will be dealt with when C is removed from the list of unprocessed
nodes.

The procedure when W is degenerate is slightly more complicated, since W can have
a child A in Mp that it does not have in the M2 tree. As in the prime case, we begin
with a pivot on W with s(W ), discarding the members of W from s(W )’s adjacency list.
Again let A be those children of W that are modules of G. For each child C not in A,
we pivot on the regions occupied by W in s(C). Since C is a module of G|W , s(C) lies
outside of W . We may then discard members of W from s(C)’s adjacency list. A call to
M2Resolve now returns with each partition class intersecting such a child C contained
in C . By default, every partition class intersecting A = ⋃

A is also contained in A.
Pivoting on s(A) and removing members of A from s(A)’s adjacency list makes this
true for its children Aa and An . We may do this recursively, halting when we reach the
highest descendants of A that are modules. If such a descendant D contains more than
one child of W in the M2 tree, then it is a module, and so is every union of its children
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in the Mp tree. Calling M2Resolve now halts only when each partition class is either a
union of children of D, in which case it is a module, or contained in a child C of D, in
which case it will be dealt with when C is processed.

The procedure can only fail to generate effective pivots when every partition class is
a module. That is precisely the halting criterion for a restarting procedure on MD(G).

The total time preparing to restart M2Resolve is proportional to the number of ele-
ments discarded from adjacency lists, and is therefore linear. There are O(n + m) calls
to M2Resolve(), so the time these calls require is linear, since M2Resolve() is a
linear restarting procedure. As explained above, the total amortized cost of maintaining
the list of unprocessed nodes is linear. This gives the following:

LEMMA 6.32. A linear restarting procedure may be constructed for the modular de-
composition of an undirected graph.

COROLLARY 6.33. RPartition takes O(n + m) time on an undirected graph.

6.4.7. A linear time bound for RPartition on an interval matrix. If T is an interval
matrix, then X ⊆ V is a module of U (T ) iff it is a module of both Gn and G1c. One
problem is that we need to avoid working directly on these graphs, since their size is
not linear in the size of G(T ). Fortunately, vertex partitioning on Gn can be simulated
with vertex partitioning on G1c, and vertex partitioning in G1n can be simulated with
vertex partitioning on Gc. The partition of a class induced by a pivot is identical in
the simulation; only the interpretation of the classes, hence the order given to them in
the linear order on P , is changed. Adjusting the ordering of P to accommodate this
reinterpretation takes O(1) time per split, hence O(n) time total.

Let Mp(Gc) and Mp(G1c) denote Mp trees for Gc and G1c. We may use a restarting
procedure for each of MD(Gc) and MD(G1c). Beginning with our initial partition, we
call the restarting procedure for MD(Gc), which refines P until every partition class is
a module of Gc, using pivots in Gc.

It may be the case that not every partition class is a module of G1c, so we communicate
the list of removal operations that have been performed as capricious splits to Mp(G1c),
and initiate the restarting procedure for MD(G1c). This performs pivots until all members
of P are modules of G1c. At this point, they may not be modules in Gc, so we may
communicate the new removal operations back to Mp(Gc) and return control to the
restarting procedure for MD(Gc).

Alternating between the restarting procedure of MD(Gc) and MD(G1c) continues
refining P , halting only when neither of the restarting procedures is able to refine P
further. This occurs only when every member ofP is a module of both Gc and G1c, hence
a module of U (T ). This is the halting criterion for a restarting procedure MD(U (T )).

Since each of the restarting procedures is restarted O(n) times, they take O(n +
m(Gc)) and O(n + m(G1c)) time, respectively, for all pivots that they perform. This is
linear in the size of G(T ). This gives the following:

LEMMA 6.34. RPartition on U (T ), beginning with an arbitrary starting partition,
takes O(n + m) time.
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The following is now an immediate corollary:

THEOREM 6.35. It takes O(n + m) time to produce an interval realizer of an interval
matrix.

6.5. The Case Where G Is Not a Circular-Arc Graph. We now illustrate how halting
conditions that are consistent with standard programming practice can be derived for the
case when G is not a circular-arc graph. In this case Steps 1 or 2 may terminate early.
Otherwise, they may output unreliable results. Therefore, we cannot assume that the
precondition of Step 3 is met, which is that T is the intersection matrix of an interval graph.
However, we show below that they halt in O(n+m) time. Therefore, the representation
of T with an edge labeling of G1c has size O(n + m).

Suppose T is not an interval matrix. If it has labels that identify some of the edges
as double overlaps, which do not belong in an interval matrix, G can be rejected, as we
have shown that this cannot happen when G is a circular-arc graph. Similarly, G can be
rejected if the subgraphs G1 and Gc given by the matrix are not symmetric (undirected).

Otherwise, the 
 modules and 
 relation are still defined on T , just as modules and
� are defined on arbitrary graphs. RPartition produces linear extensions of alleged
interval orientations which may not be interval orientations at all, just as the transitive
orientation algorithm of [18] produces a nontransitive orientation when its input is not
a comparability graph. When these alleged interval orientations are used to produce an
interval realizer, this realizer must fail to realize T , since T is not an interval matrix. The
analysis of the time bound of the algorithm is unaffected by conditions.

7. Details of Step 1: Creating an Intersection Matrix that Shares a Realizer with a
Given Circular-Arc Graph. In this section we give the implementation of Step 1 of
Algorithm 4.1. If G is a circular-arc graph, this step consists of finding an intersection
matrix whose realizer is a realizer of G if G is a circular-arc graph. If G is not a circular-
arc graph, then, by Lemma 5.1, the step is allowed either to halt because it detects that a
precondition on the input that one can expect from circular-arc graphs is not met (thereby
rejecting G), or to produce a meaningless output.

This section makes use of algorithmic results from a variety of sources, and is therefore
not self-contained if one wishes to have a complete understanding of the implementation
details.

This reduces to evaluating the conditions of Definition 4.2 at each adjacent pair
of vertices. That is, for each adjacent pair {x, y}, we must evaluate N [x] ⊂ N [y],
N [y] ⊂ N [x], and N [x] ∪ N [y] = V Then, at each adjacent pair {x, y} such that
N [x] ∪ N [y] = V , we must check whether for each z ∈ N [x] − N [y], N [z] ⊆ N [x],
and for each z′ ∈ N [y] − N [x], N [z′] ⊆ N [y] in order to disambiguate Cases 4 and 5
of Definition 4.2.

7.1. Evaluating N [x] ⊂ N [y], N [y] ⊂ N [x], and N [x] ∪ N [y] = V When G Is a
Circular-Arc Graph. The main insights of this section were developed by Eschen and
Spinrad [9]. We improve their time bound to O(n + m) for testing for each edge xy
whether N [x] ⊂ N [y], N [y] ⊂ N [x], and N [x] ∪ N [y] = V ; they gave an O(n2)

bound for performing this on all 
(n2) pairs of vertices.



Linear-Time Recognition of Circular-Arc Graphs 129

We first show that we may assume by means of a reduction that G has no universal
vertices or clique modules. We then select a vertex m0 whose arc does not contain any
other arc in some realizer of G, and such that |N [m0]| = O(m/n). For example, selecting
m0 to be a vertex of minimum degree satisfies these requirements.

