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A SWITCHING LEMMA FOR SMALL RESTRICTIONS
AND LOWER BOUNDS FOR k-DNF RESOLUTION∗

NATHAN SEGERLIND† , SAM BUSS‡ , AND RUSSELL IMPAGLIAZZO§

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 5, pp. 1171–1200

Abstract. We prove a new switching lemma that works for restrictions that set only a small
fraction of the variables and is applicable to formulas in disjunctive normal form (DNFs) with small
terms. We use this to prove lower bounds for the Res(k) propositional proof system, an extension
of resolution which works with k-DNFs instead of clauses. We also obtain an exponential separation
between depth d circuits of bottom fan-in k and depth d circuits of bottom fan-in k + 1.

Our results for Res(k) are as follows:
1. The 2n to n weak pigeonhole principle requires exponential size to refute in Res(k) for

k ≤
√

logn/ log logn.
2. For each constant k, there exists a constant w > k so that random w-CNFs require expo-

nential size to refute in Res(k).
3. For each constant k, there are sets of clauses which have polynomial size Res(k + 1) refu-

tations but which require exponential size Res(k) refutations.

Key words. propositional proof complexity, Boolean circuit complexity, switching lemmas,
lower bounds, k-DNFs, resolution, Res(k), circuit bottom fan-in, random restriction, Sipser functions,
weak pigeonhole principles, random CNFs
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1. Introduction. This paper studies the complexity of Res(k), a propositional
refutation system that extends resolution by allowing k-DNFs instead of clauses [24].
The complexity of propositional proof systems has close connections to open prob-
lems in computational and circuit complexity [14, 23, 29, 6], as well as implications
for the run times of satisfiability algorithms and automated theorem provers. Res-
olution is one of the most studied proof systems and is used as the basis for many
satisfiability algorithms. Backtracking algorithms for satisfiability, such as the pop-
ular Davis–Putnam–Logeman–Loveland procedure (DPLL), that branch on a single
variable provide tree-like resolution refutations on unsatisfiable formulas. General
resolution proofs correspond to adding a limited form of memoization (previously re-
futed subproblems are saved for reuse rather than refuted again) to DPLL. Res(k)
corresponds to algorithms that branch on more general conditions: the value of any
function of up to k variables.

The Res(k) systems are also interesting as intermediates between previously stud-
ied proof systems. Resolution can be thought of as Res(1), and depth two Frege can
be thought of as Res(n) (where n is the number of variables). The Res(k) systems pro-
vide a transition between these systems. Moreover, statements provable in the theory
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T 2
2 (α) (a fragment of Peano’s arithmetic that allows induction only on Σb

2 predicates)
correspond to propositional statements with quasi-polynomial size Res(polylog(n))
refutations [24]. T 2

2 is the weakest fragment of Peano’s arithmetic known to be able
to use counting arguments such as the weak pigeonhole principle [25]. On the other
hand, these counting tautologies are known to require exponential-size resolution refu-
tations. Thus, there must be a critical range for k between 1 and polylog(n) where
these arguments become possible in subexponential size. More generally, we can ask,
When does increasing k give the Res(k) system more power? Is there a reason to
want to branch on more complex functions in satisfiability algorithms? Does such
branching give algorithms better performance in the average case?

We give partial answers to all of these questions. In particular we prove the
following:

1. The 2n to n weak pigeonhole principle requires size 2Ω(nε) to refute in Res(k)
for all k ≤

√
log n/ log log n. So having large bottom fan-in is necessary for

counting arguments.
2. For each k, there exists a constant w > k so that random w-CNFs require size

2Ω(nε) to refute in Res(k). Therefore, extending DPLL algorithms to branch
on multiple (but a constant number of) variables will not make run times
subexponential on average.

3. Res(k + 1) is exponentially more powerful than Res(k). We demonstrate sets
of clauses that have polynomial size Res(k + 1) refutations but require size
2Ω(nε) to refute in Res(k). Therefore, increasing the complexity of branching
conditions can make proofs exponentially smaller.

Our lower bounds are proved using a new kind of switching lemma. A switching
lemma provides conditions under which an OR of small ANDs can be rewritten as
an AND of small ORs after the application of a random restriction [1, 18, 21, 4].
Our switching lemma differs from previous switching lemmas in that the random
restriction is allowed to set a small number of the variables, even as few as n1−ε out
of n. The trade-off is that ORs of extremely small ANDs are transformed into ANDs
of modestly small ORs. Therefore, our switching lemma cannot be iterated to prove
lower bounds for proof systems of depth more than two. However, one application
of our switching lemma suffices to prove lower bounds for the Res(k) proof systems,
because each line in such a proof is of depth two with small bottom fan-in.

Our switching lemma also gives an exponential separation between depth d cir-
cuits with bottom fan-in k from depth d circuits with bottom fan-in k+1. This refines
a previous result of H̊astad [21], which states that for all d there exist ε > δ > 0 so
that there are functions on n variables, computable with polynomial size, depth d
circuits of bottom fan-in nε but which require exponential size to compute with depth
d circuits of bottom fan-in nδ. Our result also refines results of Cai, Chen, and H̊astad
[12]. They showed that for each constant d, there exist functions computable with
polynomial-size, depth d+ 1, bottom fan-in 2 circuits that require exponential size to
compute with depth d circuits, and that for each constant k, there exists a function
of n variables computable by depth d circuits of polynomial-size and bottom fan-in
O(log n) that requires exponential size to compute with depth d circuits of bottom
fan-in k.

Because resolution may be viewed as Res(1), our results for Res(k) generalize
known results for resolution. The weak pigeonhole principle (for any number of pi-
geons) is known to require an exponential number of steps to refute in resolution
[35, 20, 36, 11, 5, 15, 28, 30, 31], and we generalize these lower bounds for the case
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of the cn to n pigeonhole principle. Resolution refutations of randomly chosen sets of
clauses are also known to require exponential size [13, 5, 8]. We extend these results
to general Res(k) systems, although as k increases, so does the width of the random
CNFs for which our lower bounds apply.

Our work also extends previous research on the Res(k) system. The complexity
of Res(k) refutations was first studied by Kraj́ıček [24], who was motivated by the
connection between Res(polylog(n)) and the provability of combinatorial statements
in the arithmetic theory T 2

2 (α). Atserias, Bonet, and Esteban [3] gave exponential
lower bounds for Res(2) refutations of the 2n to n weak pigeonhole principle and of
random 3-CNFs. They also proved a quasi-polynomial separation between Res(2)
and resolution; this separation was later strengthened to almost-exponential by At-
serias and Bonet [2]. Esteban, Galesi, and Messner [17] showed that that there is
an exponential separation between tree-like Res(k) and tree-like Res(k + 1), and that
general (DAG-like) Res(k) requires high space to refute random CNFs and the weak
pigeonhole principle.

The lower bounds for Res(k) refutations of the weak pigeonhole principle given by
Atserias, Bonet, and Esteban [3] apply only for k = 2; our lower bound works for non-
constant k up to

√
log n/ log log n. On the other hand, Maciel, Pitassi, and Woods

[25] gave quasi-polynomial-size refutations in Res(polylog(n)). Our results show that
superconstant bottom fan-in is necessary for subexponential-size proofs of the weak
pigeonhole principle. Indeed, after the preliminary version of this paper appeared
[33], our techniques were extended by Alexander Razborov to prove that the weak
pigeonhole principle requires exponential size to refute in Res(ε log n/ log log n) [32].

Our lower bounds for Res(k) refutations of random w-CNFs are the first such
lower bounds for Res(k) with k ≥ 3. Atserias, Bonet, and Esteban [3] gave exponential
lower bounds for random 3-CNFs in Res(2). We extend these results to Res(k),
although the width w increases with k (it is 4k2 + 2). At present, the Res(k) systems
are the strongest fragments of bounded-depth Frege systems for which we know there
are superpolynomial-size lower bounds for refutations of random sets of clauses.

The separation between Res(k + 1) from Res(k) is the first for k ≥ 2. The earlier

work of Atserias and Bonet [2] gave a 2Ω(2logε n) separation of Res(2) from Res(1), and
our result improves this to 2Ω(nε).

In the time since the preliminary version of this paper appeared [33], we have
extended one of our results. The original separation of Res(k + 1) from Res(k) was
based on clauses of width O(log n), whereas the new separation uses clauses of constant
width. We include proofs for both results.

1.1. Outline of the paper. Background material, including the basics of the
Res(k) proof system, is given in section 2. In section 3 we prove the switching lemma.
Section 4 applies the switching lemma to prove a separation between constant-depth
circuits of bottom fan-in k + 1 and constant-depth circuits of bottom fan-in k. In
section 5 we prove that Res(k) refutations of sets of clauses whose lines are represented
by short decision trees can be transformed into narrow resolution refutations. This
conversion is used in combination with the switching lemma to prove lower bounds
for Res(k) refutations. Lower bounds for Res(k) refutations of the weak pigeonhole
principle are proved in section 6 and lower bounds for Res(k) refutations of random
CNFs are proved in section 7. The separations between Res(k + 1) and Res(k) are
proved in sections 8 and 9.
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2. Background. A literal is a variable or its negation. A term is a constant 0
or 1 or a conjunction of literals. Our convention is that a term is specified as a set of
literals, with 1 corresponding to the empty set and 0 to any literal and its negation.
We say that a term T contains a literal l if l ∈ T , and that a term T contains a
variable x if either x ∈ T or ¬x ∈ T . We will often identify literals with terms of size
one, and will write l instead of {l}. A DNF is a disjunction of terms, specified as a
set of terms. A k-DNF is a DNF whose terms are each of size at most k. A clause
is a 1-DNF, i.e., a disjunction of literals. The width of a clause C, written w(C), is
the number of literals appearing in C. The width of a set of clauses is the maximum
width of any clause in the set. A CNF is a conjunction of clauses, specified as a set
of clauses. A k-CNF is a CNF whose clauses are each of width at most k. Two terms
t and t′ are consistent if there is no literal l with l ∈ t and ¬l ∈ t′.

A restriction ρ is a map from a set of variables to {0, 1, ∗}. For a formula F , the
restriction of F by ρ, F �ρ is defined as usual, simplifying only when a subexpression
has become explicitly constant. For any restriction ρ, let dom(ρ) denote the set of
variables to which ρ assigns the value 0 or 1.

Resolution is a refutation system for propositional logic. The input to a resolution
refutation is a set of clauses C; a resolution refutation consists of a derivation of the
empty clause from the clauses in C using only the resolution inference: A∨x ¬x∨B

A∨B .
Notice that every line in a resolution refutation is a clause. wR(C) denotes the mini-
mum width of a resolution refutation of C; if C is satisfiable, then there is no refutation
and we use the convention that wR(C) is ∞.

The Res(k) refutation system is a generalization of resolution that can reason
using k-DNFs.

Definition 2.1. Res(k) is the refutation system whose lines are k-DNFs and
whose inference rules are given below (A, B are k-DNF’s, 1 ≤ j ≤ k, and l, l1, . . . , lj
are literals):

Subsumption:
A

A ∨ l
AND-introduction:

A ∨ l1 · · · A ∨ lj

A ∨
∧j

i=1 li

Cut:
A ∨

∧j
i=1 li B ∨

∨j
i=1 ¬li

A ∨B
AND-elimination:

A ∨
∧j

i=1 li
A ∨ li

Let C be a set of k-DNFs. A Res(k) derivation from C is a sequence of k-DNFs
F1, . . . , Fm so that each Fi either belongs to C or follows from the preceding lines
by an application of one of the inference rules. For a set of k-DNFs C, a Res(k)
refutation of C is a derivation from C whose final line is the empty clause. The size
of a Res(k) refutation is the number of lines it contains. Sk(C) denotes the minimum
size of a Res(k) refutation of C. If C is satisfiable, then C has no refutation and we
use the convention that Sk(C) is ∞.

We do not use the exact definition of the Res(k) system in our arguments; the main
property we use is strong soundness: if F is inferred from F1, . . . , Fj , and t1, . . . , tj
are mutually consistent terms of F1, . . . , Fj , respectively, then there is a term t of

F implied by
∧j

i=1 ti. In other words, any reason why F1, . . . , Fk are true implies a
reason why F is true. This is stronger than mere soundness.

