
Algorithms and Complexity Results for #SAT and Bayesian Inference∗

Fahiem Bacchus Shannon Dalmao Toniann Pitassi
Department of Computer Science

University of Toronto
Toronto, Ontario

Canada, ON M5S 3G4
[fbacchus|sdalmao|toni]@cs.toronto.edu

Abstract
Bayesian inference is an important problem with numerous ap-

plications in probabilistic reasoning. Counting satisfying assign-
ments is a closely related problem of fundamental theoretical im-
portance. In this paper, we show that plain old DPLL equipped
with memoization (an algorithm we call #DPLLCache) can solve
both of these problems with time complexity that is at least as good
as state-of-the-art exact algorithms, and that it can also achieve
the best known time-space tradeoff. We then proceed to show that
there are instances where #DPLLCache can achieve an exponen-
tial speedup over existing algorithms.

1 Introduction
Bayesian inference (BAYES) is an important and well-

studied problem with numerous practical applications in
probabilistic reasoning [16]. #SAT is also a well-studied
problem that is of fundamental theoretical importance.
These two problems are known to be closely related. In
particular, the decision versions of both #SAT and BAYES

are #P-complete [21, 22], and there arenaturalpolynomial-
time reductions from each problem to the other [14].

A more direct relationship between these two problems
arises from the observation that they are both instances of
a more general “sum of products” problem (SUMPROD).1

Perhaps the most fundamental algorithm for SUMPROD

(developed in a general way in [11]) is based on the idea
of eliminating the variables of the problem one by one fol-
lowing some fixed order. This algorithm is called variable
elimination (VE), and it is the core notion in almost all state-
of-the-art exact algorithms for SUMPROD (and BAYES).

A simple observation is that the Davis-Putnam algorithm
(DP) for satisfiability [10] is an instance of variable elimi-
nation. This observation is interesting because the alternate
algorithm for satisfiability, the backtracking search DPLL

∗This research funded by governments of Ontario and Canada through
their NSERC and PREA programs.

1Dechter [11] casts BAYES as an instance of the more general prob-
lem SUMPROD. That #SAT is also an instance of SUMPROD is probably
known, but we have not seen it stated explicitly in the literature.

algorithm [9], is known to be in practicevastly superiorto
DP. For example, in experimental data [20], a version of
DP utilizing modern heuristics for computing good elimi-
nation orders performed much worse than DPLL based al-
gorithms. Its behavior on the “jhn” family of problems was
typical. This family contains 50 problems each with 100
variables, 34 of which are unsatisfiable. The fastest DPLL
based procedure is able to solveall 50 problems in 0.86
CPU seconds. The variable elimination DP algorithm was
unable to solve any of these problems, either running out of
memory, or exceeding a 10,000 CPU seconds time bound
oneachproblem.

This performance gap raises the question of whether or
not DPLL like algorithms can be used to solve SUMPROD

and BAYES. In this paper we provide some affirmative an-
swers to this question. In particular, we present new and
simple extensions of the DPLL procedure that allow it to
achieve the same performance guarantees as state-of-the-
art exact algorithms for BAYES, in terms of both time and
space. We also present instances where our new DPLL
based algorithms can achieve an exponential speedup over
existing algorithms. Besides these theoretical results, there
are also good reasons to believe that our DPLL based algo-
rithms have the potential to perform much better than their
worst case guarantees on problems that arise from real do-
mains. In other work, [2], we have investigated in more
depth the practical application of the ideas presented here
to the problem of BAYES, with very promising results.

An outline of the paper follows. In Section 2, we define
SUMPROD, #SAT, and BAYES, and review two core state-
of-the-art exact algorithms for BAYES. In Section 3, we
discuss DPLL-based algorithms with caching for solving
#SAT and SUMPROD and prove that our algorithms achieve
the best known time and space guarantees for these prob-
lems. In Section 4, we introduce a framework for compar-
ing nondeterministic algorithms for these problems. This
allows us to prove that #DPLLCache can efficiently sim-
ulate known exact algorithms, and can moreover achieve
exponential speedup on some instances.

1

2 Background
SUMPROD: In [11] it was show that BAYES and many
other problems are instances of a more general problem
that we will call SUMPROD (sum-of-products). The input
to SUMPROD is a pair(V ,F), whereF = {f1, . . . , fm} is
a set of functions andV = {X1, . . . , Xn} is a set of dis-
crete valued variables. The range of each function is fixed
depending on the problem (typically boolean or the reals).
Each functionfi has adomain setEi ⊂ V . The problem is
to compute

∑

X1

∑

X2
. . .

∑

Xn

∏m
i=1 fi(Ei): i.e., the sum

over all assignments of values to the variablesV of the prod-
uct of thefi evaluated at those assignments.
BAYES: BAYES is the problem of computing probabili-
ties in a Bayesian Network (BN). Developed by Pearl [16],
a Bayesian network is a triple(V , E,P) where(V , E) de-
scribes a directed acyclic graph, in which the nodesV =
{X1, . . . , Xn} represent discrete random variables, edges
represent direct correlations between the variables, and as-
sociated with each random variableXi is a conditional
probability table CPT (or function),fi(Xi, π(Xi)) ∈ P ,
that specifies the conditional distribution ofXi given as-
signments of values to its parentsπ(Xi) in (V , E). A BN
represents a joint distribution over the random variablesV
in which the probability of any assignment(x1, . . . , xn) to
the variables is given by the equationPr (x1, . . . , xn) =
∏n

i=1 fi(xi, π(xi)), wherefi(xi, π(xi)) is fi evaluated at
this particular assignment.