Let U = V − N [m0]. Since there are no clique modules, N [x] ⊆ N [y] implies
N [x] ⊂ N [y]. For testing for a neighborhood containment between x and y, we break
the problem into two parts: testing whether N [x] ∩U ⊆ N [y] ∩U and testing whether
N [x]∩N [m0] ⊆ N [y]∩N [m0]. This test falls into different cases, depending on whether
x and y are both in N [m0], both in U , or one is in N [m0] and the other is in U . These
tests are made easy by the fact that G|U is an interval graph and the edges of G that go
between N [m0] and U have a special chordal bipartite structure.

LEMMA 7.1. Let G be a circular-arc graph.

1. If y is a universal vertex, a circular-arc realizer for G can be obtained from any
circular-arc realizer for G|(V − {y}), in O(1) time.

2. If X is a clique module of G and x ∈ X , an intersection matrix for G can be obtained
from any intersection matrix of G|((V − X) ∪ {x}) in O(|X |) time if X is given.

PROOF. To obtain a realizer of G from a realizer of G|(V −{y}), insert r(y) anywhere,
and insert l(y) immediately to the right of it. This causes it to cover the circle, except in
an interval between r(y) and l(y) that has no endpoints of other arcs in it.

Let X = {x1, x2, x3, . . . , xk}. A realizer of G can be obtained from a realizer of
G|((V − X) ∪ {x}), by replacing l(x) with the sequence (l(x1), l(x2), . . . , l(xk)), and
replacing r(x) with the sequence (r(x1), r(x2), . . . , r(xk)).

We apply the reduction Lemma 7.1 initially to G, eliminating all universal vertices
and all but one vertex from each remaining maximal clique module, to obtain a graph
G ′. We find a realizer of G ′, and use Lemma 7.1 to find a realizer of G.

To show that this takes linear time, we must show a linear time bound for finding all
maximal clique modules of a graph. For this, the following well-known lemma is useful.

LEMMA 7.2. Given an adjacency-list representation of a graph G and a numbering of
its vertices from 1 to n, it takes O(n + m) time to put all adjacency lists into ascending
order of vertex number.

PROOF. Number the vertices from 1 to n, then perform a two-pass radix sort of the con-
catenation of the adjacency lists, with vertex of origin as the primary key and destination
vertex as the secondary sort key. Each adjacency list is now consecutive and in sorted
order.

The origin of the following is unclear, but a proof can be found in [5], where the
procedure is called radix partitioning.

LEMMA 7.3. Let L be a list of nonempty strings of integers from {1, 2, . . . , n} whose
combined length is m. It takes O(n + m) time to partition L into maximal groups of
identical strings.
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The process is similar to radix sorting, but achieves a better time bound because it is
not required that the groups be given in any particular order.

COROLLARY 7.4. It takes O(n+m) time to find the maximal clique modules of a graph.

PROOF. The key observation is that the clique modules are maximal sets of vertices
with identical closed neighborhoods. Number the vertices from 1 to n. Sort all of the
adjacency lists by Lemma 7.2. For each vertex v, add a copy of v to the spot where it
belongs in the sort of its own adjacency list. This gives all closed neighborhoods, with
the elements of each neighborhood listed in sorted order. Apply Lemma 7.3 to find the
maximal groups of identical closed neighborhoods.

We assume in the rest of Section 7 that G has no universal vertices or clique modules,
hence no two vertices have identical closed neighborhoods.

THEOREM 7.5 [14]. If G is a circular-arc graph with no clique modules or universal
vertices, then T (G) is the intersection matrix of a circular-arc realizer of G.

Hsu calls a realizer of this matrix a normalized model, and works exclusively with
normalized models. If G is a graph, performing a flip on a vertex in T (G) yields a new
matrix T ′ for a graph G ′, and T ′ gives the intersection types of a realizer of G ′. It is not
necessarily true that T ′ = T (G ′), so a geometric flip may or may not give a normalized
realizer. The sole significance to us of a normalized model is that it allows us to get an
initial intersection matrix.

A chordal bipartite graph is a bipartite graph with no chordless cycles of length 6
or greater. Let n1 and n2 denote the sizes of its bipartition classes. A neighborhood
containment test on two vertices x and y consists of evaluating the expression N (x) ⊆
N (y). A disjoint neighborhood test consists of evaluating whether N (x)∩N (y) is empty.

THEOREM 7.6 [27]. In a bipartite graph G with bipartition classes of sizes n1 and n2

and k pairs of vertices of G, it takes O(n1n2 + k) time either to determine that G is not
chordal bipartite or else to perform neighborhood containment tests on the pairs.

THEOREM 7.7 [8]. Given a bipartite graph G with bipartition classes of sizes n1 and
n2 and k pairs of vertices of G, it takes O(n1n2 + k) time either to determine that G is
not chordal bipartite or else perform disjoint neighborhood tests on the pairs.

THEOREM 7.8 [9]. Let G be an arbitrary circular-arc graph, and let m0 be a vertex
whose arc contains no other in some circular-arc realizer of G. Let D(N ′[m0], V, ED)

be a bipartite graph, where N ′[m0] is a copy of N [m0], and xy ∈ ED iff x �= y and
xy �∈ E . Then D is chordal bipartite.

In the statement of Theorem 7.8 in [9], m0 is only required to be a vertex of minimum
degree. However, this is only to ensure for the proof that m0’s arc contains no other arc



Linear-Time Recognition of Circular-Arc Graphs 131

in some circular-arc realizer. The proof works without modification for this version of
the theorem.

THEOREM 7.9. Let G be a graph and let U ⊆ V . It takes O(n +m + k) time either to
determine that G|U is not an interval graph or to evaluate N [xi ]∩U ⊆ N [yi ]∩U and
(N [xi ] ∩U ) ∪ (N [yi ] ∩U ) = U at k pairs {xi , yi } of vertices such that yi ∈ U .

PROOF. It takes O(n + m) time to determine that G|U is not an interval graph or to
produce an interval realizer of G|U [3]. If it is an interval graph, create a list L of the
left endpoints in the realizer in the order in which they appear, and a list R of the right
endpoints in the order in which they appear. For each vertexw of G, compute the leftmost
right endpoint L(w) and the rightmost left endpoint R(w) among neighbors of w in the
realizer of G|U . Compute also the leftmost right endpoint L ′(w) and the rightmost left
endpoint R′(w) among non-neighbors of w in the realizer of G|U . Computing L(w)
and R(w) clearly takes O(|N (w)|) time. To compute L ′(w), mark neighbors ofw in the
realizer, in O(|N (w)|) time. Then traverse R from left to right until a right endpoint of
an unmarked vertex is encountered; this is L ′(w). R′(w) can be found by a symmetric
operation on L . All but one endpoint encountered in each traversal is a neighbor of w,
so this takes O(|N (w)|) time. Then unmark neighbors in O(|N (w)|) time to reinitialize
the realizer. The entire operation takes O(|N (w)|) time, hence O(n + m) time over all
vertices.

For {xi , yi } such that yi ∈ U , N [xi ] ∩ U ⊆ N [yi ] ∩ U iff l(yi ) < L(xi ) and
r(yi ) > R(xi ). (N [yi ]∩U )∪ (N [xi ]∩U ) = U iff l(yi ) < L ′(xi ) and r(yi ) > R′(xi ).

THEOREM 7.10 [9]. Let G be a graph and let U ⊆ V . Then it takes O(n+m+n|V−U |)
time either to determine that G|U is not an interval graph or else to evaluate N [xi ]∩U ⊆
N [yi ] ∩U at all pairs {xi , yi } of vertices such that xi ∈ U and yi ∈ V −U .