Lemma 2.2. Res(k) is strongly sound.
We also use the following well-known interpolation property for resolution.
Lemma 2.3. Let C1 and C2 be unsatisfiable sets of clauses on disjoint sets of

variables. If there is a resolution refutation Γ of C1 ∪ C2, then there is a refutation Γ′
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of either C1 or C2. Moreover, w(Γ′) ≤ w(Γ).

2.1. The Chernoff bounds. Throughout this paper we will repeatedly make
use of a simplified form of the Chernoff bounds. These formulations come from stan-
dard references on applying such bounds in algorithmics; cf. [26, 37].

Lemma 2.4. Let X1, . . . , Xn be independent random indicator variables. Let
µ = E [

∑n
i=1 Xi].

Pr
[∑n

i=1 Xi <
µ
2

]
≤ e−µ/8 and Pr [

∑n
i=1 Xi > 2µ] ≤ e−µ/4.

2.2. Miscellaneous notation. We will use the notation [k] = {i | 1 ≤ i ≤ k}.
For graphs G = (V,E) and S ⊆ V we will write G−S to denote the induced subgraph
on V \ S.

3. The switching lemma. A switching lemma is a guarantee that after the
application of a randomly chosen restriction, a disjunction of small ANDs can be
represented by a conjunction of small ORs, thus “switching” an OR into an AND.
We use a slightly stronger variation: after the application of a random restriction, a
k-DNF can be represented by a short decision tree.

Definition 3.1. A decision tree is a rooted binary tree in which every internal
node is labeled with a variable, the edges leaving a node correspond to whether the
variable is set to 0 or 1, and the leaves are labeled with either 0 or 1. Every path from
the root to a leaf may be viewed as a partial assignment. For a decision tree T and
v ∈ {0, 1}, we write the set of paths (partial assignments) that lead from the root to a
leaf labeled v as Brv(T ). For a partial assignment ρ, T �ρ is the decision tree obtained
by deleting from T every edge whose label conflicts with ρ and contracting along each
edge whose label belongs to ρ. We say that a decision tree T strongly represents a
DNF F if for every π ∈ Br0(T ), for all t ∈ F , t �π= 0 and for every π ∈ Br1(T ),
there exists t ∈ F , t �π= 1. The representation height of F , h(F ), is the minimum
height of a decision tree strongly representing F .

Notice that the function computed by a decision tree of height h can be computed
both by an h-CNF and by an h-DNF.

Our switching lemma will exploit a trade-off based on the minimum size of a set
of variables that meets each term of a k-DNF. When this quantity is small, we can
build a decision tree by querying these variables and recursing on the (k − 1)-DNFs
created. When this quantity is large, the DNF has many disjoint terms and is likely
to be satisfied by a random restriction.

Definition 3.2. Let F be a DNF, and let S be a set of variables. If every term
of F contains a variable from S, then we say that S is a cover of F . The covering
number of F , c(F ), is the minimum cardinality of a cover of F .

For example, the 3-DNF xyz ∨ ¬x ∨ yw has covering number two.

The switching lemma is shown to hold for all distributions which satisfy certain
properties. When we apply the switching lemma, we will show that the random
restrictions used satisfy these properties.

Theorem 3.3. Let k ≥ 1, let s0, . . . , sk−1 and p1, . . . , pk be sequences of positive
numbers, and let D be a distribution on partial assignments so that for every i ≤ k and
every i-DNF G, if c(G) > si−1, then Prρ∈D [G �ρ 	= 1] ≤ pi. Then for every k-DNF
F ,

Prρ∈D

[
h(F �ρ) >

k−1∑
i=0

si

]
≤

k∑
i=1

2

(∑k−1

j=i
sj
)
pi.
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Proof. We proceed by induction on k. First consider k = 1. If c(F ) ≤ s0, then
at most s0 variables appear in F . We can construct a height ≤ s0 decision tree that
strongly represents F �ρ by querying all of the variables of F �ρ. On the other hand, if
c(F ) > s0, then Prρ∈D [F �ρ 	= 1] ≤ p1. Therefore, h(F �ρ) is nonzero with probability

at most p12

∑k−1

j=1
sj = p1 (because k = 1).

For the induction step, assume that the theorem holds for all k-DNFs, let F be
a (k + 1)-DNF, and let s0, . . . , sk and p1, . . . , pk+1 be sequences of positive numbers
satisfying the hypotheses of the theorem. If c(F ) > sk, then by the conditions of the
lemma, Prρ∈D [F �ρ 	= 1] ≤ pk+1. Because

pk+1 ≤
k+1∑
i=1

2

∑k

j=i
sjpi,

we have that h(F �ρ) is nonzero with probability at most
∑k+1

i=1 2

∑k

j=i
sjpi.

Consider the case when c(F ) ≤ sk. Let S be a cover of F of size at most sk. Let
π be any assignment to the variables in S. Because each term of F contains at least
one variable from S, F �π is a k-DNF. By combining the induction hypothesis with
the union bound, we have that

Prρ∈D

[
∃π ∈ {0, 1}S h((F �ρ) �π) >

k−1∑
i=0

si

]
≤ 2sk

(
k∑

i=1

2

(∑k−1

j=i
sj
)
pi

)

<
k+1∑
i=1

2

(∑k

j=i
sj
)
pi.

In the event that for all π ∈ {0, 1}S , h((F �ρ) �π) ≤
∑k−1

i=0 si, we construct a
decision tree for F �ρ as follows. First, query all variables in S unset by ρ, and
then underneath each branch, β, simulate a decision tree of minimum height strongly
representing (F �ρ) �β . For each such β, let π = (ρ ∪ β) �S , and note that h((F �ρ)
�β) = h((F �ρ) �π). Therefore the height of the resulting decision tree is at most

sk + maxπ∈{0,1}S h((F �ρ) �π) ≤
∑k

i=0 si.
Now we show that the decision tree constructed above strongly represents F �ρ.

Let π be a branch of the tree. Notice that π = β ∪σ, where β is an assignment to the
variables in S \ dom(ρ) and σ is a branch of a tree that strongly represents (F �ρ) �β .
Consider the case that π leads to a leaf labeled 1. In this case, σ satisfies a term t′ of
(F �ρ) �β . We may choose a term t of F so that t′ = (t �ρ∪β), and π = β ∪ σ satisfies
the term t �ρ of F �ρ. Now consider the case that π leads to a leaf labeled 0. There
are two cases, (F �ρ) �β= 0 and (F �ρ) �β 	= 0. If (F �ρ) �β= 0, then for every term t
of F �ρ, t is inconsistent with β and hence with π. If (F �ρ) �β 	= 0, then because the
subtree underneath β strongly represents (F �ρ) �β , for every term t of (F �ρ) �β , t is
inconsistent with σ. Therefore, every term of F �ρ is inconsistent with either β or σ,
and thus with π = β ∪ σ.

We usually use this theorem in the following normal form for the parameters.
Corollary 3.4. Let k, s, and d be positive integers, let γ and δ be real numbers

from the range (0, 1], and let D be a distribution on partial assignments so that for
every k-DNF G, Prρ∈D [G �ρ 	= 1] ≤ d2−δ(c(G))γ . For every k-DNF F ,

Prρ∈D [h(F �ρ) > 2s] ≤ dk2−δ′sγ
′

,
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where δ′ = 2(δ/4)k and γ′ = γk.

Proof. Let si = (δ/4)i(sγ
i

) and pi = d2−4si . Note that si−1/4 ≥ (δ/4)si−1 =

(δ/4)(δ/4)
i−1

sγ
i−1 ≥ (δ/4)

i
sγ

i

= si. It follows that
∑k

j=i sj ≤
∑

j≥i si/4
j−i ≤ 2si.

Also, for any i-DNF G, with c(G) ≥ si−1, Prρ∈D [G �ρ 	= 1] ≤ d2−δ(c(G))γ ≤ d2−δsγ
i−1 =

2−δ(δ/4)i−1(sγ
i−1

)γ = d2−4si . Thus, we can apply Theorem 3.3 with parameters
p1, . . . , pk, s0, . . . , sk−1. For every k-DNF F ,

Prρ∈D [h(F �ρ) > 2s] ≤ Prρ∈D

[
h(F �ρ) >

k−1∑
i=0

si

]
≤

k∑
i=1

2

(∑k−1

j=i
sj
)
pi

≤
k∑

i=1

22si(d2−4si) ≤ dk2−2sk = dk2−δ′sγ
′

.

3.1. Switching with small restrictions. In this subsection, we show that
small, uniform restrictions meet the conditions for the switching lemma. Using Corol-
lary 3.4, k-DNFs can then be converted into decision trees—using restrictions that
set only a polynomially small fraction of the bits. We include it here for comparison
with previous switching lemmas. Later, it will be used to prove the lower bound on
Res(k) refutations of random CNFs. More complicated distributions are used for our
other results.

Definition 3.5. Let n > 0 and p ∈ [0, 1]. Define Dp to be the family of random
restrictions which arises by assigning variables ∗ with probability 1− p, and 0, 1 each
with probability p

2 .
Lemma 3.6. Let i ≥ 1, let G be an i-DNF, and let ρ be chosen from Dp. Then

Pr[G �ρ 	= 1] ≤ e−
c(G)pi

i2i .
Proof. Because every covering set of G has size at least c(G), there is a set of

variable-disjoint terms of size at least c(G)/i (such a set can be found by greedily
choosing a maximal set of disjoint terms). Each of these variable-disjoint terms is

satisfied with independent probability at least (p/2)
i
. Therefore,

Prρ∈Dp
[G �ρ 	= 1] ≤

(
1 −

(p
2

)i
) c(G)

i

≤ e−( p
2 )

i c(G)
i = e−

c(G)pi

i2i .

Combining this with the switching lemma shows that a k-DNF is strongly repre-
sented by a short decision tree when restricted.

Corollary 3.7. Let k ≥ 1 be given. There exists γ > 0 so that for any k-DNF

F , w > 0, p ≥ n−1/(2k2), Prρ∈Dp
[h(F �ρ) > w] ≤ k2−γwn−1/2

.

Proof. In the notation of Corollary 3.4, set p = n−1/2k2

, d = 1, γ = 1, s = w/2,

and δ = (log e) pk

k2k = (log e)n
−1/2k

k2k . Combining Lemma 3.6 with Corollary 3.4 shows
that for every k-DNF F ,

Prρ∈Dp [h(F �ρ) > w] ≤ k2−2(w/2)(δk/4k) = k2−w(log e)kn−1/2/4kkk2k2

.

Because k is fixed, we may take γ = (log e)k/4kkk2k
2

.

4. An application to circuit bottom fan-in. Our first application of the
switching lemma is an exponential-size separation between depth d circuits of bottom
fan-in k and depth d circuits of bottom fan-in k + 1.
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Our circuits are organized into alternating layers of AND and OR gates, with
connections appearing only between adjacent levels. NOT gates may have only vari-
ables as their inputs. The output gate is said to be at level one, the gates feeding
into the output gate are said to be at level two, and so forth. The depth of a circuit
is the maximum depth of an AND or OR gate in the circuit. The size of a circuit is
the number of AND and OR gates appearing in it. The bottom fan-in of a depth d
circuit is the maximum number of inputs of a gate at level d. For more detail on the
basics of constant depth circuits, consult the survey by Boppana and Sipser [10].

4.1. The functions.
Definition 4.1 (see [34, 10]). Let integers d and m1, . . . ,md be given, and let

there be variables xi1,...,id for 1 ≤ ij ≤ mj.

fm1,...,md

d =
∧

i1≤m1

∨
i2≤m2

· · ·
⊙

id≤md

xi1,...,id ,

where
⊙

=
∨

if d is even, and
⊙

=
∧

if d is odd.
The Sipser function fm

d is fm1,...,md

d , with m1 =
√
m/logm, m2 = · · · = md−1 =

m, and md =
√
dm logm/2.

The modified Sipser function gm,k
d is fm1,...,md,k

d+1 , with m1 =
√
m/logm, m2 =

· · · = md−1 = m, and md = 4
√
dm logm/2.

Notice that the function fm
d depends on md−1

√
d/2 many variables and can be

computed by a circuit of depth d and size linear in the number of variables. Further-
more, we will often identify these functions with the circuits defining them.

Our result builds upon the earlier result that it is impossible to decrease the
bottom fan-in of a circuit computing a Sipser function without increasing the size
or the depth. Moreover, an OR of depth d, small bottom fan-in circuits requires
exponential size to compute fm

d .
Theorem 4.2 (see [21]). For all d ≥ 1, there exists εd > 0 so that if a depth d,

bottom fan-in k circuit with an AND gate at the output and at most S gates in levels
1 through d− 1 computes fm

d , then either k ≥ mεd or S ≥ 2m
εd .