The generic BAYES problem is to compute the poste-
rior distribution of a variableXi given a particular assign-
ment to some of the other variablesα: i.e., Pr(Xi|α).
SinceXi has only a finite set ofk values, this problem
can be further reduced to that of computing thek values
Pr(Xi = dj ∧ α) and then normalizing them so that they
sum to 1.Pr(Xi = dj ∧ α) can be computed by making
all of the assignments inα as well asXi = dj , and then
summing out the other variables from the joint distribution
Pr(x1, . . . , xn). Given the above product decomposition of
Pr(x1, . . . , xn), this is equivalent to reducing the functions
fi ∈ P by setting the variables assigned inα andXi = dj ,
and then summing their product over the remaining vari-
ables; i.e., it is an instance of SUMPROD.
SAT and #SAT: Let V = 〈X1, X2, . . . , Xn〉 be a col-
lection of n Boolean variables, and letφ(V) be ak-CNF
Boolean formula on these variables withm clauses.SAT

asks, given a Boolean formulaφ(V) in k-CNF, does it have
a satisfying assignment? The#SAT search problem asks,
given a Boolean formulaφ(V) in k-CNF, how many of its
assignments are satisfying? #SAT can be expressed as an in-
stance of SUMPROD as follows. We view each clauseCi of
φ as being a functionfi on the variables inCi, Vars(Ci).
fi evaluates to 1 on a particular assignment to these vari-
ables iff the assignment satisfiesCi. Let (V ,F) be the in-
stance of SUMPROD whereF is the set of “clause” func-

tionsfi. Clearly the number of satisfying assignments forφ
is

∑

X1

∑

X2
. . .

∑

Xn

∏m
i=1 fi(Vars(Ci)).

Exact Algorithms for SUMPROD: Next we briefly re-
view two prominent exact algorithms for BAYES. Both of
these algorithms in fact solve the more general problem
SUMPROD and we present them in that general context.
These algorithms are in fact nondeterministic algorithms
that should be considered to be families of procedures, each
member of which is a particular deterministic realization.
Variable Elimination: The most fundamental algorithm
for BAYES is variable or bucket elimination (VE) [11].2

Given an instance(V ,F) of SUMPROD, we define itsun-
derlying hypergraph H. The vertices ofH are the vari-
ablesV , and its hyperedges are the domain setsEi of
the functionsfi. Variable elimination begins by choos-
ing an elimination ordering,π for the variablesV =
{X1, . . . , Xn}: Xπ(1), . . . , Xπ(n). (This is the nondeter-
ministic part of the computation.) The algorithm then pro-
ceeds inn phases. In the first phase, all functions involving
Xπ(1), FXπ(1)

, are collected together, and a new function,
F1 is computed by “summing out”Xπ(1). The new func-
tion sums the product of all the functions inFXπ(1)

over
all of Xπ(1)’s values. Specifically, for any assignmentα
to the other variables inFXπ(1)

, we have thatF1(α) =
∑

d∈vals(Xπ(1))

∏

f∈FXπ(1)
f(α, Xπ(1) = d). This induces

a new hypergraph,H1, where the hyperedges correspond-
ing to the set of functionsFXπ(1)

are replaced by a single
hyperedge corresponding to the new functionF1. The pro-
cess then continues to sum outXπ(2) from H1 and so on
until all n variables are summed out.

Davis-Putnam is an instance of variable elimination.
Consider applying variable elimination to the formulation
of SAT given above. For SAT, the new functionsFi com-
puted at each stage need only preserve whether or not the
product of the functions inFXπ(i)

is 0 or 1, the exact num-
ber of satisfying assignments need not remembered. This
can be accomplished by representing theFi symbolically
as a set of clauses. Furthermore, this set of clauses can be
computed by generating all clauses that can be obtained by
resolving onXπ(i), and then discarding all old clauses con-
tainingXπ(i). This resolution step corresponds to the sum-
ming out operation, and yields precisely the Davis-Putnam
(DP) algorithm for satisfiability.3

Branch Decompositions: The second algorithm for
SUMPROD requires the notion of a branch decomposition.

2In practice the junction-tree clustering (JT) algorithm [13] is the most
popular algorithm for BAYES. This algorithm can be reduced to a version
of VE that remembers some of its intermediate results and runs in the same
time and space as VE.

3Dechter and Rish [17] have previously made a connection between
DP and variable elimination. They were thus able to show, that DP runs in
time n2

O(w), wherew is the branch width of the underlying hypergraph
of the instance.

DEFINITION 1 (Robertson and Seymour [18]) LetH =
(V, E) be a hypergraph. Abranch decomposition for H
is a binary treeT such that each node ofT is labelled with
a subset ofV . There are|E| many leaves ofT , and their la-
bels are in one-to-one correspondence with the hyperedges
E. For any other noden in T , let A denote the union of the
labels of leaves in the subtree rooted atn, and letB denote
the union of the labels of the rest of the leaves. Then the
label forn is the set of all verticesv that are in the intersec-
tion of A andB. Thewidth of T is the maximum size of
any labelling inT . Thebranch width of H is the minimum
of the widths of all possible branch decompositions ofH.