Nonadjacent pairs always have the same intersection type, so we use a sparse repre-
sentation of the intersection matrix that consists of labeling the edges of G with their
intersection type. The following two theorems now suffice to compute T (G) in linear
time.

THEOREM 7.11. It takes O(n + m) time either to determine that a graph G is not a
circular-arc graph or else to evaluate the following boolean expressions at each edge
xy in G:

1. N [x] ⊆ N [y];
2. N [y] ⊆ N [x];
3. N [x] ∪ N [y] = V .

In their conference paper, Eschen and Spinrad give an O(n2) bound, but omit the
proof of part 2 due to space considerations. However, it is a variant of the proof of part 1.
They do not give a tighter bound, presumably because this suffices to get their O(n2)

bound for circular-arc graph recognition. However, it is not hard to get an O(n + m)
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bound using their methods, if one is interested in evaluating these expressions only at
adjacent pairs of vertices. For completeness, we give the details here.

PROOF. A vertex of minimum degree satisfies the requirements of m0 in Theorem 7.8,
and has degree O(m/n) in G. The size of the bipartite adjacency matrix for the graph
D given by the theorem is O((m/n)n) = O(m). Let U denote V − N [m0].

Suppose G is a circular-arc graph. Since G is a circular-arc graph, removal of N [m0]
uncovers part of the circle in any circular-arc realizer of G. Thus, G|(V−N [m0]) = G|U
is an interval graph. It takes O(n + m) time to find an interval model of G|U [3].

1. Consider pairs of the form {x, y} ⊆ N [m0]. By Theorem 7.6, we may evaluate
N [Ḡ, x] ⊆ N [Ḡ, y], which is true iff N [y] ⊆ N [x]. Using Theorem 7.7, we test
whether the neighborhoods of x and y are disjoint in D, which tells whether N [x] ∪
N [y] = V in G.

2. Next, consider adjacent pairs of the form {x, y} ⊆ U . It takes linear time for all such
pairs to evaluate N [x]∩U ⊆ N [y]∩U , by Theorem 7.9, and linear time to evaluate
N (D, y) ⊆ N (D, x) in D, by Theorem 7.6, which gives N [x] ∩ N [m0] ⊆ N [y] ∩
N [m0]. The results of these two tests give N [x] ⊆ N [y]. To evaluate N [x]∪ N [y] =
V , (N [x] ∩ N [m0]) ∪ (N [y] ∩ N [m0]) = N [m0] iff N (D, x) ∩ N (D, y) is empty.
By Theorem 7.7, we can compute this for all these adjacent pairs in linear time. We
evaluate (N [x] ∩U ) ∪ (N [y] ∩U ) = U using Theorem 7.9.

3. Pairs of the form {x, y} with x ∈ N [m0] and y ∈ U are handled as in part 2, except
that N [x] ⊆ N [y] must be obtained with Theorem 7.10. Since |N [m0]| is O(m/n),
the time bound is still O(m).

Now, suppose that G is not a circular-arc graph. If Theorems 7.6, 7.7, 7.9, or 7.10
fail to deliver the required results, then this can only be because they determined that
a subgraph failed to satisfy a property that we have shown that it must satisfy if G is a
circular-arc graph.

By itself, Theorem 7.11 does not give circular-arc graph recognition, because it allows
for the possibility that when G is not a circular-arc graph, G fails to be rejected, and
instead the claimed tests are performed correctly.

7.2. Disambiguating Cases 4 and 5 of Definition 4.2. In this subsection we show the
following, which is all that remains to do in order to disambiguate Cases 4 and 5 of
Definition 4.2:

THEOREM 7.12. It takes O(n+m) time either to determine that G is not a circular-arc
graph or else to evaluate the following boolean expressions at each edge xy in G such
that N [x] ∪ N [y] = V :

For each z ∈ N [x]− N [y], N [z] ⊆ N [x], and for each z′ ∈ N [y]− N [x], N [z′] ⊆
N [y].

An O(n2) bound for evaluating this in the special case where the vertices can be
partitioned into two cliques is given in [9]. We need a linear bound for arbitrary circular-
arc graphs.
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The strategy of the proof can be summarized as follows. If N [x]∪N [y] = V , then we
can reduce the problem to one we have already solved, by flipping y in some realizer to
obtain y′ and testing whether N [y′] ⊆ N [x] in the graph represented by the new realizer.
We do not yet know a realizer of G, but Theorem 7.11 provides enough information to
allow us to deduce the effect on G of flipping y.

However, to obtain the linear time bound, we must batch these tests together by adding
to G a copy y′ of one vertex y out of every pair {x, y} such that N [x] ∪ N [y] = V . Let
V be the original vertices and let F be the copies. We then flip all the copies to obtain a
graph H with vertex set V ∪ F . We then perform the comparison on x and y by testing
whether N [y′] ∩ V ⊆ N [x] ∩ V in H .

This gives rise to an obstacle in applying the technique: If x ′, y′ ∈ F , then we do not
know whether they are adjacent in H . This depends on whether xy falls into Case 4 or
Case 5. If xy is a single overlap in G, then x ′y′ is a single overlap in H , which is an
adjacency, but if xy is a double overlap, then x ′y′ fails to be an edge in H . Thus, we do
not know H |F , and we must avoid use of its edges when applying our tests.

Let m0 be a vertex whose arc contains no other arc in a circular-arc representation of
H . We use two key facts in order to employ techniques from the previous subsection:

1. H |(V − N [m0]) = G|(V − N [m0]) is an interval graph.
2. Let D be the bipartite graph D(N [m0], F ∪ V ) that is obtained as described by

Theorem 7.8 applied to H . Then D is chordal bipartite, as is every induced subgraph
of D.

We split the test into two parts: testing whether N [y′]∩ (V ∩ N [m0]) ⊆ N [x]∩ (V ∩
N [m0]) and testing whether N [y′]∩ (V − N [m0]) ⊆ N [x]∩ (V − N [m0]). These tests
are performed using the two key facts and techniques similar to those of Section 7.1.
How they are applied depends on which of x and y′ are neighbors of m0.

Computing D requires knowledge of edges of H |F , which we do not have. We get
around this problem by making use of two induced subgraphs D1 and D2 of D, neither
of which requires information about H |F to compute, and which suffice to make the
required tests of neighborhood containments. This trick resolves all of the cases, except
the one where x is a neighbor of m0 in H and y′ is not. In this case we must improvise a
new technique, which is based on a type of graph called a probe interval graph, which
we define below.

A remaining issue is that, to apply our techniques, we must identify a vertex m0 of
H such that there is a circular-arc realizer of H where arc m0 contains no other arc,
|N [m0]| = O(m/n), and m0 �∈ F . The requirement that m0 contain no other arc is
necessary to apply Eschen and Spinrad’s theorems. The requirement that |N [m0]| =
O(m/n) is required for the time bound. That m0 �∈ F is required because we need to
know N [m0], and if m0 ∈ F , this requires knowledge of H |F .

We first show how to find an m0 that satisfies all of the requirements with the possible
exception of m0 �∈ F . If m0 ∈ F , we modify H , V , and F slightly so that it still suits
our purposes and m0 �∈ F .

This concludes the summary of the strategy. We now give the detailed proof.
A probe interval graph is a graph G = (V, E) and a partition {P, N } of V such that

G|P is an interval graph, N is an independent set, and there is an interval realizer on V
where edges of P × V can be realized with an interval model. There are no restrictions
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on adjacencies and nonadjacencies assigned by the realizer among members of N . Such
a realizer of G is a probe interval realizer.