For all d ≥ 1, there exists βd > 0 so that if a depth d+ 1, bottom fan-in k circuit
with an OR gate at the output and at most S gates in levels 1 through d computes

fm
d , then either S ≥ 2m

βd or k ≥ mβd .

We use the modified Sipser function gm,k+1
d to obtain the exponential separation

between depth d + 1, bottom fan-in k + 1 and depth d + 1, bottom fan-in k circuits.
For each i1, . . . , id, we say that the variables xi1,...,id,1, . . . , xi1,...,id,k come from block
(i1, . . . , id). Variables in the same block occur in the same bottom-level conjunction of

gm,k
d . Notice that the function gm,k

d has 4md−1
√
d/2 many blocks and 4kmd−1

√
d/2

many variables. Moreover, it can be computed by a circuit of depth d + 1, bottom
fan-in k and size linear in the number of variables.

4.2. The lower bounds. We will show that depth d + 1 circuits with bottom
fan-in k require exponential size to compute gm,k+1

d . In light of Theorem 4.2, it
suffices to consider only circuits with an AND gate at the output level. Furthermore,
we consider only the case when d is even. This ensures that all gates at depth d are
OR gates. The case for odd d is dual and we simply invert the random restriction
used. Each gate at depth d computes a k-DNF, and we will apply random restrictions
which almost certainly collapse all of the k-DNFs to narrow CNFs and thus collapse
the circuits to depth d circuits with small bottom fan-in. On the other hand, the
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random restrictions will probably leave gm,k+1
d containing fm

d as a subfunction, and
thus we obtain a contradiction to Theorem 4.2.

Definition 4.3. Let m, d, and k be given. Set m1 =
√
m/logm, m2 = · · · =

md−1 = m, and md = 4
√
dm logm/2.

Let Bm,k+1
d,0 be the random distribution on partial assignments given by the fol-

lowing experiment: For each i1 ≤ m1, . . . , id ≤ md, with independent probability 1
2

either set xi1,...,id,j = ∗, for all j ∈ [k + 1], or uniformly choose a 0/1 assignment
to {xi1,...,id,j | j ∈ [k + 1]} which sets at least one of the variables to 0. The dual

distribution, Bm,k+1
d,1 , selects a restriction according to Bm,k+1

d,0 and then inverts the
0’s and 1’s.

Lemma 4.4. Let k ≥ 1 be given. There exists a constant γk > 0 so that for every
k-DNF F ,

Prρ∈Bm,k+1
d,0

[F �ρ 	= 1] ≤ 2−γkc(F ).

Proof. We say that two terms T and T ′ are block-disjoint if no variable of T shares
a block with a variable of T ′. More formally, whenever a variable xi1,...,id+1

appears
in T and a variable xj1,...,jd+1

appears in T ′, we have that (i1, . . . , id) 	= (j1, . . . , jd).
Because each term involves at most k variables, there must be a set of c(F )/k many
variable-disjoint terms, and hence a set of c(F )/(k(k+1)) many block-disjoint terms.

We now show that each term is satisfied with probability at least 1
6k . Because the

literals of a term come from at most k distinct blocks, the chance that every variable
in the term is set to 0 or 1 is at least 1

2k . Conditioned on this event, the probability of

satisfying the term is at least 1
3k . To see this, consider the chance of satisfying each

literal of the term in turn, conditioned on the event of satisfying the previous literals.
If a variable from that block has already been set to 0, then clearly the probability
of satisfying the current literal is 1

2 . If not, then suppose there are l variables in the
block of the current variable that have not yet been set to a value. The probability
of satisfying the current literal is at least (2l−1 − 1)/(2l − 1). Because there are k + 1
variables and the term has size at most k, l ≥ 2, and thus the probability is at least 1

3 .
The events of satisfying block-disjoint terms are independent; therefore we have

Prρ∈Bm,k+1
d,0

[F �ρ 	= 1] ≤
(

1 − 1

6k

)c(F )/(k(k+1))

.

Set γk = − log2(1 − 1
6k )/(k(k + 1)).

Symmetrically, the dual result holds for k-CNFs when we apply a random restric-
tion from Bm,k+1

d,1 .
Lemma 4.5. Let k ≥ 1 be given. There exists a constant εk so that for all d, for

all w sufficiently large with respect to k, and for every depth d + 1, bottom fan-in k
circuit C of size S ≤ 2εkw, when ρ is chosen from Bm,k+1

d,0 (Bm,k+1
d,1 ), with probability

at least 3/4 , C �ρ is equivalent to a depth d, bottom fan-in w circuit with at most S
gates in levels 1 through d− 1.

Proof. We will solve for the particular values of εk and w after going through the
calculations.

We consider the case when d is even; the case when d is odd is handled by using
the restrictions Bm,k+1

d,1 instead of Bm,k+1
d,0 . Each gate at depth d is an OR gate and

its inputs are AND gates of fan-in at most k. For each gate g at depth d, we let Fg

denote the k-DNF computed by the subcircuit at g.
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Suppose that there is a partial assignment ρ ∈ Bm,k
d,0 so that for each depth d gate

g of C, h(Fg �ρ) < w. For each g at depth d, let Tg be the shortest decision tree
representing Fg �ρ. We can compute C �ρ with a depth d, bottom fan-in w circuit
with at most S gates in levels 1 through d−1 by starting with C, replacing each level
d gate g with the conjunction of the negated branches of Br0(Tg), and then merging
these conjuncts with the AND gate at depth d− 1 to which g sends its output.

We now show that for ρ chosen according to the distribution Bm,k
d,0 , with proba-

bility at least 3
4 , every depth d gate g of C has h(Fg �ρ) < w.

Let g be a depth d gate of the circuit. By combining Lemma 4.4 with Corollary
3.4, setting d = 1, γ = 1, s = w/2, and δ = γk shows that

Prρ∈Bm,k
d,0

[h(Fg) > w] ≤ k2−wγk
k/4

k

.

Because there are at most S = 2εkw many gates at depth d, by the union bound,

there exists a gate with h(Fg) > w with probability at most 2w(εk−γk
k/4

k)+log k. We
simply take εk sufficiently small so that this probability is less than 1/4.

Theorem 4.6. For all k ≥ 1, d ≥ 1, there exists εk, εd > 0 so that for every m
sufficiently large, every size S, depth d + 1, bottom fan-in k circuit for gm,k+1

d has
S ≥ 2εkm

εd .
Proof. We will have to take m sufficiently large to apply Theorem 4.2 and Lemma

4.5, and large enough for an application of the Chernoff bounds. Set w = mεd (with
εd from Theorem 4.2) and S = 2εkw (with εk from Lemma 4.5). Furthermore, we
consider the case when d is even; the case when d is odd is handled by using the
restrictions Bm,k+1

d,1 instead of Bm,k+1
d,0 .

Suppose, for the sake of contradiction, that C is a size S, depth d, bottom fan-in
k circuit computing gm,k+1

d .

Fix an OR gate at depth d in gm,k+1
d . When ρ is chosen from the distribution

Bm,k+1
d,0 , the expected number of blocks underneath this gate that are left unset is

2
√

dm logm/2. By the Chernoff bounds, with probability at most e−
√

dm logm/2/4

there are fewer than
√
dm logm/2 blocks left unset by ρ underneath this gate.

Because there are md−3/2/
√

logm many depth d gates in gm,k+1
d , by the union

bound, the probability that there exists a depth d gate underneath which there are

fewer than
√
dm logm/2 many blocks unset is at most (md−3/2/

√
logm)e−

√
dm logm/2/4.

This tends to 0 as m tends to infinity.
On the other hand, by Lemma 4.5, with probability at least 3/4 , C �ρ is equivalent

to a depth d, bottom fan-in w circuit with at most S gates in levels 1 through d− 1.
Therefore we may choose ρ ∈ Bm,k+1

0,d so that underneath each depth d gate of

gm,k+1
d there are at least

√
dm logm/2 many blocks unset by ρ, and C �ρ is equivalent

to a depth d, bottom fan-in w circuit with ≤ S gates in levels 1, . . . , d− 1.
Because C �ρ computes gm,k+1

d �ρ, a restriction of it computes fm
d : set some

blocks to 0 and collapse the other blocks to a single variable. This gives a depth d
circuit with ≤ S gates in levels 1, . . . , d− 1, and bottom fan-in w that computes fm

d ,
a contradiction to Theorem 4.2.

5. Decision trees and Res(k) refutations. All of our lower bounds for Res(k)
refutations use the fact that when the lines of a Res(k) refutation can be strongly
represented by short decision trees, the Res(k) refutation can be converted into a
narrow resolution refutation.
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Theorem 5.1. Let C be a set of clauses of width ≤ h. If C has a Res(k) refutation
so that for each line F of the refutation, h(F ) ≤ h, then wR(C) ≤ kh .

Proof. We will use the short decision trees to construct a narrow refutation of
C in resolution augmented with subsumption inferences: whenever A ⊆ B, infer B
from A. These new inferences simplify our proof, but they may be removed from the
resolution refutation without increasing the size or the width.

For a line F of the Res(k) refutation, let TF be a decision tree of minimum height
that strongly represents F . Notice that for each initial clause C ∈ C, TC is the tree
that queries the (at most h) variables in C, stopping with a 1 if the clause becomes
satisfied and stopping with a 0 if the clause becomes falsified.

For any partial assignment π let Cπ be the clause of width ≤ h that contains the
negation of every literal in π, i.e., the clause that says that branch π was not taken.
We construct a resolution refutation of width ≤ kh by deriving Cπ for each line F of
the refutation and each π ∈ Br0(TF ).

Notice that for π ∈ Br0(T∅), Cπ = ∅, and for each C ∈ C, for the unique π ∈
Br0(TC), Cπ = C.

Let F be a line of the refutation that is inferred from previously derived formulas
F1, . . . , Fj , j ≤ k. Assume we have derived all Cπ ∈ Br0(TFi

) for 1 ≤ i ≤ j. To guide
the derivation of {Cπ | π ∈ Br0(TF )}, we construct a decision tree that represents∧j

i=1 Fi. The tree (call it T ) begins by simulating TF1 and outputting 0 on any 0-
branch of TF1

. On any 1-branch, it then simulates TF2
, etc. If all j branches are 1, T

outputs 1; otherwise T outputs 0. The height of T is at most jh ≤ kh, so the width
of any such Cπ, with π ∈ Br(T ), is at most kh. The set of clauses {Cσ | σ ∈ Br0(T )}
can be derived from the previously derived clauses by subsumption inferences because
every σ ∈ Br0(T ) contains some π ∈

⋃j
i=1 Br0(TFi).

We now show that for every σ ∈ Br1(T ), there exists a t ∈ F so that σ satisfies
t. Choose π1 ∈ Br1(TF1), . . . , πj ∈ Br1(TFj ) so that π1 ∪ · · · ∪ πj = σ. Because the
decision trees TF1

, . . . , TFj
strongly represent the k-DNFs F1, . . . , Fj , there exist terms

t1 ∈ F1, . . . , tj ∈ Fj so that
∧j

i=1 ti is satisfied by σ. By strong soundness of Res(k),
there exists t ∈ F so that σ satisfies t.

Let σ ∈ Br0(TF ) be given. Because TF strongly represents F , σ falsifies all terms
of F . By the preceding paragraph, for all π ∈ Br(T ), if π is consistent with σ, then
π ∈ Br0(T ) (otherwise, σ would not falsify the term of F satisfied by π). For each
node v in T , let πv be the path (viewed as a partial assignment) from the root to v.
Bottom-up, from the leaves to the root, we recursively derive Cπv

∨ Cσ for each v so
that πv is consistent with σ. When we reach the root, we will have derived Cσ. If
v is a leaf, then πv ∈ Br0(T ) so it has already been derived. If v is labeled with a
variable that appears in σ, call it x, then there is a child u of v with πu = πv ∪ {x}.
Therefore, Cπv

∨Cσ = Cπu
∨Cσ. By induction, the clause Cπu

∨Cσ has already been
derived. If v is labeled with a variable x that does not appear in σ, then for both
of the children of v, call them v1, v2, the paths πv1 and πv2 are consistent with σ.
Moreover, Cπv1

∨Cσ = x∨Cπv ∨Cσ and Cπv2
∨Cσ = ¬x∨Cπv ∨Cσ. Resolving these

two previously derived clauses gives us Cπv
∨ Cσ.