Recursive Conditioning (RC and RC+): Recursive con-
ditioning [8] (RC) is another algorithm for SUMPROD. Let
(V ,F) be an instance of SUMPROD andH be its under-
lying hypergraph. Recursive conditioning is a divide and
conquer algorithm that instantiates the variables ofV so as
to break the problem into disjoint components. The origi-
nal version of RC, as specified in [8], begins with a branch
decompositionT of H with width w and heightd. (This is
the nondeterministic part of the computation.)T specifies a
recursive decomposition of the problem used by RC as fol-
lows. Letlabel(n) be the label of a node inT . Starting atr
the root ofT , RC computesF|α for all assignmentsα to the
variables inlabel (left(r)) ∩ label(right(r)), whereleft(r)
andright(r) are the left and right children ofr. Each suchα
renders the set of functions in the subtree belowleft(r) (i.e.,
the leaf labels) disjoint from the functions belowright(r).
By makingleft(r) andright(r) roots of their reduced sub-
trees, RC can then recursively sum out the product of the
functions in those subtrees. Since these functions are dis-
joint, the sums can be multiplied to obtain the sum of the
product of all of the functions belowr conditioned on the
instantiations inα. Repeating this process for each possible
α and summing yields the final answer.

A simple extension of RC is to computeF|α iteratively
rather than all at once. That is, rather than instantiate allof
the variables in the setL = label (left(r))∩ label (right(r))
at once, these variables can be instantiated one at a time,
andF reduced after each instantiation. We will call this
extended version of RC,RC+.

RC (RC+) has the attractive feature that it can achieve a
non-trivial space-time tradeoff, taking less time if it caches
its recursively computed values. The DPLL based algo-
rithms presented here share a number of features with RC;
they also reduce and decompose the input problem by mak-
ing instantiations, gain efficiency by caching, and achieve
a similar space-time tradeoff. However, our algorithms are
based on the paradigm of backtracking, rather than divide
and conquer. As a result, they are not limited to following
a static decomposition scheme specified by a fixed branch
decomposition. As we will see, the limitation of a static
decomposition scheme means that RC must perform expo-
nentially worse than our algorithms on some instances.

Complexity and Branch Width: All known algorithms
for BAYES and #SAT run in exponential-time in the worst
case. However, when the branch width of the underlying hy-
pergraph of the instance,w, is small, the above algorithms
are much more efficient. In fact, both algorithms run in time
and spacenO(1)2O(w).

The general problem of computing an optimal branch de-
composition (i.e., one that has width equal to the branch
width ofH) is NP-complete. However, Robertson and Sey-
mour [19] give an algorithm for computing a branch decom-
position with width that is within a factor of 2 of optimal
and that runs in timenO(1)2O(w), wherew is the branch
width of H. By first running thisdeterministicalgorithm
to compute a good branch decomposition one obtains a de-
terministic version of RC that runs in time2O(w log n) and
space that is only linear inn. This deterministic version will
run in time and spacenO(1)2O(w) if recursively computed
values are cached. Similarly the decomposition can be used
to obtain a deterministic version of VE that runs in time and
spacenO(1)2O(w).

3 Using DPLL for #SAT and SUMPROD

We will first present all of our DPLL-based algorithms as
algorithms for #SAT, and then later explain how to modify
them to solve SUMPROD.
DPLL and #DPLL: DPLL is a nondeterministic algo-
rithm for SAT, that has also been used to solve general-
izations of SAT, including #SAT [3]. The standard DPLL
algorithm for solving SAT is given in Table 1. We use the
notationφ|x=0/1 to denote the new CNF formula obtained
from reducingφ by setting the variablex to 0 or 1. It should
be clear that DPLL is a nondeterministic procedure that gen-
erates adecision treerepresenting the underlying CNF for-
mula. For solving SAT, the decision tree is traversed in a
depth-first manner until either a satisfying path is encoun-
tered, or until the whole tree is traversed (and all paths fal-
sify the formula).

A slight modification of DPLL allows it to count all sat-
isfying assignments as it traverses the decision tree. Table 1
gives the #DPLL algorithm for counting. The algorithm ac-
tually computes the probability of the set of satisfying as-
signments under the uniform distribution. Hence, the num-
ber of satisfying assignments can be obtained by multiply-
ing by2n, wheren is the number of variables inφ.

Known exponential worst-case time bounds for DPLL
also apply to #DPLL: for unsatisfiable formulas, both algo-
rithms have to traverse an entire decision tree before termi-
nating. This lower bound does not, however, help us dis-
criminate between algorithms sinceall known algorithms
for #SAT and BAYES take exponential-time in the worst-
case. Nevertheless, it is not hard to see, however, that un-
like VE and RC, #DPLL requires exponential time even
on instances with small branch width. To see this, con-

Table 1 Standard DPLL algorithm for SAT DPLL modified to count satisfying solutions

DPLL(φ)
if φ has no clauses, output “satisfiable” and HALT
else-ifφ does not contain an empty clause then

choose a variablex that appears inφ
Call DPLL(φ|x=0)
Call DPLL(φ|x=1)

return

#DPLL(φ)
if φ has no clauses, return 1
else-ifφ has an empty clause, return 0
else

Choose a variablex that appears inφ
return #DPLL(φ|x=0) ×

1
2

+ #DPLL(φ|x=1) ×
1
2

sider a 3CNF formula over3n variables consisting ofn dis-
joint clauses. This formula has branch width 3; however
any complete decision tree has exponential size. Therefore
#DPLL will require exponential time.