THEOREM 7.13 [20]. Given a graph G and a partition {P, N } of its vertices, it takes
O(n + m + n|N |) time to construct a probe interval model or else determine that G is
not a probe interval graph with respect to the partition {P, N }.

Johnson and Spinrad showed an O(n2) variant of Theorem 7.13 [15]. We have mod-
ified it to get an O(n + m log n) bound [21], and the proof of Theorem 7.13 differs
from this proof by allowing O(n) time, rather than O(log n) time, to incorporate each
nonprobe into the model.

THEOREM 7.14. Let G be a graph, let U ⊆ V , and let {P, N } be the partition of U . It
takes O(n + m + n|V − P|) time either to determine that G|U is not a probe interval
graph with respect to the partition {P, N }, or else evaluate N [x] ∩ P ⊆ N [y] ∩ P at
all adjacent pairs {x, y} such that at most one of x and y is in V −U .

PROOF. If G|U is not a probe interval graph with respect to {P, N }, then we may detect
this in linear time, by Theorem 7.13. Otherwise, we obtain a probe interval model R that
realizes G|U . The algorithms of Theorems 7.9 and 7.10 can be trivially adapted to the
problem. For Theorem 7.9, compute L(w), R(w), L ′(w), and R′(w) in R|P , and let l(y)
and r(y) denote the position of y ∈ U relative endpoints of P . The test is now identical.
An identical adaptation suffices for the algorithm of Theorem 7.10 given in [9].

ALGORITHM 7.15. Build an auxilliary graph for Theorem 7.12.

• Compute neighborhood containments in G and pairs of the form xy ∈ G(T ) and
N [x] ∪ N [y] = V , using Theorem 7.11.
• For each xy ∈ G(T ) such that N [x] ∪ N [y] = V :

— Find one of the two vertices, say, x , with degree at least as large as the other.
— Insert a copy x ′ into G if one has not already been inserted, and make it adjacent

to x , thereby making {x, x ′} a clique module.
• We call this graph H ′, and the set of new vertices F .

At this point, let us pause to define some objects that we do not compute explicitly,
but that we can now compute limited information about. Let R′ any the realizer of H ′

derived from a realizer of T (G) by letting each added arc x ′ ∈ F properly contain its
copy x in V . That is x and x ′ have identical arcs in R′, except that the arc corresponding
to x ′ has been stretched slightly so that it properly contains that of x . (We do this to
avoid the complications of realizers where endpoints of arcs coincide.) Let H be the
circular-arc graph that results from flipping each x ′ ∈ F in R′.
• Find a vertex m0 that minimizes |N [H,m0] ∩ V |.
• Return m0, H |V , and the edges of H that go between V and F .

LEMMA 7.16. Algorithm 7.15 takes O(n + m) time and |F | = O(m/n).
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PROOF. The size of H ′ is O(n + m). Since there are O(m) edges in H ′, the sum of
degrees of members of F in H ′ is O(m) in H ′. Each vertex in F has degree�(n) in H ′,
so |F | = O(m/n). We may spend O(n) time on each member of F without exceeding
O(n + m). Since each member of F has �(n) incident edges in H ′ and O(n) incident
edges in H , the size of H is also O(n + m).

The critical observation is that the algorithm does not need to compute edges in H |F
in order to be able to return the result. H |V = G, so these edges are already available.
For x ∈ V and y′ ∈ F , let y be the unflipped copy of y′ in V . Since G has no clique
modules, xy′ fails to be an edge of H iff N [G, x] ⊂ N [G, y]. N [G, x] ⊂ N [G, y] only
if x and y are adjacent in G, so the results of this test are known from the first step of
the algorithm. Since |F | is O(m/n), the time bound follows for these pairs.

LEMMA 7.17. Let m0 be a vertex of H that minimizes |N [H, x] ∩ V |. If m0 ∈ V , then
there is a realizer R of H such that arc m0 contains no other.

PROOF. Recall that G has no clique modules or universal vertices. Let RG be the
unknown realizer of T (G) given by Theorem 7.5. Let R′ be the realizer of H ′ obtained
from RG by adding a copy y′ of each arc y of R that has a duplicate element of F in H ′. To
disambiguate what happens to the relationship of y and y′ when y′ is flipped, we assume
that the endpoints of y′ have been stretched slightly so that y′ properly contains y. In
the circular ordering of endpoints in R′, the endpoints of y and y′ form two consecutive
pairs. Let RH be the realizer of H obtained by flipping the members of F .

Let z′ be an arc such that N [H, z′] ∩ V = N [H,m0] ∩ V . Since m0 minimizes
N [H, x] ∩ V , only arcs of this form could be be contained in arc m0 in RH . Thus, if z′

does not exist, the claim holds. Otherwise, if z′ ∈ V , then m0 and z′ are a clique module
of G, a contradiction. Thus, z′ is the flipped copy of some z ∈ V . Because of the way
the copy of z′ is created, z and z′ are nonadjacent, hence so are m0 and z. The endpoints
of z and z′ make two adjacent pairs in the circular ordering of endpoints in RH , so if arc
z′ fails to contain arc m0 in RH , z is a neighbor of m0 in G, a contradiction.

In what follows, we let N [H, x] denote the neighborhood in H of x ∈ V ∪ F in H ,
and let N [x] denote the neighborhood in G of x ∈ V .

Let m0 be the vertex returned by Algorithm 7.15. We need m0 to be a member of V .
Let D be the chordal bipartite graph on H given by Theorem 7.8. Let D1(X ∪ Y, V )
denote the subgraph induced by V and the copies of X ∪ Y in D, and let D2(X, V ∪ F)
be the subgraph induced by the copies of V ∪ F and the copies of X . Neither of these
graphs requires knowledge of H |F to compute. They are both chordal bipartite because
they are induced subgraphs of D.

If m0 ∈ F , m0 is the twin of some x ∈ V , and each y′ ∈ F is the twin of some y ∈ V .
If x and y are adjacent and N [x] ∪ N [y] = V , then we do not know whether m0 and
y′ are adjacent, since we do not know whether x and y have a single or double overlap.
However, since we already know neighborhood containments among adjacent pairs in V
we can find out in O(n) time for all z ∈ N [x]− N [y], whether N [z] ⊆ N [x]. Similarly,
we can find for all z′ ∈ N [y]− N [x] whether N [z] ⊂ N [y]. (As we see below, however,
this second test is unnecessary.) Since |F | = O(m/n), all of these evaluations take
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O(m) time. This disambiguates Cases 4 and 5 on edges incident to x in G, which gives
all edges of H |(V ∪ {m0}) and all edges of H between m0 and members of F − {m0}.
At this point, we reset G = H |(V ∪ m0), V = V ∪ {m0}, F = F − {m0}. We remove
universal vertices and collapse clique modules as before. We rerun Algorithm 7.15, but
this time, there is no need to insert a copy of m0 and flip it, since G already has one.
We select the same m0 to return as the first time. It is still true that |N [H,m0] ∩ V | is
minimized. Now, m0 ∈ V , and Algorithm 7.15 gives us H |V and edges of H from V to
F . By Lemma 7.17, m0’s arc contains no other arc in some realizer of H .