We will use this theorem after we apply a random restriction which simultaneously
collapses every line of a Res(k) refutation to a short decision tree. Hence, we can use
a width lower bound for resolution refutations of a restricted tautology to give a size
lower bound for Res(k) refutations of the original tautology.

Corollary 5.2. Let C be a set of clauses of width ≤ h, let Γ be a Res(k)
refutation of C, and let ρ be a partial assignment so that for every line F of Γ,
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h(F �ρ) ≤ h. Then wR(C �ρ) ≤ kh.

6. Lower bounds for the weak pigeonhole principle.
Definition 6.1. The m to n pigeonhole principle, PHPm

n , is the following set
of clauses:

1. For each i ∈ [m],
∨

j∈[n] xi,j.

2. For each i, i′ ∈ [m] with i 	= i′, ¬xi,j ∨ ¬xi′,j.
Theorem 6.2. For every c > 1, there exists ε > 0 so that for all n sufficiently

large, if k ≤
√

log n/ log log n, then every Res(k) refutation of PHP cn
n has size at

least 2n
ε

.
The idea of the proof for Theorem 6.2 is as follows: Suppose there is a small Res(k)

refutation of the weak pigeonhole principle. Then by applying a random restriction
we obtain a low-width resolution refutation of the restricted pigeonhole principle. By
the well-known lower bounds on the width of resolution refutations of the pigeonhole
principle, this is impossible.

In order to make the random restriction method work, we prove lower bounds for
the pigeonhole principle restricted to a low degree graph. Because these principles
reduce to the pigeonhole principle by setting some variables to 0, this suffices to
prove lower bounds for the pigeonhole principle. The difficulty with applying random
restrictions directly to the clauses of the pigeonhole principle is that there are clauses
of high width which are not satisfied with very high probability. If we were to choose
a random subset of the holes and place into each hole a randomly chosen pigeon, then
a clause of the form

∨m
i=1 xi,j would be satisfied with probability no better than the

chance that hole j is in the random subset (this will be no better than a constant in
our proof). At the heart of this problem is that each hole j appears in cn distinct
variables, x1,j , . . . , xcn,j , and restricting the principle to low-degree graphs solves this.

Definition 6.3. Let G = (U ∪ V,E) be a bipartite graph. The pigeonhole
principle of G, PHP(G), is the following set of clauses:

1. For each u ∈ U ∨
v∈V

{u,v}∈E

xu,v.

2. For each u, u′ ∈ [m], with u 	= u′, and each v ∈ V with {u, v} ∈ E and
{u′, v} ∈ E,

¬xu,v ∨ ¬xu′,v.

Definition 6.4. Let G = (U ∪V,E) be a bipartite graph. The maximum degree
of G, ∆(G), is defined to be maxv∈V deg v.

Furthermore, we assume that all Res(k) refutations have been put into a normal
form in which no term of any DNF asks that two pigeons be mapped to the same
hole. See, for example, [3].

Definition 6.5. Let G = (U ∪ V,E) be a bipartite graph. A term is said to be
in pigeon-normal-form if it does not contain two literals xu,v and xu′,v with u 	= u′.
A DNF is said to be in pigeon-normal-form if all of its terms are in pigeon-normal-
form and a Res(k) refutation is said to be in pigeon-normal-form if every line is in
pigeon-normal-form.

Every Res(k) refutation of PHP (G) can be transformed into a refutation in
pigeon-normal-form which at most doubles the number of lines in the proof. When
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there is an AND-introduction inference that creates a line not in pigeon-normal-form,
say

(A ∨ xu,v) (A ∨ xu′,v) · · · (A ∨ lj)

A ∨
(
xu,v ∧ xu′,v ∧

∧j
i=3 li

) ,

replace the inference by a derivation that cuts A∨xu′,v with ¬xu,v ∨¬xu′,v to obtain
A ∨ ¬xu,v. Cut this with A ∨ xu,v to obtain A. We may proceed through the rest of

the proof with A because it subsumes A ∨ xu,v ∧ xu′,v ∧
∧j

i=3 li.

6.1. Random restrictions.
Definition 6.6. For a bipartite graph G = (U ∪ V,E) and a real number p ∈

[0, 1], let Mp(G) denote the distribution on partial assignments which arises from the
following experiment:

Independently, for each v ∈ V , with probability 1− p choose to match v, and with
probability p leave v unmatched. If v is matched, uniformly select a neighbor u of v,
set xu,v to 1, and for every w 	= u that is a neighbor of v, set xw,v to 0. Moreover,
for each v′ 	= v, set xu,v′ = 0.

Let Vρ be the set of vertices of V matched by ρ, let Uρ be the set of vertices of U
matched by ρ, and let Sρ = Uρ ∪ Vρ.

These restrictions randomly associate pigeons with holes in an injective way.
While some pigeons can be associated with multiple holes, no two pigeons can be
associated with the same hole. It is easy to check that for any ρ ∈ Mp(G), we have
that PHP (G) �ρ= PHP (G− Sρ).

Lemma 6.7. Let p ∈ [0, 1], i ∈ [k] be given. Let G = (U ∪ V,E) be a bipartite
graph with ∆ = ∆(G). Let F be an i-DNF in pigeon-normal-form.

Prρ∈Mp(G) [F �ρ 	= 1] ≤ 2−
(log e)(1−p)ic(F )

i∆i+1 .

Proof. For a term T , define the holes of T as Holes(T ) = {v | xu,v ∈ T or ¬xu,v ∈
T}. We say that two terms T and T ′ are hole-disjoint if Holes(T ) ∩ Holes(T ′) = ∅.

Because F contains at least c(F )/i many variable-disjoint terms, and each hole
v ∈ V appears in at most ∆ many variables, F must contain at least c(F )/i∆ many
hole-disjoint terms.

The events of satisfying hole-disjoint terms are independent, and for a given term,
T , the probability that T �ρ= 1 is at least (1−p)i/∆i. This is because with probability
(1 − p)i, every hole of T is matched, and with probability at least 1/∆i the holes are
matched in a way that satisfies T (here we use the fact that F is in pigeon-normal-
form). Therefore, we have the following inequalities:

Prρ [F �ρ 	= 1] ≤
(
1 − (1 − p)i/∆i

) c(F )
i∆ ≤

(
e−(1−p)i/∆i

) c(F )
i∆

= 2−
(log e)(1−p)ic(F )

i∆i+1 .

6.2. Width lower bounds for resolution. For the lower bound proof to work,
we need a graph G so that after the application of a random restriction ρ, with high
probability, PHP (G) �ρ requires high width to refute in resolution. We call such
graphs robust, and in this subsection we probabilistically demonstrate robust, low-
degree graphs.

Definition 6.8. A bipartite graph G is said to be (p, w)-robust if, when ρ is
selected from Mp(G), with probability at least 1

2 , wR(PHP (G) �ρ) ≥ w.
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All we need for the size lower bound is the following lemma, which is proven
probabilistically in section 6.2.1. Readers who believe that random graphs should be
robust can skip to the proof of the lower bound.

Lemma 6.9. For all c > 1, there exists d > 0, so that for n sufficiently large,
there exists a (3/4, n/24)-robust graph with ∆(G) ≤ d log n on the vertex sets [cn] and
[n].

6.2.1. Existence of robust graphs. As a starting point, we use a now standard
lower bound of wR(PHP (G)) in terms of the expansion of G.

Definition 6.10. For a vertex u ∈ U , let N(u) be its set of neighbors. For a
subset V ′ ⊆ V , let its boundary be

∂V ′ = {u ∈ U | |N(u) ∩ V ′| = 1}.

A bipartite graph G is an (m,n, r, f)-expander if |V | = m, |U | = n, and for all
V ′ ⊆ V , |V ′| ≤ r, |∂V ′| ≥ f |V ′|.

Theorem 6.11 (see [8]). If G is a bipartite graph that is an (m,n, r, f)-expander,
then wR(PHP (G)) ≥ rf/2.

Definition 6.12. Let Gm,n,p be the distribution on bipartite graphs with vertex
sets [m] and [n] in which every edge is included with independent probability p.

The following lemma was proven by Atserias, Bonet and Esteban [3].
Lemma 6.13 (see [3]). Let m = cn, q = 48c lnm

m , α = 1
mq , and f = nq

6 . Let G be
selected according to the distribution Gm,n,q.

PrG [G is an (m,n, αm, f)-expander ] ≥ 2

3
.

Lemma 6.14. Let m = cn, let q ≥ 48c lnm
m , and let G be selected according to the

distribution Gm,n,q.

PrG [wR(PHP (G)) ≥ n/12] ≥ 2

3
.

Proof. Let α = 1
mq and f = nq

6 . Because αmf/2 = (1/mq)m(nq/6)/2 = n/12, an
application of Theorem 6.11 shows that when G is selected according to Gm,n, 48c ln m

m
,

with probability at least 2
3 , wR(PHP (G)) ≥ n/12.

Now consider G selected according to Gm,n,q, with q ≥ 48c lnm
m . Whenever G0 is an

edge-induced subgraph of G1, wR(PHP (G1)) ≥ wR(PHP (G0)) because a refutation
of PHP (G1) can always be transformed into a refutation of PHP (G0) by setting
some variables to 0. Therefore, by increasing the probability of including an edge, the
probability of having no small resolution refutation for PHP (G) only increases.

We now prove Lemma 6.9.
Proof. Set m = cn, p = 3

4 , and q = 192c lnm
m . Consider the joint distribution

that arises by selecting G according to Gm,n,q and ρ according to M3/4(G). We will
bound the probability that the degree is too large, that too many holes are matched,
and that the restricted graph is expanding.

By the Chernoff bounds, for each v ∈ [n] the probability that v has degree in
excess of 2mq is at most e−mq/4. By the union bound, the probability that there
exists some v ∈ [n] of degree in excess of 2mq is at most ne−mq/4. Similarly, the
probability that there exists some v ∈ [m] of degree in excess of 2mq is at most
me−nq/4. Therefore, the probability that the maximum degree of G exceeds 2mq is
bounded as follows:

ne−mq/4 + me−nq/4 = ne−m192c lnm/m + me−n192c lnm/m = O(n−191).
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Remember that Vρ is the set of holes matched by the restriction ρ. By the Chernoff

bounds, the probability that |Vρ| ≥ 2n(1 − p) = n/2 is at most e−
n(1−p)

4 = e−n/16.
We now bound the probability that G−Sρ is an expander. First, up to renaming

vertices, G − Sρ is distributed as Gmρ,nρ,q, with nρ = n − |Vρ| and mρ = m − |Uρ|.
This is because for fixed sets of vertices V0 ⊆ V and U0 ⊆ U , when we condition
on the event that Vρ = V0 and Uρ = U0, the edges {u, v} with u ∈ U \ U0 and
v ∈ V \ V0 are included in G − Sρ with independent probability q. Now, condition
on the event that |Vρ| ≤ n/2. We have that mρ = m − |Uρ| ≥ m − n/2 ≥ m/2 and
thus q = 192c lnm/m ≥ 192c lnmρ/m ≥ 192c lnmρ/2mρ = 48 · 2c lnmρ/mρ. Because
mρ

nρ
≤ cn

n/2 = 2c, we can apply Lemma 6.14 and deduce that wR(PHP (G − Sρ)) ≥
nρ/12 with probability at least 2

3 . Because nρ ≥ n/2, with the same probability,
wR(G− Sρ) ≥ n/24.

Combining the three inequalities from the preceding paragraphs shows that the
probability that G contains a vertex of degree in excess of 192c lnm, that Vρ contains
more than n/2 vertices, or that wR(PHP (G− Sρ)) < n/24 is at most

1

3
+ O(n−191) + e−n/16.

For sufficiently large n, this probability is bounded above by 1
2 . By averaging

over the choices of the edges, there exists a bipartite graph G on vertex sets [cn]
and [n] with ∆(G) ≤ 2mq = 384c ln(cn), so that upon selection of ρ ∈ R3/4(G),

wR(G− Sρ) ≥ n/24 with probability at least 1
2 .