DPLL with caching: If one considers the above example
of applying #DPLL to disjoint sets of clauses, it is clear that
#DPLL’s poor performance arises from the fact that during
the course of its execution the same subproblem can be en-
countered and recomputed many times. One way to prevent
this duplication is to apply memoization. More specifically,
associated with every node in the DPLL tree is a formulaf
such that the subtree rooted at this node is trying to compute
the number of satisfying assignments tof . When perform-
ing a depth-first search of the tree, we can keep a cache that
contains all formulasf that have already been solved, and
upon hitting a new node of the tree we can avoid traversing
its subtree if the value of its corresponding formula is al-
ready stored in the cache. The above form of caching, which
we will call simple cachingcan be easily implemented as
shown in Table 2.4 On return the value of the input formula
has been stored in the cache, so a call to GetValue(φ) will
return the desired value.5

In addition to formulas stored in the cache there are also
the followingobviousformulas whose value is easy to com-
pute. (1) The empty formula{} containing no clauses has
value 1. (2) Any formula containing the empty clause has
value 0. Obvious formulas need not be stored in the cache,
rather their values can be computed as required. We say
that a formula isknownif its value is currently stored in the
cache or if it is obvious. We can generalize to sets of formu-
las as follows. IfΦ is a set of formulas we assign it a value
equal to the product of the values of the formulas in it. We
say thatΦ is knownif either (a) allφi ∈ Φ are known, or
(b) there exists aφi ∈ Φ whose value is known to be 0.

The following (low complexity) subroutines are used to
access the cache. (1) AddToCache(φ, r): adds to the cache
the fact that formulaφ has valuer. (2) InCache(Φ): takes as
input a set of formulasΦ and returns true ifΦ is known. (3)
GetValue(Φ): takes as input a setΦ of known formulas and
returns the value of the set (i.e., the product of the values of

4Simple caching has been utilized before in [15], but withouttheoreti-
cal analysis.

5The cached value is actually the probability ofφ, so we must multiply
it by 2

n to get the number of satisfying assignments.

its formulas).
Surprisingly, simple caching, does reasonably well as the

following theorem shows.

THEOREM 1 For solving#SAT on n variables, there is an
execution of #DPLLSimpleCache that runs in time bounded
by 2O(w log n) wherew is the underlying branch width of
the instance. Furthermore, the algorithm can be made de-
terministic with the same time guarantees.

Although the theorem shows that #DPLLSimpleCache
does fairly well, its performance is not quite as good as
the best BAYES algorithms (which run in timenO(1)2O(w)).
One of our main contributions is to show that a variant
of simple caching allows #DPLL to perform as well as
the best known algorithms. We call the new algorithm
#DPLLCache, and its implementation is given in Table 2.

The algorithm again creates a DPLL tree, caching inter-
mediate formulas as they are computed. However, the al-
gorithm takes as input formulas that have been decomposed
into disjoint components, and the intermediate formulas it
caches are similarly stored as disjoint components. Thus, if
we have already computed the number of satisfying assign-
ments forf and forg, wheref andg are over disjoint sets
of variables, we can later compute the number of satisfying
assignments forf ∧ g without further work.

The new algorithm uses the subroutines previously de-
fined along with two additional (low complexity) subrou-
tines. (4) ToComponents(φ): takes as input a formulaφ,
breaks it up into a set of minimal sized disjoint components,
and returns this set. (5) RemoveCachedComponents(Φ):
returns the input set of formulasΦ with all known formulas
removed. The input to #DPLLCache is a set of disjoint for-
mulas. That is, to run #DPLLCache on the formulaφ we
initially make the call #DPLLCache(ToComponents(φ)).
When the call #DPLLCache(Φ) returns, the cache will con-
tain sufficient information so that the call GetValue(Φ) will
return the desired value. We can obtain the following upper
bound on the runtime of #DPLLCache.

THEOREM 2 For solving#SAT onn variables, there exists
an execution of #DPLLCache that runs in time bounded by
nO(1)2O(w) wherew is the underlying branch width of the
instance. Furthermore, the algorithm can be made deter-
ministic with the same time guarantees.