For each pair x, y such that N [x]∪N [y] = V , at least one of x and y has a copy in F .
Suppose without loss of generality that y has a copy y′ in F . Suppose N [x]∪N [y] = V .
If for some z ∈ N [x]− N [y], N [z] �⊂ N [x], then z has a neighbor that x does not have,
and this neighbor must be a neighbor z′ of y that x does not have. Since N [x]∪N [y] = V ,
this implies that z′ ∈ N [y] − N [x], and N [z′] �⊂ N [y], since z′ has a neighbor, z, that
y does not have. Test for all z ∈ N [x] − N [y] whether N [z] ⊂ N [x] suffices for the
seemingly stronger requirement of the fourth condition in the definition of T (G), where
the condition on z′ is redundant. However, the non-neighbors of y in V are exactly the
neighbors of y′ in V whose neighborhoods in V are contained in y′. The condition is
true iff N [H, y′] ∩ V ⊆ N [H, x] ∩ V .

Thus, for Theorem 7.12, it remains to find for each {x, y′} with x ∈ V and y′ ∈ F
whether N [H, y′] ∩ V ⊆ N [H, x] ∩ V .

ALGORITHM 7.18. Evaluate N [H, y′] ∩ V ⊆ N [H, x] ∩ V for each adjacent pair xy′

in H with x ∈ V and y′ ∈ F .
Let X = N [H,m0] ∩ V and Y = N [H,m0] ∩ F . Note that H |(V − X) = G|(V −

N [m0]) is an interval graph.
Break the problem into two parts: N [H, y′]∩ X ⊆ N [H, x]∩ X and N [H, y]∩ (V −

X) ⊆ N [H, x] ∩ (V − X).

Case 1: x ∈ V − X, y′ ∈ Y .

(a) N [H, y′]∩ (V − X) ⊆ N [H, x]∩ (V − X). Apply the algorithm of Theorem 7.10.
(b) N [H, y′] ∩ X ⊆ N [H, x] ∩ X . Apply the algorithm of Theorem 7.6 to D2.

Case 2: x ∈ V − X , y′ ∈ F − Y .

(a) N [H, y′]∩ (V − X) ⊆ N [H, x]∩ (V − X). Apply the algorithm of Theorem 7.10.
(b) N [H, y′] ∩ X ⊆ N [H, x] ∩ X . Apply the algorithm of Theorem 7.6 to D2.

Case 3: x ∈ X, y′ ∈ Y . N [H, y′] ∩ V ⊆ N [H, x] ∩ V . Apply the algorithm of
Theorem 7.6 to D1.

Case 4: x ∈ X, y′ ∈ F − Y .

(a) N [H, y′] ∩ X ⊆ N [H, x] ∩ X . Apply the algorithm of Theorem 7.6 to D2.
(b) N [H, y′] ∩ (V − X) ⊆ N [H, x] ∩ (V − X). HI = H |((V − X) ∪ (F − Y ))

is an interval graph, since a realizer of H fails to cover m0. Let HP be the probe
interval graph obtained by omitting edges of H |(F − Y ) from HI . Build a probe
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interval model for HP using the algorithm of Theorem 7.13. Apply the algorithm of
Theorem 7.14 on H |(V ∪ (F − Y )), using U = (V − X) ∪ (F − Y ).

For the time bound, the matrices D1 and D2 have O(m) entries each, since |X ∪Y | is
O(m/n). Theorem 7.6 gives a linear bound for the cost of handling pairs in Cases 1(b),
2(b), 3, and 4(a). |Y | and |F−Y | are each O(m/n), so Theorem 7.10 gives a linear bound
for Cases 1(a) and 2(a), Theorem 7.13 gives a linear bound for building the probe model
for Case 4(b), and Theorem 7.14 gives a linear bound for performing the neighborhood
containment tests required for Case 4b, or else one of these theorems fails to deliver
the required tests because a subgraph fails to have a property that it must have if G is a
circular-arc graph. In any case, the algorithm halts in linear time.

This completes the proof of Theorem 7.12.

8. Details of Step 2: Finding a Set of Algebraic Flips to Turn an Intersection Matrix
into an Interval Matrix. In this section we give the implementation of Step 2 of
Algorithm 4.1.

We proceed by incrementally performing flips to transform an intersection matrix for
the original input graph into an interval matrix. At each point, we let T denote the current
state of the matrix, and let Gc, Gn , G1, and G2 refer to those graphs in T . The matrix
passes through the following stages:

T0: T0 is an intersection matrix of the graph given as the input to the recognition problem.
T1: T1 is a matrix that has a vertex v0 of degree O(m/n), and all members of

N (G(T1), v0) have a single overlap relation with v0.
For notational convenience, let U = N (G(T1), v0) and W = N̄ (G(T1), v0). (It

will also be the case thatU = N (G(T2), v0)= N (G(T3), v0), and W = N̄ (G(T2), v0)

= N̄ (G(T3), v0).) Let PW = {D1, D2, . . . , Dk} be the components of G1n|W . All
edges between these are edges of Gc. We show that we may assume that all directed
edges of Dc between these components are directed from left to right in this list. Let
A(D1) denote the smallest interval on the circle that is disjoint from v0 and contains
all members of D1. (A(D1) can be thought of as the region of the circle occupied
by D1.) For 2 ≤ i ≤ k, all arcs in Di contain A(D1).

T2: (see Figure 11) T2 shares the above properties with T1, but Gn|U and G2|U are
empty, and all vertices in each component of Gc|U cover a single endpoint of v0 in
any circular-arc realizer of T2. Because of this, xy ∈ G2 implies x, y ∈ U , so G2 is
empty.

Let Q = {C1,C2, . . . ,Ch} denote the components of Gc|U that contain an arc
with an endpoint in A(D1). If two members of Q cover opposite endpoints of v0,
flipping all members of one of them will make them cover the same endpoint.

T3: (see Figure 12) The components ofQ are flipped, as necessary, so that they all cover
the same endpoint of v0, and they all, therefore, fail to cover one endpoint, p, of
A(D1). T3 is the resulting intersection matrix. All arcs in V −⋃

Q either contain
A(D1) or are disjoint from it. These can be distinguished from each other by their
relationship to any member of D1 in T3.
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Fig. 11. The set W of non-neighbors of v0 can be divided into components {D1, D2, . . . , Dk} of G1n , which
are ordered by containment. In T2 the set U of neighbors of v0 is a clique and all pairs in U are adjacent in Gc

or G1. Each component Gc|U covers one endpoint of v0’s arc.Q is the set of components of Gc|U that have
a member with an endpoint inside an arc in D1. In this example,Q = {C ′1,C ′′1 , A}. C ′1 exemplifiesQ′, the set
of components that have a member with different relationships to members of D1, and C ′′1 exemplifies Q′′,
the set of components that are not members of Q′, but whose members do not all have the same relationship
to D1. A exemplifies A, the members of Q that have an overlap relationship with all members of D1. Arc d
is not in a set inQ because it has no endpoint inside a member of D1.
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Fig. 12. Flipping the members of Q, as needed, so that they cover the right endpoint of v0, yields T3. At this
point, one endpoint p of the area occupied by D1 is contained in those arcs that contain all members of D1 in
T3, and only in those arcs. Flipping these yields T4, leaving a region of the circle adjacent to p uncovered. T4

is therefore an interval matrix.
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T4: Flipping the arcs in T3 that contain A(D1) leaves the region of the circle adjacent to
p and outside of A(D1) uncovered by any arc. T4 is therefore an interval matrix.