6.3. Size lower bounds for Res(k). To prove the size lower bounds for Res(k)
refutations of PHP cn

n we first prove size lower bounds for the weak pigeonhole prin-
ciple restricted to a robust graph, and then we reduce these principles to PHP cn

n .
Lemma 6.15. For any c > 1 and d > 0, there exists ε > 0 so that for all n

sufficiently large, if k ≤
√

log n/ log log n and G is a (3/4, n/24)-robust bipartite graph
with vertex sets of sizes cn and n and ∆(G) ≤ d log n, then Sk(PHP (G)) ≥ 2n

ε

.
Proof. By Lemma 6.7, for each i ∈ [k] and every i-DNF F ,

Prρ∈M3/4(G) [F �ρ 	= 1] ≤ 2
− (log e)(1−3/4)ic(F )

i(d log n)i+1 = 2
− (log e)c(F )

i·4i(d log n)i+1 .

In the interest of obtaining a better bound, we will not appeal to Corollary 3.4,
but directly apply Theorem 3.3. We define sequences s0, . . . , sk and p1, . . . , pk for use
in the switching lemma. Set s0 = 3

4k (n/24 − 1). For each i ∈ [k], set

si =

(
log e

2i4i(d log n)
i+1

)
si−1.

For each i ∈ [k] set pi = 2−2si . For any i-DNF F so that c(F ) > si−1, we have
the following inequality:

Prρ∈M3/4(G) [F �ρ 	= 1] < 2
− (log e)si−1

i·4i(d log n)i+1 = 2
−2

(log e)si−1

2i4i(d log n)i+1 = 2−2si = pi.

It can be shown that there exists ε > 0 so that for sufficiently large n, sk ≥ nε. To
avoid distraction, we show this in Lemma 6.17 at the end of this subsection. Suppose
that Γ is a Res(k) refutation of PHP (G) of size less than 2n

ε

.
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By an application of Theorem 3.3 and the union bound, we have

Prρ∈M3/4(G)

[
∃F ∈ Γ, h(F �ρ) >

k−1∑
i=0

si

]
≤ 2n

ε
k∑

i=1

pi2

∑k−1

j=i
sj

≤ 2sk
k∑

i=1

pi2

∑k−1

j=i
sj =

k∑
i=1

pi2

∑k

j=i
sj .

We now bound pi2

∑k

j=i
sj for each i > 0. For each i, si+1 < 1

4si so
∑k−1

j=i sj ≤ 4
3si.

This gives us the following inequality:

pi2

∑k−1

j=i
sj = 2

∑k−1

j=i
sj−2si ≤ 2(4/3−2)si = 2−(2/3)si ≤ 2−(2/3)sk ≤ 2−(2/3)nε

.

Therefore,

Prρ∈M3/4(G) [∃F ∈ Γ, h(F �ρ) > (n/24 − 1)/k]

≤ Prρ∈M3/4(G)

[
∃F ∈ Γ, h(F �ρ) >

k−1∑
i=0

si

]

≤
k∑

i=1

pi2

∑k−1

j=i
sj ≤

k∑
i=1

2−(2/3)nε ≤ k2−(2/3)nε

= 2log k−(2/3)nε

.

For n sufficiently large, this probability is strictly less than 1
2 . Because G is (3/4, n/24)-

robust, for ρ ∈ M3/4(G), with probability at least 1
2 , wR(PHP (G) �ρ) ≥ n/24. Thus,

there is a ρ so that wR(PHP (G) �ρ) ≥ n/24 and for all F ∈ Γ, h(F �ρ) ≤ 1
k (n/24−1).

This is a contradiction, because by Corollary 5.2, there is a resolution refutation of
PHP (G) �ρ of width ≤ n/24 − 1.

Theorem 6.16. For each c > 1, there exists ε > 0 so that for all n sufficiently
large, if k ≤

√
log n/ log log n, then every Res(k) refutation of PHP cn

n has size at
least 2n

ε

.
Proof. Apply Lemma 6.9 and choose d so that for sufficiently large n, there exists

a (3/4, n/24)-robust graph G on vertex sets cn and n, with ∆(G) ≤ d log n. By
Lemma 6.15, there exists ε > 0 so that for k ≤

√
log n/ log log n, Sk(PHP (G)) ≥ 2n

ε

.
Because PHP (G) can be obtained by setting some of the variables of PHP cn

n to
0, every Res(k) refutation of PHP cn

n can be converted into a Res(k) refutation of
PHP (G) of the same or lesser size. Therefore, all Res(k) refutations of PHP cn

n must
have size at least 2n

ε

.
Now we prove the lower bound on the number sk that we used in Lemma 6.15.

The constants are not optimized.
Lemma 6.17. There exists ε > 0, so that for all n sufficiently large, with k ≤√

log n/ log log n and s0, . . . , sk defined as in the proof of Lemma 6.15, sk ≥ nε.
Proof. Unwinding the recursive definition of the si’s gives the following equality:

sk =
1

2k
(log e)

k 1

k!

(
1

4

)∑k

j=1
j(

1

d log n

)∑k+1

j=2
j

3

4k
(n/24 − 1).

Because k ≤
√

log n/ log log n, we have that 1
2k (log e)

k 1
k!

(
1
4

)∑k

j=1
j 3

4k = n−o(1).

sk = n−o(1)(1/d log n)
(k+2)(k+1)/2

(n/24 − 1)

= n−o(1)2−(log(d logn))(k2+3k+2)/2(n/24 − 1).
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Because k ≤
√

log n/ log log n and d is a constant, thus for n sufficiently large,
(log(d log n))(k2 + 3k + 2)/2 = (logn)(1 + o(1))/2. Therefore,

sk = n−o(1)2−(log n)(1+o(1))/2(n/24 − 1),

and there exists ε > 0 so that for all n sufficiently large, sk ≥ nε.

7. Lower bounds for random CNFs. It is well known that, in some cases,
randomly generated sets of clauses require exponentially large resolution refutations;
see [13, 5, 8]. We extend these results by giving exponential lower bounds for the size
of Res(k) refutations of randomly chosen sets of width 4k2 + 2 clauses.

Definition 7.1. Let n, ∆, and w be given. The distribution Fn,∆
w is defined by

choosing ∆ ·n many clauses independently, with repetitions, from the set of all
(
n
w

)
2w

clauses of width w.
Our main result for this section is the following.
Theorem 7.2. For any ε ∈ [0, 1

6 ), there exists δ > 0, so that for n sufficiently
large and for ∆ = nε,

PrF∈Fn,∆

4k2+2

[
Sk(F ) ≤ 2n

δ
]

= o(1).

The reason that our proof does not give lower bounds for refutations of random
3-CNFs in Res(k) is that, on one hand, we want our random restrictions to have
a good chance of satisfying a fixed k-term (so we can apply the switching lemma),
but on the other hand, the restrictions should have little probability of falsifying any
of the initial clauses (this would make the restricted set of clauses trivial to refute).
Because satisfying a k-term is equivalent to falsifying a k-clause, we can only work
with initial clauses of width larger than k.

A set of clauses that, with constant probability, requires high width to refute after
random restriction is called robust. Recall the distribution Dp from Definition 3.5.

Definition 7.3. Let F be a CNF in variables x1, . . . , xn. We say that F is (p, r)
robust if Prρ∈Dp [wR(F �ρ) ≥ r] ≥ 1/2.

It turns out that for sufficiently large w, a random w-CNF is almost surely robust.
We state the result below and prove it in the following subsection.

Lemma 7.4. There exists a constant c so that for any constants w and t, w ≥
2t+ 2, for every n sufficiently large, and for every ε ∈ [0, 1/2], if we set ∆ = nε, then
the following inequality holds:

PrF∈Fn,∆
w

[
F is not

(
n−1/t, cn

1−2ε
1+2ε

)
-robust

]
= o(1).

We now prove the size lower bound. We set bits with probability n−1/2k2

so we
can collapse k-DNFs but still have that most 4k2 + 2 CNFs are robust. For each
k ≥ 1, let γk be the constant of corollary 3.7.

Lemma 7.5. Let n, r, w, and k be given. For sufficiently large n, if F is an
(n−1/2k2

, r)-robust w-CNF, then Sk(F ) ≥ 1
4k2(γk(r−1)/k

√
n).

Proof. Suppose that Γ is a Res(k) refutation of F of size at most 1
4k2(γk(r−1)/k

√
n).

By Corollary 3.7, with p = n−1/2k2

and w = (r − 1)/k, we have that for every line
F of Γ, Prρ∈Dp [h(F �ρ) > (r − 1)/k] ≤ k2−γk(r−1)/k

√
n. By the union bound we have

that

Prρ∈Dp [∃F ∈ Γ h(F �ρ) > (r − 1)/k] ≤ |Γ| · k · 2−γk(r−1)/k
√
n
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≤ 1

4k
2(γk(r−1)/k

√
n) · k · 2−γk(r−1)/k

√
n =

1

4
.

Because F is (p, r)-robust, with probability at least 1
2 over choices of ρ, then

wR(F �ρ) ≥ r. Therefore, we may choose ρ ∈ Dp so that wR(F �ρ) ≥ r and for all
F ∈ Γ, h(F �ρ) ≤ (r − 1)/k. This is a contradiction because by Corollary 5.2 there
should be a width r − 1 resolution refutation of F �ρ.

Combining Lemmas 7.4 and 7.5 with t = 2k2, w = 4k2 + 2, and r = cn
1−2ε
1+2ε

shows that a random (4k2 + 2)-CNF almost surely requires exponential size to refute
in Res(k).

Corollary 7.6. There exists a constant c so that for every k, for every n
sufficiently large, and for ε ∈ [0, 1/2], if we set ∆ = nε, then the following inequality
holds:

PrF∈Fn,∆

4k2+2

[
Sk(F ) ≤ 2γk(cn

1−2ε
1+2ε −1)/k

√
n

]
= o(1).

This gives an exponential lower bound only when 1−2ε
1+2ε > 1

2 . This holds exactly

for ε ∈ [0, 1
6 ).

Theorem 7.7. For any ε ∈ [0, 1
6 ), there exists δ > 0, so that for n sufficiently

large and for ∆ = nε,

PrF∈Fn,∆

4k2+2

[
Sk(F ) ≤ 2n

δ
]

= o(1).

7.1. Robustness of random CNFs. In this section we show that for appro-
priate clause densities, a random w-CNF is almost surely robust.

We begin with a width bound for resolution refutations of random 3-CNFs given
by Ben-Sasson and Wigderson.

Theorem 7.8 (see [8]). There exists a constant c, so that for all n, and for all
ε ∈ [0, 1/2] with ∆ = nε, the following inequality holds:

PrF∈Fn,∆
3

[
wR(F ) ≤ cn

1−2ε
1+2ε

]
= o(1).

Lemma 7.9. There exists a constant c so that for any constants w and t with
w ≥ 2t + 2, for every n sufficiently large, and for ε ∈ [0, 1/2], if we set ∆ = nε and
p = n−1/t, then the following inequality holds:

Pr
F∈Fn,∆

w
ρ∈Dp

[
wR(F �ρ) ≤ cn

1−2ε
1+2ε

]
= o(1).

Proof. Let w, t, n, ε be given as above and set ∆ = nε and p = n−1/t.
Because the expected size of dom(ρ) is pn, the Chernoff bounds show that the

size of dom(ρ) exceeds 2pn = 2n1− 1
t with probability at most e−n1−1/t/4 = o(1) .

Let C be a fixed clause of width w that contains no opposite literals. When we
choose ρ ∈ Dp, the probability that the domain of ρ contains at least w − 2 variables
of C is at most

(
w
2

)
pw−2. Because w is a constant, this probability is O

(
n−(w−2)/t

)
.

Because w ≥ 2t + 2, this probability is O
(
n−2

)
. For any fixed w-CNF F on ∆n

many clauses, an application of the union bound shows that there is some clause with
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≥ w−2 of its variables in the restriction with probability O(∆n·n−2) = o(1). Because
this calculation holds for every w-CNF of ∆n many clauses, we have that

Pr
F∈Fn,∆

w
ρ∈Dp

[∃C ∈ F, |vars(C) \ dom(ρ)| ≤ 2] = o(1).

Fix a restriction ρ so that dom(ρ) ≤ 2n1− 1
t and let n′ = n−|dom(ρ)|. Conditioned

on the event that for all i ∈ [∆], |vars(Ci)\dom(ρ)| ≥ 3, F �ρ is subsumed by a random

3-CNF distributed as Fn′,∆
3 . (To see this, consider the distribution on 3-CNFs that

chooses three literals unset by ρ from each Ci.) Choose ε′ so that nε = (n′)ε
′
. Adding

up the conditional probabilities and applying Theorem 7.8 shows that

Pr
F∈Fn,∆

w
ρ∈Dp

[
wR(F �ρ) ≤ cn

′ 1−2ε′
1+2ε′

]
= o(1).