Finally, there is a third variant of #DPLL with caching,

Table 2 #DPLL algorithm with simple caching #DPLL algorithm with component caching

#DPLLSimpleCache(φ)
If InCache({φ}), return
else

Pick a variablev in φ

φ− = φ|v=0

#DPLLSimpleCache(φ−)
φ+ = φ|v=1

#DPLLSimpleCache(φ+)

AddToCache
(

φ,
GetValue({φ−}) × 1

2

+ GetValue({φ+}) × 1
2

)

return

#DPLLCache(Φ)
If InCache(Φ), return
else

Φ = RemoveCachedComponents(Φ)
Pick a variablev in some componentφ ∈ Φ
Φ− = ToComponents(φ|v=0)
#DPLLCache(Φ − {φ} ∪ Φ−)
Φ+ = ToComponents(φ|v=1)
#DPLLCache(Φ − {φ} ∪ Φ+)

AddToCache
(

φ,
GetValue(Φ−) × 1

2

+ GetValue(Φ+) × 1
2

)

return

#DPLLSpace, that achieves a nontrivial time-space trade-
off. This algorithm is the natural variant of #DPLLCache,
modified to remove cached values so that only linear space
is consumed. The algorithm utilizes one additional subrou-
tine. (6) RemoveFromCache(Φ): takes as input a set of
formulas (a set of components) and removes all of them
from the cache. After splitting a component with a vari-
able instantiation and computing the value of each part,
#DPLLSpace cleans up the cache by removing all of these
sub-components, so that only the value of the whole com-
ponent is retained. Specifically, #DPLLSpace is exactly like
#DPLLCache, except that it calls RemoveFromCache(Φ−∪
Φ+) just before returning.

THEOREM 3 For solving#SAT on n variables, there is an
execution of #DPLLSpace that uses only space linear inn
and runs in time bounded by2O(w log n) wherew is the un-
derlying branch width of the instance. Furthermore, the al-
gorithm can be made deterministic with the same time and
space guarantees.

We now prove these theorems. For the proof of theo-
rems 1 and 2 we will need some common notation and def-
initions. Letf bek-CNF formula withn variables andm
clauses, letH be the underlying hypergraph associated with
f with branch widthw. By [8], there is a branch decom-
position ofH of depthO(log m) and widthO(w). Also
by [19], it is possible to find a branch decomposition,Tbd,
such thatTbd has branch widthO(w) and depthO(log m),
in time poly(n)2O(w). Thus our main goal for each of the
three theorems will be to prove the stated time and space
bounds for our DPLL-based procedures, when they are run
on a static ordering that is easily obtainable fromTbd.

Recall that the leaves ofTbd are in one-to-one correspon-
dence with the clauses off . We will number the vertices of
Tbd according to a depth-first preorder traversal ofTbd. For
a vertex numberedi, let fi denote the subformula off con-
sisting of the conjunction of all clauses corresponding to
the leaves of the tree rooted ati. Let Vars(fi) be the set of
variables in the (sub)formulafi. Recall that in a branch de-
composition the label of each vertexi, label(i), is the set of

variables in the intersection ofVars(fi) andVars(f−fi).
Each nodei in Tbd partitions the clauses off into three sets
of clauses:fi, fL

i , andfR
i , wherefL

i is the conjunction of
clauses at the leaves ofTbd to the left offi, andfR

i is the
conjunction of clauses at the leaves to the right offi.

All of our DPLL caching algorithms achieve the stated
run time bounds by querying the variables in a specific,
static order. That is, down any branch of the DPLL de-
cision tree,DT , the same variables are instantiated in the
same order. The variable ordering used inDT is deter-
mined by the depth-first pre-ordering of the vertices in the
branch decompositionTbd and by the labeling of these ver-
tices. Let(i, 1), . . . , (i, ji) denote the variables inlabel(i)
that do not appear in the label of an earlier vertex ofTbd.
Note that since the width ofTbd is w, ji ≤ w for all
i. Let 1, . . . , z be the sequence of vertex numbers ofTbd.
Then our DPLL algorithm will query the variables under-
lying f in the following static order:π = 〈(i1, 1), (i1, 2),
. . . , (i1, j1), (i2, 1), . . . , (i2, j2), . . . , (is, 1), . . . , (is, js)〉
i1 < i2 < . . . < is ≤ z, andj1, . . . , js ≤ w. Note that
for some verticesi of Tbd, nothing will be queried since all
of the variables in its label may have occurred in the labels
of earlier vertices. Our notation allows for these vertices
to be skipped. The underlying complete decision tree,DT ,
created by our DPLL algorithms on inputf is thus a tree
with j1 + j2 + . . . + js = n levels. The levels are grouped
into s layers, with theith layer consisting ofji levels. Note
that there are2l nodes at levell in DT , and we will identify
a particular node at levell by (l, ρ) whereρ is a particu-
lar assignment to the firstl variables in the ordering, or by
((q, r), ρ), where(q, r) is thelth pair in the orderingπ, and
ρ is as before.

The DPLL algorithms carry out a depth-first traversal
of DT , keeping formulas in the cache that have already
been solved along the way. (For #DPLLSimpleCache, the
formulas stored in the cache are of the formf |ρ, and for
#DPLLCache and #DPLLSpace, the formulas stored are
various components of ToComponents(f |ρ).) If the algo-
rithm ever hits a node where the formula to be computed
has already been solved, it can avoid that computation, and

thus it does not do a complete depth-first search ofDT but
rather it does a depth-first search of aprunedversion ofDT .
For our theorems, we want to get an upper bound on the size
of the pruned tree actually searched by the algorithm.