8.1. Turning T0 into T1. To find the flips we need to perform in T0 to obtain an inter-
val matrix, we select a vertex v of minimum degree in G. When vertices are tied for
minimum degree, we select v to be one whose arc contains no other arcs. An arc cannot
contain another that has higher degree, so v always exists. If v has no double-overlap
relationships, we select v0 = v. Otherwise, we select a double-overlap neighbor of v that
is contained in no other arc, flip it, and set v0 to be the corresponding vertex. In either
case, v0 now has no double-overlap relations, and has at most the degree of v, which is
O(m/n). We then flip every arc that contains v0. Now all arcs that intersect v0 have a
single-overlap relationship with it. T1 is the state of T at this point.

LEMMA 8.1. Every edge incident to v0 in G(T1) is a single-overlap relationship in a
realizer of T1, and |U | is O(m/n).

8.2. Turning T1 into T2. If for a vertex x ∈ U , x contains v0’s right endpoint, then
flipping x will make it contain v0’s left endpoint instead.

If x, y ∈ U and x and y contain the same endpoint, then they intersect, and since
they fail to contain the other endpoint, they do not cover the circle, and they do not
have a double intersection. Therefore, if xy is an edge of G2 or Gn in T1, then x and
y contain opposite endpoints of v0. G2n|U is bipartite, and the arcs of two vertices in
opposite bipartition classes of a component of G2n must contain opposite endpoints. If
arc x contains arc y, then they contain the same endpoint of v0, since they each miss an
endpoint, so vertices in the same component of Dc contain the same endpoint of v0. These
observations give a unique bipartition of each component of (Dc ∪ G2n)|U into sets of
vertices containing opposite endpoints. Flipping one of these sets makes them contain
the same endpoint, eliminating all edges of Gn and G2 from the component. Edges of
Dc internal to a flipped set are flipped once at each endpoint, and remain edges of Dc,
but with their orientations reversed. Edges leading out of the component are edges of G1

and are unaffected by flipping. This flipping therefore turns the component of Dc ∪G2n

into a component of Dc. Doing this for each component of (Dc ∪ G2n)|U makes Gn|U
and G2|U empty.

LEMMA 8.2. Lemma 8.1 applies to T2. In addition, all arcs in each of the components
of Gc|U contain the same endpoint of v0 in any realizer of T2.

8.3. Turning T2 into T3. (See Figure 11.) Let Q′ = {C ′1,C ′2, . . . ,C ′h′ } be the compo-
nents of Dc|U that have a member that distinguishes members of D1, and let Q′′ =
{C ′′1 ,C ′′2 , . . . ,C ′′h′′ } be the set {C : C is a component of Dc|U , C �∈ Q′, and there is a
member of D1 that distinguishes members of C}. Let A denote the set set {A : A is a
component of Gc|U such that A × D1 ⊆ G1}. Q = Q′ ∪Q′′ ∪A.

We obtain T3 from T2 as follows:

Case A. If Q′′ is nonempty, we use a single rule to decide which members of Q =
Q′′ ∪Q′ to flip to get them all to cover a single endpoint of v0.
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Case B. If Q′′ is empty, we use a different rule to decide which members of Q′ to flip
to get them all to cover a single endpoint of v0.

Let T ′3 denote the resulting matrix. We show that there is a realizer of T ′3 where all
members of A also cover this same endpoint, so T3 = T ′3.

8.3.1. Case A: Q′′ is nonempty. We say that if xz ∈ Gn and yz ∈ G1, then y has a
stronger relationship to z than x does, since y and z intersect, but x and z do not. If
xz ∈ G1 and yz ∈ Gc, then y again has a stronger relationship with z than x does, since
it is a full containment, rather than a partial overlap. Similarly, if xz ∈ Gn and yz ∈ Gc,
then the relationship of y to z is stronger than the relationship of x to z.

For x, y ∈ U , let x � y denote that for every z ∈ W , the relationship of y to z is at least
as strong as the relationship of x to z. That is, x � y if N (G1c, x)∩W ⊆ N (G1c, y)∩W
and N (Gc, x)∩W ⊆ N (Gc, y)∩W . If A and B are two components of Gc|U , then let
A � B denote that for every x ∈ A and y ∈ B, x � y. Let A ∼ B denote that A � B
or B � A.

LEMMA 8.3. If A and B are components of Gc|U and cover the same endpoint of v0

in a circular-arc realizer of T2, then A ∼ B.

PROOF. Suppose A and B both cover the right endpoint of v0 in some circular-arc
realizer R. Let A(W ) denote the smallest interval of the circle that is disjoint from v0

and contains every arc in W . (Think of A(W ) as the “region occupied by W .”) Then for
x ∈ A and y ∈ B, x and y both extend counterclockwise into A(W ). If A � B and
B � A, the lemma holds. Suppose without loss of generality that y extends farther than
x does, so that y �� x . Then every arc in W that is contained in x is also contained in y,
and every arc in W intersected by x is also intersected by y. Therefore, x � y.

Since A and B contain no arc that covers the left endpoint of v0, R′ = R|({v0}∪A∪B)
is an interval realizer of T ′ = T |({v0} ∪ A ∪ B). The order of right endpoints in this
realizer is a linear extension of an interval orientation of T ′. The root node of the modular
decomposition of T ′ is a degenerate node whose children, {v0}, A, and B, are components
in the complement of G1. G1n is transitively oriented in the interval orientation, so all
edges of G1 between A and B must either be directed from A to B, or from B to A by
Lemma 6.1. Since x � y and y �� x , xy is oriented from x to y. Each arc of B extends
at least as far to the right as every arc of A, hence at least as far into the region occupied
by W in R. It follows that A � B.

G2 is empty, Dc is transitive, and {D1, D2, . . . , Dk} are the children of the root of
the modular decomposition of Gc|W . By Lemma 6.1, we may assume without loss of
generality that Di × Dj consists exclusively of arcs of Dc whenever 1 ≤ i < j ≤ k.

LEMMA 8.4. If A ∈ Q′′, B ∈ Q′′ ∪Q′, and A �= B, then A ∼ B iff A and B cover the
same endpoint of v0 in B.

PROOF. Since A ∈ Q′′, A contains two vertices u and w that each have uniform
relationships to all members of D1, but such that u’s relationship to D1 is different from
w’s.
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Case 1: {u}×D1 ⊆ Gn and {w}×D1 ⊆ Gc. Flipping A results in {u}×D1 ⊆ Gc and
w× D1 ⊆ Gn . In one of these cases, A and B cover the same endpoint of v0, so A ∼ B
in one of these cases, by Lemma 8.3. In this case, either every member of B× D1 ⊆ Gc

or every member of B × D1 ⊆ Gn , but this contradicts membership of B in Q. We
conclude that Case 1 cannot occur.

Case 2: {u} × D1 ⊆ G1 and {w} × D1 ⊆ Gc. Suppose that we flip B as necessary so
that it covers the same endpoint as A does. If A � B now applies, then B × D1 ⊆ Gc,
contradicting B’s membership inQ. By Lemma 8.3, B � A, so no member of B×D1 ∈
Gc. By B’s membership in Q′ ∪ Q′′, there are pairs (a, b), (c, d) ∈ B × D1 such that
ab ∈ Gn and cd ∈ G1 (where it is possible that a = c or b = d). Flipping B so that
it does not contain the same endpoint of v0 as A results in ab ∈ Gc, and cd ∈ G1, and
B �∼ A. We conclude that the claim applies in Case 2.

Case 3: {u} × D1 ⊆ G1 and {w} × D1 ⊆ Gn . The proof is identical to that of Case 2,
except that the roles of Gc and Gn are swapped.