Because n′ ≥ n− 2n1−1/t, we may choose c′ so that

Pr
F∈Fn,∆

w
ρ∈Dp

[
wR(F �ρ) ≤ c′n

1−2ε
1+2ε

]
= o(1).

From Lemma 7.9, an averaging argument yields the following phrasing of Lemma
7.4.

Lemma 7.10. There exists a constant c so that for any constants w and t,
w ≥ 2t + 2, for every n sufficiently large, and for ε ∈ [0, 1/2], if we set ∆ = nε and
let p = n−1/t, then the following inequality holds:

PrF∈Fn,∆
w

[
Prρ∈Dp

[
wR(F �ρ) ≤ cn

1−2ε
1+2ε

]
≥ 1/2

]
= o(1).

8. Separation between Res(k) and Res(k+1). In this section we show that
for each constant k, there is an εk > 0 and a family of unsatisfiable CNFs which have
polynomial-size Res(k + 1) refutations but which require size 2n

εk to refute in Res(k).
The unsatisfiable clauses are a variation of the graph ordering tautologies [19, 9].

Definition 8.1. Let G be an undirected graph. For each vertex u of G, let N(u)
denote the set of neighbors of u in G. For each ordered pair of vertices (u, v) ∈ V (G)2,
with u 	= v, let there be a propositional variable Xu,v.

The graph ordering principle for G, GOP (G), is the following set of clauses:
(1) The relation X is transitive: for all u, v, w ∈ V (G), Xu,v ∧Xv,w → Xu,w.
(2) The relation X is antisymmetric: for all u, v ∈ V (G) with u 	= v, ¬Xu,v ∨

¬Xv,u.
(3) There is no locally X-minimal element: for every u ∈ V (G),

∨
v∈N(u) Xv,u.

The k-fold graph ordering principle of G, GOP k(G), is obtained by replacing each
variable Xu,v by a conjunction of k variables, X1

u,v, . . . , X
k
u,v, and then using the

distributive rule and DeMorgan’s law to express this as a set of clauses.
Notice that for a graph G on n vertices with maximum degree d, the principle

GOP (G) consists of O(n3) many clauses each of width at most max{3, d}. Therefore,
for any graph G on n vertices with maximum degree d, the principle GOP k(G) has
size O(n3kd).

It is readily shown that, for any graph G, the principle GOP (G) has polynomial-
size resolution refutations. Furthermore, these refutations can be transformed into
Res(k + 1) refutations of GOP k+1(G), as shown in Lemma 8.4. On the other hand,
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we will also prove that Res(k) refutations of GOP k+1(G) require exponential size for
certain graphs.

Theorem 8.2. Let k be a positive integer. There exist constants c > 0, εk > 0
and a family of graphs G on n vertices (for n sufficiently large) with maximum degree
c log n so that Res(k) refutations of GOP k+1(G) require size at least 2Ω(nεk ).

8.1. The upper bounds. We build Res(k) refutations for GOP k(G) from res-
olution refutations of GOP (G).

The resolution refutation of GOP (G) is a slight variation of the resolution refu-
tation of GTn [19, 9].

Lemma 8.3. Let G be an n vertex graph. There is a resolution refutation of
GOP (G) of size O(n3).

Proof. To construct the resolution refutation of GOP (G), we iteratively derive
the formulas

∨
i∈[l,n]
i�=j

Xi,j for all i, j with 1 ≤ l ≤ j ≤ n. The clauses
∨

i∈[n]
i�=j

Xi,j are

derived by weakening the hypotheses. We proceed in stages as l ranges from 1 up to
n. At stage l, for j = l, we have

∨
i∈[l+l,n] Xi,l. For j 	= l, we resolve

∨
i∈[l+1,n] Xi,l

with the transitivity axioms ¬Xi,l ∨¬Xl,j ∨Xi,j to obtain ¬Xl,j ∨Xj,l

∨
i∈[l+1,n]

i�=j
Xi,j .

This clause is resolved with ¬Xl,j ∨ ¬Xj,l and
∨

i∈[l,n]
i�=j

Xi,j to obtain
∨n

i=l+1 Xi,j . At

stage n, with j = n, we have derived the empty clause. This refutation clearly has
size O(n3).

Lemma 8.4. For each k, and for every G with n vertices and degree at most
d ≥ 3, GOP k(G) has a Res(k) refutation of size O(n3kd).

Proof. Let τ be the operation that replaces Xu,v by
∧k

i=1 X
i
u,v and ¬Xu,v by∨k

i=1 ¬Xi
u,v.

Let Γ be the size O(n3) resolution refutation of GOP (G) given above, and remove
all of its weakening inferences. If we apply the transformation τ to the refutation, we
obtain a Res(k) refutation of τ(GOP (G)).

From the clauses of GOP k(G) we can derive the k-DNFs of τ(GOP (G)) by a
sequence of O(kd) many AND-introduction inferences per formula. Thus, we have a
Res(k) refutation of GOP k(G) of the claimed size.

8.2. Random restrictions. In this subsection we define a distribution on par-
tial assignments so that i-DNFs with high cover number are satisfied with high prob-
ability. The idea is to randomly color the graph with 4k many colors, and then,
between vertices u and v of distinct color classes, uniformly choose an assignment to
X1

u,v, . . . , Xk+1
u,v , X1

v,u, . . . , X
k+1
v,u which makes both

∧k+1
i=1 Xi

u,v and
∧k+1

i=1 Xi
v,u false.

Definition 8.5. Let k ≥ 1 be given. Let G be a graph. The distribution Pk+1(G)
on partial assignments ρ to the variables of GOP k+1(G) is given by the following
experiment.

For each (u, v) ∈ V (G)2, let σu,v
ρ be chosen uniformly among 0, 1 assignments to

X1
u,v, . . . , Xk+1

u,v so that for at least one i ∈ [k + 1], σu,v
ρ (Xi

u,v) = 0.

Select a random coloring of V (G) by 4k many colors, cρ : V (G) → [4k].

The partial assignment, ρ, is defined as

ρ =
⋃

(u,v)∈V (G)2

cρ(u)�=cρ(v)

σu,v
ρ .
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The auxiliary total assignment, σρ, is defined as

σρ =
⋃

(u,v)∈V (G)2

σu,v
ρ .

If we let Bρ be the set of edges which are bichromatic under the coloring cρ, then
GOP k+1(G) �ρ is GOP k+1(G \ Bρ). Moreover, we have the following lemma, which
the reader can easily check.

Lemma 8.6. Let G be a graph. Let ρ ∈ Pk+1(G) be given. Let Bρ be the set of
edges of G that are bichromatic under cρ. Let G1, . . . , Gm be the connected components
of G \Bρ.

GOP k+1(G) �ρ=
m⋃
j=1

GOP k+1(Gj).

Formulas with high cover number contain many variable-disjoint terms, but the
events of satisfying these terms with ρ ∈ Pk+1(G) are not necessarily independent.
To obtain independence, we look at the pairs of vertices involved with the literals of
the terms. Remember that in the definition of GOP (G), there are no variables Xu,u.

Definition 8.7. Let Xi
u,v be a variable of GOP k+1(G). The underlying pair of

Xi
u,v is the set {u, v}. The underlying ordered pair of Xi

u,v is (u, v). Let T be a term.
The set of vertex pairs of T , PT , is defined as

PT = {{u, v} | {u, v} is the underlying pair of a variable in T}.

The set of vertices of T , ST , is defined as ST =
⋃
PT .

We use combinatorial sunflowers to obtain independence between the events of
satisfying terms of an i-DNF with high cover number. To guarantee that such a
system exists, we apply the Erdös–Rado lemma.

Definition 8.8. A (p, l) sunflower is a collection of sets P1, . . . , Pp, each of size
≤ l, so that there exists a set C so that Pi ∩ Pj = C for all i, j ∈ [p], i 	= j. The set
C is called the core of the sunflower.

Theorem 8.9 (see [16, 22]). Let l be given. Let Z be a family of M distinct sets,

each with cardinality ≤ l. Z contains a (p, l) sunflower where p ≥
(
M
l!

) 1
l .

Definition 8.10. Let T1, . . . , Tt be terms in the variables of GOP k+1(G). We
say that the terms are sufficiently independent if the following conditions hold:

1. For i, j ∈ [t], if i 	= j, then STi 	= STj .
2. The family {STi | 1 ≤ i ≤ t} forms a sunflower with core C.
3. For each i ∈ [t], each {u, v} ∈ PTi

, {u, v} 	⊆ C.
Lemma 8.11. Let T1, . . . , Tt be a sufficiently independent set of terms. The sets

PTi
, 1 ≤ i ≤ t, are disjoint.
Proof. Let i, j, 1 ≤ i < j ≤ t, be given and let C denote the core of the

sunflower. Suppose that {u, v} ∈ PTi ∩ PTj . We then have that {u, v} ⊆ STi ∩ STj ,
so {u, v} ⊆ C. Therefore, by the third property of sufficient independence, {u, v} 	∈
PTi

—a contradiction.
We begin the task of showing that a DNF with high cover number is likely to be

satisfied by a random restriction. The quality of our bounds is most affected by the use
of the sunflower lemma, and the particular constants we obtain at other points have
limited impact. Therefore, to conserve space and readability, we will not optimize
many of the probabilities involved.
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Lemma 8.12. Let k be given. There exist constants βk > 0 and ck > 0 so that for
every k-DNF F in the variables of GOP k+1(G), F contains a sufficiently independent

set of size at least βk(c(F ))
1
2k − ck.

Proof. F contains a set of s = c(F )/k many variable-disjoint terms, T1, . . . , Ts.
It is possible that STm = STl

for some m 	= l. However, because all terms have size at
most k, for each i, |STi

| ≤ 2k, and a set of ≤ 2k many vertices can be the underlying

set of fewer than
(
(k + 1)4k2

)k
many different variable-disjoint terms (since a variable

Xi
u,v is determined by an ordered pair (u, v) ∈ [ST ]2 and i ∈ [k+1]). Therefore, there

is a subcollection of s
((k+1)4k2)k

many variable-disjoint terms whose underlying sets of

vertices are distinct.
Because the underlying sets of vertices have size at most 2k, we can apply the

sunflower lemma to find s′ =
(

s
((k+1)4k2)k(2k)!

) 1
2k =

( c(F )

k((k+1)4k2)k(2k)!

) 1
2k

many terms

whose sets of underlying vertices form an (s′, 2k) sunflower. We rename these terms
T1, . . . , Ts′ .

Let C be the core of the sunflower ST1 , . . . , STs′ . Notice that |C| ≤ 2k. Call a
variable bad if both of its underlying vertices belong to C. There are fewer than 2k2

many unordered pairs of vertices contained in C, and each is the underlying pair of
exactly 2(k+1) many variables. Therefore, there are fewer than 2(k+1)·2k2 = 4k2(k+
1) many variables whose underlying vertices are both in C. The terms T1, . . . , Ts′ are
variable-disjoint, so each bad variable appears in at most one term, and when we
remove all terms containing a bad variable, we obtain a sufficiently independent set

of terms of size s′ − 4k2(k + 1) =
( c(F )

k(2k)!((k+1)4k2)k

) 1
2k − 4k2(k + 1).

Before we bound the probability of satisfying a DNF with high covering number,
we make a few observations.

Fact 1. Let T be a term, and let ρ ∈ Pk+1(G) be given. T �ρ= 1 if and only if the
following two events occur: (i) T �σρ

= 1, and (ii) for each {u, v} ∈ PT , cρ(u) 	= cρ(v).
For each term T in a Res(k) refutation of GOP k+1(G), because T contains at

most k literals, there is a nonzero chance that it will be satisfied by σρ when ρ is a
random restriction chosen according to Pk+1(G). This is made precise in the following

lemma. Recall that by construction,
∧k+1

i=1 Xi
u,v �σρ

= 0, so the lemma fails for terms
of size k + 1 (as it should, since we are separating Res(k + 1) from Res(k)). The
argument is similar to that in Lemma 4.4.

Lemma 8.13. Let T be a term of size at most k.

Prρ∈Pk+1(G)

[
T �σρ= 1

]
≥ 1

3k
.