Proof of Theorem 1: We want to show that the size of
the subtree ofDT searched by #DPLLSimpleCache is at
most2O(w log n). When backtracking from a particular node
(l, ρ) = ((q, r), ρ) at levell in DT , the formula put in the
cache, if it is not already known, is of the formf |ρ. (Recall
ρ is a setting to the firstl variables.) However, we will see
that although there are2l different ways to setρ, the number
of distinct formulas of this form is actually much smaller
than2l. Consider a partial assignment,ρ, where we have
set all variables up to and including(q, r), for someq ≤ is
and somer ≤ jq. The number of variables set byρ (the
lengthof ρ) is j1 + j2 + . . . + jq−1 + r.

Let ρ− denote the partial assignment that is consistent
with ρ where only the variables inρ that came from the
labels of the vertices on the path from the root ofTbd up
to and including vertexq are set. The idea is thatρ− is a
reduction ofρ, whereρ− has removed the assignments ofρ
that are irrelevant tofq andfR

q .
Consider what happens when the DPLL algorithm

reaches a particular node((q, r), ρ) at levell of DT . At that
point the algorithm is solving the subproblemf |ρ, and thus,
once we backtrack to this node,f |ρ = fL

q |ρ∧fq|ρ∧fR
q |ρ is

placed in the cache, if it is not already known. Note that all
variables in the subformulafL

q are set byρ, and thus either
fL

q |ρ = 0, in which case nothing new is put in the cache, or
fL

q |ρ = 1 in which casef |ρ = fq|ρ∧fR
q |ρ = fq|ρ−∧fR

q |ρ−

is put in the cache. Thus, the set ofdistinct subformu-
las placed in the cache at levell = (q, r) is at most the
set of all subformulas of the formfq|ρ− ∧ fR

q |ρ− , where
ρ− is a setting to all variables in the labels from the root
to vertexq, plus the variables(q, 1), ..., (q, r). There are
at mostd · w such variables, whereq has depthd in Tbd

(each label has at mostw variables since this is the width
of Tbd). Hence the total number of suchρ−’s is at most
2(w·d). This implies that the number of subtrees inDT at
levell+1 that are actually traversed by #DPLLSimpleCache
is at most2 · 2w·d = 2O(w·d), whered is the depth of node
q in Tbd. Let t be the number of nodes inDT that are actu-
ally traversed by #DPLLSimpleCache. Then,t is at most
n2O(w·log n), since t is the sum of the number of nodes
visited at every level ofDT and for each nodeq in Tbd

d ∈ O(log m) = O(log n).
Accounting for the time to search the cache, the over-

all runtime of #DPLLSimpleCache is at mostt2, where
againt is the number of nodes inDT that are traversed
by the algorithm. Thus, #DPLLSimpleCache runs in time
(n2O(w·log n))2 = 2O(w·log n).

Proof of Theorem 2: We prove the theorem by placing
a bound on the number of times #DPLLCache can branch

on any variablexl. Using the notation specified above,xl

corresponds to some pair(q, r) in the orderingπ used by
#DPLLCache. That is,xl is the r’th new variable in the
label of vertexq of the branch decompositionTbd.

When #DPLLCache utilizes the static orderingπ, it
branches on, or queries, the variables according to that or-
der, always reducing the component containing the vari-
able xi that is currently due to be queried. However,
since previously cached components are always removed
(by RemoveCachedComponents in the algorithm), it can be
that when it is variablexi’s turn to be queried, there is no
component among the active components that containsxi.
In this case, #DPLLCache simply moves on to the next vari-
able in the ordering, continuing to advance until it finds the
first variable that does appear in some active component. It
will then branch on that variable reducing the component it
appears in, leaving the other components unaltered.

This implies that at any time when #DPLLCache selects
xl as the variable to next branch on it must be the case that
(1) xl appears in an active component. In particular the
value of this component is not already in the cache. And (2)
no variable prior toxl in the orderingπ appears in an active
component. All of these variables have either been assigned
a particular value by previous recursive invocations, or the
component they appeared in has been removed because its
value was already in the cache.

In the branch decompositionTbd let p be q’s parent (q
must have a parent since the root has an empty label). We
claim that whenever #DPLLCache selectsxl as the next
variable to branch on, the active component containingxl

must be a component in the reduction offp whose form is
determined solely by the settings of the variables inp and
ther variables ofq that have already been set. If this is the
case, then there can be at most2(w+r) = 2O(w) different
components thatxl can appear in, and hence #DPLLCache
can branch onxl at most2O(w) times as each time one more
of these components gets stored in the cache.

Now we prove the claim. The label ofq consists of vari-
ables appearing inp’s label and variables appearing in the
label of q’s sibling. Since all of the variables inlabel(p)
have been set,q and its sibling must now have an identical
set of unqueried variables in their labels. Hence,q must be
the left child ofp as by the time the right child is visited in
the ordering,xl will have already been queried. Thus, at the
time xl is queried,fp will have been affected only by the
current setting oflabel (p) (as these are the only variables it
shares with the rest of the formula) and the firstr queried
variables fromlabel (q). That is,fp can be in at most2(w+r)

different configurations, and thus the component containing
xl can also be in at most this many different configurations.

Thus withn variables we obtain a bound on the number
of branches in the decision tree explored by #DPLLCache
of n2O(w). As in the proof of the previous theorem,

the overall runtime is at most quadratic in the num-
ber of branches traversed, to give the claimed bound of
nO(1)2O(w).