Since every circular-arc realizer has a left-right mirror image, we may assume without
loss of generality that C ′′1 covers the right endpoint of v0 in R. Lemma 8.4 gives a simple
criterion for flipping the remaining members of Q′ ∪ Q′′ so that they cover the same
endpoint of v0.

8.3.2. Case B: Q′′ is empty. If Q′′ is empty, then by mirror symmetry, we can assume
without loss of generality that C ′1 covers the right endpoint of v0.

Our strategy is the following (see Figure 13). We find a vertex c1 ∈ C ′1 that dis-
tinguishes members of D1. Suppose that c1 covers the right endpoint of v0 in some
circular-arc realizer R. Since c1 is the only vertex in {c1} ∪ D1 that intersects v0, c1 is a
source (extreme leftmost interval) in the corresponding interval realizer R|({c1} ∪ D1).
We use this and
 relationships involving edges incident to c1 to find the interval realizer
R|Pi for some subset Pi of arcs of D1. In the illustration the arcs other than v0 and cj

represent Pi . In C ′j there is a vertex cj that distinguishes members of D1. We are able to

vo

c j

y’
x’

Fig. 13. The strategy for finding whether C ′j covers the same endpoint as C ′1 whenQ′′ is empty.
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construct Pi so that cj distinguishes members x ′ and y′ of Pi , where x ′y′ ∈ G1n . Now cj

is either a source or sink in the interval realizer R|({cj } ∪ D1), and which of these cases
applies is forced by a 
 relationship involving cj , x ′, and y′. Whether it is a source or a
sink tells whether cj covers the left endpoint or the right endpoint of v0. In the illustration
cj must cover the right endpoint of v0, because it contains x ′ and overlaps y′. It could
not realize those relationships if it covered the left endpoint of v0 and entered the top
part of the circle clockwise.

At certain points, we will have an interval orientation of T |Y for some Y ⊆ W , and
a vertex x that we know can be added either as a source or sink to produce an interval
orientation of T |(Y ∪ {x}). Which case applies determines whether x must be flipped.
The interval realizer of the interval orientation of T |Y is available. Rather than checking
the
 relationships between edges of G1n incident to x and edges of G1n|Y directly, we
work with an interval representation of T |Y , and use Algorithm 8.5:

ALGORITHM 8.5. Checking whether x can be added as a source to an interval orientation
of T |Y , given the interval realizer RY of the orientation.

In the ordered-list representation of RY , find the first point p in the list that is to
the right of all left endpoints of neighbors of x in G(T |Y ) and to the right of all right
endpoints of neighbors of x in (Dc)

T |Y . If x can be added as a source, l(x) must be
inserted at the front of the list, and r(x) must be inserted at p. The test consists of
checking that no non-neighbor of x has a left endpoint to the left of p, and no overlap
neighbor of x has a right endpoint to the left of p. The first check may be accomplished
by counting the intervals with left endpoint to the left of p and halting if the count
exceeds the degree of x in T |(Y ∪ {x}). The second check is conducted similarly.

To find whether x can be added as a sink, it suffices to use the mirror transpose of RY

to model the transpose of the orientation of T |Y , and test whether x can be added as a
source to it. The running time of Algorithm 8.5 is O(|N (G(T ), x)|).

Let R be a circular-arc realizer of T2. Let c1 be a member of C ′1 that distinguishes
members of D1, let cj be a member of C ′j that distinguishes members of D1, letP be {v0}
and the maximal modules of T2|({v0, c1} ∪ D1) that do not contain v0, and let P be any
set consisting of one representative from each member of P . Let P ′ = P − {{v0}, {c1}},
and let P ′ = P − {v0, c1}.

We may find R|P ′ as follows. T2|({v0, c1} ∪ D1) is an interval matrix with interval
realizer R|({v0, c1} ∪ D1). In R|({v0, c1} ∪ D1), v0 is the interval with the leftmost left
endpoint, hence a source in the corresponding interval orientation of T2|({v0, c1} ∪ D1).
We call Partition (Algorithm 6.22) on the initial partition {{v0}, {{c1} ∪ D1}} in
T2|({v0, c1} ∪D1), halting when each part is a module. The final partition is P , and
by Lemma 6.24, part 1, the ordering of its parts gives the unique interval orientation
of (T2|({v0, c1} ∪ D1))/P that is consistent with {v0} being a source. By Lemma 6.2,
the corresponding interval realizer R1 is unique. This quotient is isomorphic to T2|P ,
which is realized by R|P . In R|P , v0 is also leftmost, so R|P is isomorphic to R1. By
restriction, this gives R|P ′.

If there exists Z ∈ P ′ whose members have differing relationships to cj , let x1, x2 ∈ Z
be two vertices whose relationships to cj differ. Let P1 be x1 and one arbitrary repre-
sentative of each member of P ′ − {Z}, and let P2 be the result of replacing x1 in P1
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with x2. One of these will serve as Pi . If Z does not exist, let P1 = P2 consist of one
representative of each member of P ′. The algorithm for finding R|P works identically
on R|P1 and R|P2, so R|P1 and R|P2 are isomorphic to R|P ′, and we do not have to
recompute these interval realizers for each C ′j . The relationships of cj , R|P1, and R|P2

may differ, however.

LEMMA 8.6. cj can be added as a source to both R|P1 and R|P2 iff C ′1 and C ′j cover
the same endpoint of v0.

PROOF.

Case 1: Z does not exist. Since cj distinguishes members of D1, it distinguishes X ∈ P ′
from Y ∈ P ′. Since G1n|D1 is connected, there exist X ′, Y ′ ∈ P ′ such that X ′×Y ′ ⊆ G1n .
Let x ′ and y′ be the representatives of X ′ and Y ′ in P1. Without loss of generality, suppose
x ′ precedes y′ in R|P1.

If cj covers the same endpoint as c1 in R, then cj has the leftmost left endpoint in
the interval realizer R|({cj } ∪ P1), so cj can be added as a source to R|P1, and the
relationship of cj to x ′ is stronger than its relationship to y′. If cj is flipped so that it
covers the opposite endpoint of v0 from c1, R|({cj } ∪ P1) is still an interval realizer, but
with cj rightmost. Its relationship to x ′ becomes weaker than its relationship to y′. Since
x ′ is earlier than y′ in R|({cj } ∪ P1), cj can no longer be added as a source to R|P1.

Case 2: Z exists. Then cj distinguishes x1, x2 ∈ Z . Since D1 is connected and P ′
consists of modules of T2|({v0, c1} ∪ D1), there exists Z ′ in P ′ such that Z × Z ′ ⊆ G1n .
For any y in Z ′, either cj has different relationships to x1 and y or to x2 and y. Without
loss of generality, suppose it has different relationships to x1 and y. Now x1 and y have
the same properties as x ′ and y′ from Case 1, so cj can be added as a source to R|P1 iff
cj and c1 cover the same endpoint of v0.

The results now follows from Lemma 8.2.

Lemma 8.6 and Algorithm 8.5 provide an efficient test for deciding how to flip
members of Q′ − {C ′1} so that they cover the same endpoint of v0 as C ′1 does, namely,
the right endpoint of v0.

8.3.3. Showing that T ′3 serves as T3. In T ′3 all arcs in members ofQ′ andQ′′ cover the
right endpoint of v0 in some realizer Rc of T ′3. With the exception of arcs inA, this is all
arcs that have an endpoint in A(D1).

LEMMA 8.7. There is a circular-arc realizer of T ′3 where all members of Q′, Q′′, and
A cover the right endpoint of v0.