Proof. Order the literals of T as l1, . . . , lk. For each j, 1 ≤ j ≤ k, if we condition
on the event that each l1, . . . , lj−1 is satisfied, then the probability of lj being satisfied

is at least 1
3 . This is because in the worst case, lj is a literal X

ij
u,v and the other literals

are Xi1
u,v, . . . , X

ij−1
u,v , and in this case, the probability that X

ij
u,v is satisfied by σρ is at

least 1
3 .

Lemma 8.14. Let G be a graph and let k be a positive integer. Let F be a
k-DNF which contains t sufficiently independent terms.

Prρ∈Pk+1(G) [F �ρ 	= 1] ≤
(

1 − 1

3k22k

)t

.

Proof. Let T1, . . . , Tt be the sufficiently independent terms of F . Let C be the core
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of the sunflower ST1 , . . . , STt
. Fix a coloring of the vertices in the core, χ : C → [4k].

Condition on the event that cρ �C= χ.
We now lower-bound the probability that a given term T of the sufficiently inde-

pendent set is satisfied. First, we bound the probability that every underlying edge
of T is bichromatic. Note that by property (3) of sufficient independence, for all
{u, v} ∈ PT , {u, v} 	⊆ C, so it suffices to bound the probability that the vertices in
ST \ C receive distinct colors not in the range of χ. Therefore, the probability that
every pair in PT is bichromatic, conditioned on cρ �C= χ, is at least 1

22k . Because T

contains at most k literals, the probability that T �σρ
= 1 is at least 1

3k . These two

events are independent, so we have Prρ∈Pk+1(G) [T �ρ= 1 | cρ �C= χ] ≥ 1
22k

1
3k .

Now we show that (when we condition on the event that cρ �C= χ) the events
Ti �ρ= 1 are totally independent. Because the terms share no underlying pairs, the
events Ti �σρ

are independent of the satisfaction of other terms. The events “for each
{u, v} ∈ PTi , cρ(u) 	= cρ(v)” are independent of the satisfaction of other terms. This
is because once we condition on the event cρ �C= χ, the probability that every pair
of PTi

is bichromatic under cρ depends only on the values that cρ takes on STi
\ C

and, for all i 	= j, STi
∩ STj

= C.
Combining the results of the previous two paragraphs shows that

Prρ∈Pk+1(G) [F �ρ 	= 1 | cρ �C= χ] ≤
(
1 − 1/3k22k

)t
.

Because this holds for all colorings χ : C → [4k], we have that

Prρ∈Pk+1(G) [F �ρ 	= 1] ≤
(
1 − 1/3k22k

)t
.

We now have the lemma relating cover number to the probability that a restriction
satisfies a k-DNF.

Lemma 8.15. For each k there exist positive constants δ, γ, and d so that for
any k-DNF F ,

Prρ∈Pk+1(G) [F �ρ 	= 1] ≤ d2−δ(c(F ))γ .

Proof. By Lemma 8.12, F contains a sufficiently independent set of size at least
βk(c(F ))

1
2k − ck.

By Lemma 8.14,

Prρ∈Pk+1(G) [F �ρ 	= 1] ≤
(

1 − 1

3k22k

)βk(c(F ))
1
2k −ck

.

Because k is fixed, this concludes the proof with δ = −βk log
(
1 − 1

3k22k

)
, γ =

1/2k, and d =
(
1 − 1

3k22k

)−ck .

8.3. Width lower bound for resolution. In this subsection we show that
for each n, if G is a graph on n vertices satisfying a certain expansion-like property,
then wR(GOP k+1(G)) = Ω(n). Combining this with a probabilistic calculation will
show that there exist graphs G so that for ρ ∈ Pk+1(G), with probability at least 1

2 ,
wR(GOP k+1(G) �ρ) = Ω(n).

The proof of the resolution width bound is similar to the one used by Bonet and
Galesi for the GTn principles [9]. They worked with complete graphs, but we do not
because the principles GOP 2(Kn) have sizes in excess of 2n. Fortunately, for the
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proof technique to work, G need not be complete but instead must have the following
property.

Definition 8.16. Let G be an undirected graph on n-vertices. We say that G
is ε-neighborly if, between every pair of disjoint sets of vertices, A,B ⊆ V (G) with
|A|, |B| ≥ εn, there exists an edge joining A and B.

We now show that resolution refutations of GOP (G) require large width when G
is a connected, neighborly graph.

Lemma 8.17. If G is a connected graph of n vertices that is ε-neighborly, then
every resolution refutation of GOP (G) contains a clause of width

(
1−3ε

6

)
n.

Proof. We begin by defining the “measure” of a clause. A critical truth assign-
ment, or cta, is an assignment to the variables of GOP (G) which forms a total order
on V (G). For each v ∈ V (G), let Cv :=

∨
u∈N(v) Xu,v, and for each I ⊆ V (G),

CI :=
∧

v∈I Cv. Let C be a clause. The measure of C, µ(C), is the minimum car-
dinality of a set I ⊆ V (G) so that for every cta α, if α satisfies CI , then α satisfies
C.

Notice that if a clause A∨B is the resolvent of A∨x and B∨¬x, then µ(A∨B) ≤
µ(A ∨ x) + µ(A ∨ ¬x). Because of this, we say that µ is subadditive with respect to
resolution. If A ⊆ B, then we have that µ(B) ≤ µ(A), so µ is decreasing with respect
to subsumption.

We now show that µ(∅) = n. Suppose otherwise, and let I be a subset of V (G)
with |I| ≤ n − 1. Choose one vertex v0 ∈ V (G) \ I and let α be a total order which
arises by taking a depth-first search of G starting with v0. Clearly α satisfies CI but
α does not satisfy ∅.

Because every clause of GOP (G) has measure either 0 or 1, the empty clause
has measure n, and the measure is both subadditive with respect to resolution and
decreasing with respect to subsumption, there must exist a clause C so that n

3 ≤
µ(C) ≤ 2n

3 . Suppose for the sake of contradiction that w(C) < n−3εn
6 .

Let I be a minimal subset of V (G) so that for every critical truth assignment α,
if α satisfies CI , then α satisfies C. Let J = V (G) \ I. Notice that |I|, |J | ≥ n

3 .
Let S be the set of vertices mentioned by variables of C. Clearly, |S| ≤ 2w(C) <

2
(
n−3εn

6

)
= n−3εn

3 . Therefore, |I \ S| ≥ n
3 − n−3εn

3 = εn. Similarly, |J \ S| ≥ εn.
Because G is ε-neighborly, we may choose u ∈ I \S and v ∈ J \S so that {u, v} is an
edge of G.

Let α be a cta so that α satisfies CI\{u}, but α does not satisfy Cu and α does
not satisfy C. Let β be the cta which arises by moving v to the front of the order
given by α. For w ∈ I, w 	= u, β satisfies Cw because every predecessor of w in α is
a predecessor of w in β. For u, β satisfies Cu because β satisfies Xv,u. However, β
does not satisfy C because α does not satisfy C and no variable mentioning u or v
appears in C. Therefore, β satisfies CI but β does not satisfy C—a contradiction to
the choice of I.

A resolution refutation of GOP k(G), k ≥ 1, can be transformed into a resolution
refutation of GOP (G) by setting the appropriate variables to 1. Applying a restric-
tion does not increase the width of a resolution refutation, so we have the following
corollary.

Corollary 8.18. If G is a connected graph of n vertices that is ε-neighborly,
then for all k ≥ 1, wR(GOP k(G)) ≥

(
1−3ε

6

)
n.

8.4. Robust graphs.
Definition 8.19. We say that a graph G is r-robust if for ρ selected at random

by Pk+1(G), with probability at least 3
4 , wR(GOP (G) �ρ) ≥ r.
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To guarantee that the restricted principle will require high width to refute, it
suffices that the graph obtained by deleting the bichromatic edges should consist of
large, neighborly connected components. Random graphs of degree Θ(logn) have this
property with high probability. This is shown in the following subsection.

Lemma 8.20. There exists a constant c so that for sufficiently large n, there
exists an n

96k -robust graph G on n vertices with degree at most c log n.

The proof of this lemma is a standard probabilistic argument. The reader may
skip its proof in section 8.4.1, and move directly to the proof of the lower bound in
section 8.5.

8.4.1. Demonstration of robust graphs. An easy probabilistic argument
shows that with very high probability, a random graph of expected degree Θ((1/ε) log n)
is almost surely ε-neighborly.

Lemma 8.21. Let n and d be positive integers so that d ≤ n and let p = d/n. Let
Gn,p be the distribution on graphs on n vertices in which every edge is included with

independent probability p. With probability ≤ e2εn(1+ln(1/ε))−dε2n, a graph selected
according to Gn,p is not ε-neighborly.

Proof. There are fewer than
(
n
εn

)2 ≤
(
en
εn

)2εn
= e2εn(1+ln(1/ε)) many pairs of

disjoint sets of εn many vertices. Each such pair has a chance of at most (1 − p)
ε2n2

of being unconnected. However, (1 − p)
ε2n2

= (1 − d
n )

ε2n2

≤ e−dε2n, so by the union

bound the probability is at most e2εn(1+ln(1/ε))e−dε2n = e2εn(1+ln(1/ε))−dε2n.

We now show that a random graph will probably have each component large and
neighborly if we randomly partition it into vertex-induced subgraphs.

Lemma 8.22. For all ε > 0 and all integers k ≥ 1, there exists a constant c so
that for sufficiently large n, there exists graph G with ∆(G) ≤ 2c log n so that upon
the random partition of G into 4k many vertex-induced subgraphs, with probability at
least 1

2 , each component has size at least n/8k and is ε-neighborly.

Proof. Let p = c logn
n . We will solve for the value of c at the end. Consider

the following experiment: Select a graph G according to the distribution Gn,p, and
independently color each vertex with one of 4k colors. Then remove all bichromatic
edges to form 4k vertex induced-subgraphs, G1, . . . , G4k.

Let P be the probability that G has a vertex of degree > 2c log n, or that one of
the induced subgraphs has size < n

8k , is disconnected, or is not ε-neighborly. We now
bound this probability.

Consider the probability that G has a vertex of degree ≥ 2c log n. By the Chernoff
bounds, the probability of any one vertex having degree in excess of 2p(n − 1) is no
more than e−p(n−1)/4 = e−c(log n)(n−1)/4n. Therefore, the probability of there existing
a vertex with degree in excess of 2p(n− 1) is no more than ne−c(log n)(n−1)/4n.

The Chernoff bounds also allow us to bound the probability that any of the Gi’s
contain too few vertices. The probability that a given color class of the partition
contains fewer than 1

2 · n
4k = n

8k vertices is bounded by e−
n

64k .

Once we condition upon all pieces of the partition containing at least n
8k vertices,

we can bound the probability that any induced subgraph is disconnected. Consider
a fixed set of s ≥ n

8k many vertices, and condition upon the event that those vertices
receive the same color in the partition. Each edge internal to the set is included with

probability c logn
n = (cs/n) log n

s ≥ (c/8k) log s
s . By a standard result on the connectivity

of random graphs (cf. [27]), each color class is disconnected with probability bounded
by O

(
1/n(c/8k)−1

)
.



1196 NATHAN SEGERLIND, SAM BUSS, AND RUSSELL IMPAGLIAZZO

Finally, we consider the probability that each of the components Gi is ε-neighborly.
For a fixed set of s ≥ n

8k vertices, if we condition on the event that set forms a compo-

nent after partition, each internal edge is included with probability c log n
n ≥ (c/8k) log s

s .
By Lemma 8.21, that means that the component is not ε-neighborly with probability
at most e2εs(1+ln(1/ε))−(c/8k)(log s)ε2s = e−Ω(n log n).

Therefore,

P ≤ ne−c(log n)(n−1)/4n + 4ke−
n

64k + O
(
4k/n(c/8k)−1

)
+ e−Ω(n log n).

For a sufficiently large constant c, dependent only on k and ε, this is below 1
4 .

Therefore, by an averaging argument on the edge choices, there exists a graph G
of maximum degree ≤ 2c log n so that upon random partition of its vertices into 4k
color classes, its induced subgraphs are each connected, of size ≥ n

8k , and ε-neighborly
with probability ≥ 3

4 .
We now prove Lemma 8.20.
Proof. Using Lemma 8.22, choose c so that for sufficiently large n, there exists

graph G so that upon the random partition of G into 4k many vertex-induced sub-
graphs, with probability at least 3

4 , each component has size at least n/8k and is
( 1
6 )-neighborly. Therefore we may choose ρ ∈ Pk+1(G) so that for each i ∈ [4k],

wR(GOP k+1(Gi)) ≥
(

n
8k

) ( 1−3 1
6

6

)
= n

96k (by Corollary 8.18).