Proof of Theorem 3: For this proof, it will be more nat-
ural to work with atree decompositionrather than a branch
decomposition. Unlike branch width, tree width is defined
over ordinary graphs. However, hypergraphs can reduced to
ordinary graphs by replacing each hyperedge with a clique
of edges.

DEFINITION 2 LetH = (V, E) be a hypergraph. Then the
moralized graph or primal graph,GH = (V ′, E′) corre-
sponding toH is as follows. First,V ′ = V and secondly,
an edge(i, j) is in E′ if and only if i andj occur together
in some edgeE of H.

DEFINITION 3 LetG = (V, E) be an undirected graph. A
tree decomposition of G is a binary treeT such that each
node ofT is labelled with a subset ofV in the following
way. First, for every edge(i, j) ∈ E, some leaf node inT
must have a label that contains bothi andj. Secondly, given
labels for the leaf nodes every internal noden containsv ∈
V in its label if and only ifn is on a path between two
leaf nodesl1 andl2 whose labels containv. The width of
T is the maximum size of any labelling inT , and thetree
width of G is the minimum of the widths of all possible tree
decompositions ofG.

Branch and tree width are essentially interchangeable.

LEMMA 4 (ROBERTSON ANDSEYMOUR [18]) Let H be
a hypergraph and letGH be the corresponding moralized
graph. Then the branch width ofH is at most the tree width
of GH plus 1, and the tree width ofGH is at most 2 times
the branch width ofH.

Let f be a k-CNF formula with n variables andm
clauses and letH be the underlying hypergraph associ-
ated with f . We begin with a tree decompositionTtd

of depthO(log m) and widthO(w) (computable in time
nO(1)2O(w)). We can assume without loss of generality that
the leaves ofTtd are in one-to-one correspondence with the
clauses off . Each nodei in Ttd partitionsf into three dis-
joint sets of clauses:fi, the conjunction of clauses at the
leaves of the subtree ofTtd rooted ati, fL

i , the conjunc-
tion of clauses of the leaves ofTtd to the left of fi, and
fR

i , the conjunction of clauses of the leaves ofTtd to the
right of fi. #DPLLSpace will query the variables associ-
ated with the labels ofTtd according to the depth-first pre-
order traversal. Let the variables inlabel (i) not appearing
in an earlier label on the path from the root to nodei be de-
noted byS(i) = (i, 1), . . . , (i, ji). If i is a non-leaf node
with j andk being its left and right children, then the vari-
ables inS(i) are exactly the variables that occur in bothfj

andfk but that do not occur outside offi. If we let c be
the total number of nodes inTtd, then #DPLLSpace will
query the variables underlyingf in the following static or-

der:S(1), S(2), . . . , S(c), where someS(i) may be empty.
The underlying decision tree,DT , created by #DPLLSpace
is a complete tree withn levels. As before we will identify a
particular nodes at levell of DT by s = (l, ρ) whereρ is a
particular assignment to the firstl variables in the ordering,
or bys = ((q, r), ρ) (therth variable inS(q)).

#DPLLSpace carries out a depth-first traversal ofDT ,
storing the components of formulas in the cache as they
are solved. However, now components of formulas are also
popped from the cache so that the total space ever utilized is
linear. If the algorithm hits a node where all of the compo-
nents of the formula to be computed are known, it can avoid
traversing the subtree rooted at that node. Thus it searches
a pruned version ofDT .

During the (pruned) depth-first traversal ofDT , each
edge that is traversed is traversed twice, once in each di-
rection. At a given timet in the traversal, letE = E1 ∪ E2

be the set of edges that have been traversed, whereE1 are
the edges that have only been traversed in the forward direc-
tion, andE2 are the edges that have been traversed in both
directions. The edges inE1 constitute a partial pathp start-
ing at the root ofDT . Each edge inp is labelled by either
0 or 1. Letp1, . . . , pk be the set of all subpaths ofp (be-
ginning at the root) that end in a 1-edge. Letρ1, . . . , ρk be
subrestrictions corresponding top1, . . . , pk except that the
last variable that was originally assigned a 1 is now assigned
a 0. For example, ifp is (x1 = 0, x3 = 1, x4 = 0, x5 =
1, x6 = 0, x2 = 0), thenρ1 = (x1 = 0, x3 = 0), andρ2 =
(x1 = 0, x3 = 1, x4 = 0, x5 = 0). Then the information
that is in the cache at timet contains ToComponents(f |ρi

),
i ≤ k.

For a nodeq of Ttd and corresponding subformulafq,
thecontextof fq is a set of variables defined as follows. Let
(q1, . . . , qd) denote the vertices inTtd on the path from the
root toq (excludingq itself). Then the context offq is the
setContext(fq) = S(q1)∪S(q2)∪ . . .∪S(qd). Intuitively,
the context offq is the set of all variables that are queried
at nodes that lie along the path toq. Note that when we
reach levell = (q, 1) in DT , where the first variable of
S(q) is queried, we have already queried many variables,
including all the variables inContext(fq). Thus the set of
all variables queried up to levell = (q, 1) can be partitioned
into two groups relative tofq: the irrelevant variables, and
the setContext(fq) of relevant variables. We claim that at
an arbitrary levell = (q, r) in DT , the only nodes at levell
that are actually traversed are those nodes((q, r), ρ) where
all irrelevant variables inρ (with respect tofq) are set to 0.
The total number of such nodes at levell = (q, r) is at most
2|Context(fq)|+r which is at most2w log n. Since this will be
true for all levels, the total number of nodes inDT that are
traversed is bounded byn2w log n. Thus, all that remains is
to prove our claim.