PROOF. Let A be a member ofA that covers the left endpoint ofv0 in T ′3. By the definition
of A, A × D1 ⊆ G1. Therefore, A × Di ⊆ G1 for any i > 1, since Di × D1 ⊆ (Dc)

T,
and D1 lies in the intersection of all arcs in Di , which are, in turn, disjoint from both
endpoints of v0. Members of A are connected components of G1n . The edges of G1 are
unaffected by flipping, so flipping the members of A modifies T ′3|A without affecting
other relationships in T ′3.
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Since they are components of G1n , the members of A are children of the root of
MD(T ). By Lemma 6.18, for each A ∈ A, the left endpoints of A are consecutive and
the right endpoints of A are consecutive.

If the members of A cover the left endpoint of v0, the only effect on the intersection
matrix of flipping the members of A on the intersection matrix for the realizer is to
reverse the directions of directed edges corresponding to Dc|A. This effect can then be
undone without other side effects, by reversing the order of left endpoints of A and the
order of right endpoints of A within their respective segments of the circle. The net effect
is to move only those arcs that belong to A so that they cover the right endpoint of v0,
without changing the intersection matrix for the realizer.

Doing this to each A ∈ A that covers the left endpoint of v0 produces a realizer of T ′3
that satisfies the claim in the lemma.

Lemma 8.7 justifies letting T3 = T ′3. The following is now immediate:

LEMMA 8.8. There exists a circular-arc realizer of T3 where every member of U with
an endpoint inside the region of the circle occupied by D1 covers the right endpoint
of v0.

8.4. Turning T3 into T4. The following corollary to Lemma 8.8 is now obvious:

COROLLARY 8.9. In such a realizer, let p be the far endpoint of the interval A(D1)

as one travels counterclockwise from the right endpoint of v0. An arc contains p in its
interior iff it is one of the following:

• A member of D2, . . . , Dk .
• A member x of U such that x × D1 ⊆ Dc.

We may obtain T4 from T3 by flipping all arcs that contain p according to this corollary.
This vacates the circle just to the right of p, so T4 is an interval matrix.

8.5. Linear-Time Implementation. For the analysis of the time bound, we must not
assume that the input graph is a circular-arc graph.

Theorems 7.11 and 7.12 ensure that we do not spend more than linear time finding
neighborhood containments, even if G is not a circular-arc graph.

We use a labeling of edges of G(T ) with their intersection types for a sparse repre-
sentation of T . We may use an array to represent all intersection types in U × V . Since
U has O(m/n) members, the size of this array is O(m).

Turning T0 into T1 in linear time is trivial.
To turn T1 into T2, we must find the bipartition of the components of G2n|N [v0].

This takes O(|N [v0]|2) time using breadth-first search on the array, which is O(m) since
|N [v0]| is O(m/n).

To turn T2 into T ′3, we must compute the� relation in U in linear time in Case A. For
x, y ∈ U in T2, x � y iff N [Gc, x] ∩W ⊆ N [Gc, y] ∩W and N [x] ∩W ⊆ N [y] ∩W
in T2. Since U ∪ {v0} is a clique in G(T2), N [x] ∩ W ⊆ N [y] ∩ W iff N [x] ⊆ N [y].
Theorem 7.11 gives this in linear time.
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To evaluate N [Gc, x] ∩ W ⊆ N [Gc, y] ∩ W for each pair x, y of neighbors of v0,
note that if all members of N (v0) are flipped, N (v0) remains a clique, and the edges of
Gn and Gc that are incident to each member of N (v0) are swapped. N [Gc, x] ∩ W ⊆
N [Gc, y] ∩W iff N [x] ∩W ⊆ N [y] ∩W after N (v0) is flipped. We get the latter with
Theorem 7.11 in linear time. Flipping N (v0) takes O(n(m/n)) = O(m) time.

In Case B we must perform a vertex partition on a submatrix that is an interval matrix,
and find a realizer for the resulting modular quotient. We have already given a linear-time
algorithm for this problem, in Section 6. The submatrix is T |({v0} ∪ {c1} ∪ D1). The
size of G(T )|({v0} ∪ {c1} ∪ D1) is linear in the size of the input graph to the recognition
problem. If the algorithm does not give rise to an interval representation of the quotient,
G is not a circular-arc graph, and we halt. It takes linear time to find, for each X ∈ P ′,
another member t (X) ∈ P ′ that is adjacent to X in G1n . Finding Z whose members are
distinguished by cj , if Z exists, takes O(|N (cj )|) time using an operation similar to a
pivot on cj . Then t (Z) gives the neighbor y of x1 and x2 that is needed in Case 2 of the
proof of Lemma 8.6.

We also have to evaluate for cj ∈ U whether cj can be added as a leftmost interval to
two realizers R1 and R2, and repeat this test after we flip cj . This takes O(n) time using
Algorithm 8.5, whether or not cj is flipped. The total time spent on this test is O(n) times
O(m/n) vertices in U . We halt if cj can be added as neither a leftmost nor a rightmost
interval.

Flipping a member of U takes O(n) time, and each member of U is flipped O(1) times.
The total time spent flipping neighbors of v0 is therefore O(m). Since only neighbors of
U are flipped to obtain T3 from the initial intersection matrix, G(T3) has O(n(m/n)) =
O(m) edges.

To turn T3 into T4, we must flip members of U that contain A(D1), which again takes
linear time. If {D2, . . . , Dk} is nonempty, we also flip every vertex in this set in T3. If T3

is a circular-arc matrix, then because Di × Di+1 ⊆ Dc for each i from 1 to k − 1, every
arc in Di is contained in the intersection of arcs in Di+1, so Di+1 is a clique. Since Dc

is transitive,
⋃ {D2, . . . , Dk} is a clique in G(T2),

⋃ {D2, . . . , Dk}× D1 ⊆ G(T3). The
only non-neighbors of these vertices are in N [v0], so they have degree �(n − m/n) =
�(n − (n − 1)/2) = �(n). We may check that this is the case in linear time, and halt
if it is not. Otherwise, flipping each of them takes time proportional to its degree, hence
O(m) for all of them collectively.

The flip of vertices in D2, . . . , Dk can only increase the size of G(T4) over G(T3) by
adding edges between these vertices and U , and therefore adds O(m) edges to G(T4).
The size of G(T4) is O(n + m).

9. Future Work. We have used the idea of
modules and their dual forcing
 relation
in [21] to obtain O(n +m log n) bounds for recognition of probe interval graphs where
the partition {P, N } of vertices into probes and nonprobes is given. This is the form of
the problem that arises in genomics, and that gave rise to the initial interest in the graph
class.

The previous best bound was O(n2). The strategy is to produce an interval realizer
of G|P that can be extended to a probe interval model of G by adding intervals for the
nonprobes. Only a subset of interval realizers of G|P have this property.
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To do this, we use a variation of the interval matrix on G, which gives a labeling of
edges of G according to the corresponding intersection types in a probe interval model.
We use a variation of the
modules, called extensible
 modules on T |P . Just as the

modules are a subset of the modules, the extensible 
 modules on T |P are a subset of
the 
 modules on T |P; the difference reflects the additional constraint that an interval
model on T |P must be able to be extended to a probe interval model of T . Their dual,
the extensible
 relation, gives all ways of producing an interval model of T |P that has
this property.

It remains to try to get the bound down from O(n +m log n) to linear. There may be
other applications of variations on 
 modules in graphs that are defined by intersection
models.
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