Let Γ be a resolution refutation of GOP k+1(G) �ρ. By Lemma 8.6, GOP k+1(G) �ρ
=

⋃4k
i=1 GOP k+1(Gi). However, for each i, j ∈ [4k], i 	= j, we have that GOP k+1(Gi)

and GOP k+1(Gj) are variable disjoint. Therefore, by Lemma 2.3, for some i ∈ [4k],
there exists a resolution refutation of GOP k+1(Gi) of width at most w(Γ). How-
ever, by the preceding paragraph, each GOP k+1(Gi) requires width n

96k to refute in
resolution. Therefore w(Γ) ≥ n

96k .

8.5. The lower bound.
Theorem 8.23. Let k be given. There exist constants c > 0, εk > 0 and a family

of graphs G on n vertices (for n sufficiently large) with maximum degree c log n so
that Res(k) refutations of GOP k+1(G) require size at least 2Ω(nεk ).

Proof. Let k be given. Apply Lemma 8.20 and choose c so that for sufficiently
large n, there exists a n

96k -robust graph G on n vertices with degree at most c log n.
By Lemma 8.15, there are positive constants d, δ, and γ so that for every k-DNF F
Prρ∈Pk+1(G) [F �ρ 	= 1] ≤ d2−δ(c(F ))γ . By Corollary 3.4, with s = ( n

96k −1)/k, for every
k-DNF F ,

Prρ∈Pk+1(G) [h(F �ρ) > (n/96k − 1)/k] ≤ dk2−2δk((n/96k−1)/k)γ
k
/4k

.

Because d, γ, and δ depend only on k, there exists εk so that

Prρ∈D [h(F �ρ) > (n/96k − 1)/k] ≤ 1

2
2−nεk

.

Suppose for the sake of contradiction that Γ is a Res(k) refutation of GOPK+1(G)
of size less than 2n

εk . By the union bound, with probability at least 1
2 , every line

F of Γ has h(F �ρ) ≤ (n/96k − 1)/k. On the other hand, because G is (n/96k)-
robust, wR(GOP k+1(G) �ρ) ≥ n/96k with probability at least 3

4 . So we may choose
ρ ∈ Pk+1(G) so that wR(GOP k+1(G) �ρ) ≥ n/96k, and for all lines F of Γ, h(F �ρ
) ≤ (n/96k − 1)/k. By Corollary 5.2, GOP k+1(G) �ρ has a resolution refutation of
width at most n/96k − 1. This is a contradiction.
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9. Separating Res(k) and Res(k + 1) with constant width clauses. The
separation between Res(k + 1) and Res(k) given by Theorem 8.23 uses sets of clauses
whose maximum width is Θ(log n). In this section we present a similar result which
separates Res(k) and Res(k + 1) using constant width clauses.

Definition 9.1. Let X1, . . . , Xk be propositional variables. The formula Odd
(X1, . . . , Xk) is the k-DNF expressing that the number of satisfied variables of X1, . . . ,
Xk is odd. The formula Even (X1, . . . , Xk) is the k-DNF expressing that the number
of satisfied variables of X1, . . . , Xk is even.

The k-parity graph ordering principle of G, GOP⊕k(G), is obtained by replac-
ing each literal Xu,v by Odd (X1

u,v, . . . , X
k
u,v), replacing each literal ¬Xu,v by

Even (X1
u,v, . . . , X

k
u,v), and then using the distributive rule and DeMorgan’s law to

express this set of k-DNFs as a set of clauses.

Because every clause of GOP (G) contains at most max(d, 3) literals, every k-DNF
in GOP (G)[Xu,v ← Odd(X1

u,v, . . . , X
k
u,v),¬Xu,v ← Even(X1

u,v, . . . , X
k
u,v)] contains at

most dk variables. When such a DNF is expressed as a set of clauses using the
distributive rule, the set of clauses has size at most 2O(dk) and each clause has width
at most dk. Therefore, GOP⊕k(G) contains at most 2O(dk)n3 clauses, each of width
at most dk.

For any graph G, the polynomial-size refutations of GOP (G) can be transformed
into Res(k + 1) refutations of GOP⊕(k+1)(G). On the other hand, Res(k) refutations
of GOP⊕(k+1)(G) require exponential size for certain graphs.

Theorem 9.2. Let k be given. There exist constants d > 0, εk > 0 and a family
of graphs G on n vertices (for n sufficiently large) with maximum degree d so that
Res(k) refutations of GOP⊕(k+1)(G) require size at least 2Ω(εkn).

9.1. The upper bounds. We build Res(k) refutations for GOP⊕k(G) from
resolution refutations of GOP (G).

Definition 9.3. Let k be a positive integer and let X1, . . . , Xn be propositional
variables. Let X1

1 , . . . , X
k
1 , X

1
2 , . . . , X

k
n be new variables. Let σ be the mapping given by

σ(Xi) = Even(X1
i , . . . , X

k
i ) and σ(¬Xi) = Odd(X1

i , . . . , X
k
i ). For a clause C =

∨
i li,

let σ(C) =
∨

i σ(li).

Lemma 9.4. Let k be a constant. There exists a constant c (dependent only on
k) so that for all clauses A ∨Xi and B ∨ ¬Xi in the variables X1, . . . , Xn, there is a
derivation of σ(A) ∨ σ(B) from {σ(A) ∨ σ(Xi), σ(B) ∨ σ(¬Xi)} of size ≤ c.

Proof. By the completeness of Res(k), there is a Res(k) refutation of the pair of
k-DNFs {Even(X1, . . . , Xk),Odd(X1, . . . , Xk)}. Let c be the minimum size of such
a refutation. Because σ(Xi) = Odd(X1

i , . . . , X
k
i ) and σ(¬Xi) = Even(X1

i , . . . , X
k
i ),

there is a derivation of σ(A)∨σ(B) from {σ(A)∨σ(Xi), σ(B)∨σ(¬Xi)} of size greater
than or equal to c.

Lemma 9.5. For each k, there exists a constant c so that for every G with
n vertices and degree at most d ≥ 3, GOP⊕k(G) has a Res(k) refutation of size
2O(dk)n3.

Proof. With the repeated application of AND-introduction inferences, σ(GOP (G))
can be derived from GOP⊕k(G) in 2O(dk)n3 many inferences. By Lemma 8.3, GOP (G)
has a refutation of size O(n3) so by Lemma 9.4, σ(GOP (G)) has a Res(k) refutation
of size O(cn3). Therefore, GOP⊕k(G) has a refutation of size 2O(dk)n3.

9.2. Random restrictions.

Definition 9.6. Let k ≥ 1 be given, and let G be a graph. The distribution
Pk+1(G) on partial assignments ρ to the variables of GOP⊕(k+1)(G) is given by the
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following experiment:
For each (u, v) ∈ V (G)2, choose i ∈ {1, . . . , k + 1} uniformly and independently.

For each j ∈ {1, . . . , k}, j 	= i, set Xj
u,v to 0 or 1, uniformly and independently.

Lemma 9.7. Let k be given; let F be a k-DNF in the variables of GOP⊕(k+1)(G).
There exist constants δ > 0, dependent only on k, so that Prρ∈Pk+1(G) [F �ρ 	= 1] ≤
2−δ·c(F )

Proof. We will say that two terms T and T ′ are underlying-variable-disjoint if
whenever Xi

u,v ∈ T and Xi′

u′,v′ ∈ T ′, we have that (u, v) 	= (u′, v′). Because F is a
k-DNF, it contains at least c(F )/k(k + 1) many underlying-variable-disjoint terms.
Each of these terms is satisfied with independent probability at least 1/4k (consider
setting each variable of a term in turn, the probability that a variable is set to 0
or 1 is always greater than or equal to 1/(k + 1 − (k − 1)) = 1/2). Therefore,
Prρ∈Pk+1(G) [F �ρ 	= 1] ≤ (1 − 1/4k)c(F )/k(k+1).

When we apply a random restriction from Pk+1(G) to GOP⊕(k+1)(G), we do
not necessarily obtain an instance of GOP (G). It is possible that some of the edge
variables will become inverted. However, inverting some variables does not affect the
width required for a resolution refutation, and we may apply Lemma 8.17.

Corollary 9.8. If G is a connected graph that is ε-neighborly, then for all k ≥ 1
and for all ρ ∈ Pk+1(G), GOP⊕(k+1)(G) �ρ requires width

(
1−3ε

6

)
n.

9.3. The lower bound.
Theorem 9.9. Let k be given. There exist constants d > 0, εk > 0 and a family

of graphs G on n vertices (for n sufficiently large) with maximum degree c so that
Res(k) refutations of GOP⊕(k+1)(G) require size at least 2Ω(εkn).

Proof. Let k be given. Set p = 15 ln 6/n. Consider a random graph selected
according to Gn,p; by Lemma 8.21, G is almost certainly 1

6 -neighborly, and by the
Chernoff bounds, it has maximum degree ≤ 2pn = 26 ln 6. Let G be a graph that is
both 1

6 -neighborly and has maximum degree ≤ 26 ln 6.

By Lemma 9.7, we have that for every k-DNF F , Prρ∈Pk+1(G) [F �ρ 	= 1] ≤ 2−δ·c(F ).
Now apply Corollary 3.4 with s = (n/12 − 1)/k, d = 1. For every k-DNF F ,

Prρ∈Pk+1(G) [h(F �ρ) > (n/12 − 1)/k] ≤ k2−2δk((n/12−1)/k)/4k

.

Because k is fixed and δ depends only on k, there exists εk so that

Prρ∈D [h(F �ρ) > (n/12 − 1)/k] < 2−εkn.

Suppose for the sake of contradiction that Γ is a Res(k) refutation of GOP⊕(k+1)

(G) of size less than 2εkn. By the union bound, with probability greater than 0, every
line F of Γ has h(F �ρ) ≤ (n/12 − 1)/k. By Corollary 5.2, GOP k+1(G) �ρ has a
resolution refutation of width at most n/12 − 1. On the other hand, because G is 1

6 -

neighborly, wR(GOP (G)) ≥
( 1−3(1/6)

6

)
n = n/12, and therefore w1R(GOP⊕(k+1)(G)

�ρ) ≥ wR(GOP (G)) ≥ n/12 − 1. This is a contradiction.

10. Conclusions and open problems. Switching with small restrictions seems
to be a promising technique for analyzing the power of bottom fan-in in proof and
circuit complexity. Our results could not have been obtained by switching with larger
restrictions. For example, the lower bounds for random w-CNFs could not be proved
using restrictions that set a constant fraction of the variables because some clause of
the hypothesis would be falsified with high probability. Also, this method is relatively
easy to apply because you do not have to re-prove the switching lemma for every lower
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bound, but only check that the restrictions in question are likely to satisfy k-DNFs
with high cover number.

However, switching with small restrictions still suffers from the limitations of
random restriction method. In particular, it seems ineffective against random 3-
CNFs and very weak pigeonhole principles. The only techniques for understanding
the refutation complexity of such CNFs seem specific to resolution [8, 7, 30, 31].
Understanding the refutation complexity of these principles in Res(k) is a necessary
step before understanding them in more powerful systems, and the Res(k) systems
might be simple enough for the development of new techniques.

With this in mind, we suggest the following open problems as particularly relevant:
(1) Do random 3-CNFs almost surely require exponential size refutations in Res(k)
for all k? (2) Does there exist a family of 3-CNFs that require exponential size
to refute in Res(k) but have (quasi-)polynomial-size proofs in Res(k + 1)? (3) Do
Res(2) refutations of PHPm

n require size exponential in n for all m? (4) Do there
exist polynomial-size depth two Frege refutations PHP 2n

n ? (5) Let 0 < ε ≤ 1/2.

Do there exist subexponential-size refutations for PHPn+n1−ε

n in Res(polylog(n))?
or even in depth two Frege? (6) Does there exist a family of CNFs that require
exponential-size refutations in Res(polylog(n)) but have (quasi-)polynomial-size depth
two Frege refutations? (7) For given ε < δ ≤ 1, does there exist a family of CNFs
that require exponential-size refutations in Res(nε) but have (quasi-)polynomial-size
Res(nδ) refutations?
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