Consider some nodes = ((q, r), α) in DT . That is,
α = α1α2 . . . αq−1b1 . . . br−1, where for eachi, αi is an
assignment to the variables inS(i), andb1 . . . br−1 is an as-
signment to the firstr− 1 variables inS(q). Let the context
of fq beS(q1) ∪ . . . ∪ S(qd), d ≤ log n. Now suppose that
α assigns a 1 to some non-context (irrelevant) variable, and
say the first such assignment occurs atαu

t , thetth variable
in αu, u ≤ q− 1. We want to show that the algorithm never
traversess.

Associated withα is a partial path inDT ; we will also
call this partial pathα. Consider the subpath/subassignment
p of α up to and includingαu

t = 1. If α is traversed,
then we start by traversingp. Since the last bit ofp is 1
(i.e., αu

t = 1) when we get to this point, we have stored
in the cache ToComponents(f |ρ) whereρ is exactly likep
except that the last bit,αu

t , is zero. Letj be the first node in
q1, q2, . . . qd with the property that the set of variablesS(j)
are not queried inp. (On the path toq in Ttd, j is the first
node along this path such that the variables inS(j) are not
queried inp.) Then ToComponents(f |ρ) consists of three
parts: (a) ToComponents(fL

j |ρ), (b) ToComponents(fj |ρ),
and (c) ToComponents(fR

j |ρ).
Now consider the pathp′ that extendsp on the way tos

in DT , wherep′ is the shortest subpath ofα where all of
the variablesS(i) for i < j have been queried. The restric-
tion corresponding top′ is a refinement ofp where all vari-
ables inS(1) ∪ S(2) ∪ . . . S(j − 1) are set. Since we have
already set everything that occurs beforej, we will only
go beyondp′ if some component of ToComponents(f |p′)
is not already in the cache. ToComponents(f |p′) con-
sists of three parts: (a) ToComponents(fL

j |p′), (b)
ToComponents(fj |p′), and (c) ToComponents(fR

j |p′). Be-
cause we have set everything that occurs beforej, all for-
mulas in (a) will be known. Sincep′ andρ agree on all
variables that are relevant tofj, ToComponents(fj |p′) =
ToComponents(fj |ρ) and hence these formulas in (b) in the
cache. Similarly all formulas in (c) are in the cache since
ToComponents(fR

j |p′) = ToComponents(fR
j |ρ). Thus all

components of ToComponents(f |p′) are in the cache, and
hence we have shown that we never traverse beyondp′ and
hence never traverses. Therefore the total number of nodes
traversed at any levell = (q, r) is at most2wd, whered
is the depth ofq in Ttd, as desired. This yields an overall
runtime of2O(w log n).

Using DPLL algorithms for BAYES: The DPLL al-
gorithms described in this section can be easily mod-
ified to solve SUMPROD, and thus are able to solve
BAYES directly. For SUMPROD, we want to com-
pute

∑

X1
. . .

∑

Xn

∏m
j=1 fj(Ej). DPLL chooses a

variable, Xi, and for each valued of Xi it recur-
sively solves the reduced problemF|Xi=d. (Hence,
instead of a binary decision tree it builds ak-ary
tree). The reduced problemF|Xi=d is to com-

pute
∑

X1
. . .

∑

Xi−1

∑

Xi+1
. . .

∑

Xm

∏m
j=1 fj(Ej)|Xi=d,

where fj(Ej)|Xi=d is Fj reduced by settingXi = d.
#DPLLSimpleCache caches the reduced problem to avoid
recomputing it, and #DPLLCache caches the solution to
components of the reduced problem. It is not hard to
show that the above three theorems continue to hold for
#DPLL, #DPLLCache, and #DPLLSpace modified to solve
SUMPROD.

4 A Framework for comparing BAYES and
#SAT algorithms

The algorithms in the literature for BAYES as well as our
new DPLL-based algorithms, are actuallynondeterminis-
tic algorithms, or families of algorithms. In a seminal pa-
per, Cook and Reckhow [7] definedpropositional proof sys-
temswhich give a way to classify families of algorithms for
coNP-complete problems. In the same spirit, we can de-
fine propositional proof systems forany function, not just
for the coNP-complete predicates, thus making it possible
to compare different families of algorithms for BAYES and
#SAT. Moreover, we extend the original Cook-Reckhow
definition so thattime, spaceandnondeterministic bitsare
explicit computational resources, rather than justtime. This
is motivated by theoretical as well as by practical consider-
ations: real systems for BAYES can often run in time that is
not polynomially bounded, but it is important that the space
be kept nearly linear.

DEFINITION 4 Let f be a function from{0, 1}n to N . A
proof systemA for f is a uniform algorithmV (x, y) where
x is an instance off andy is an additional binary advice
string (or proof). V will be implemented by a 2-tape ma-
chine, where the input tape is read-once and the other work
tape is unrestricted. (This detail is necessary in order to al-
low V to run in time that is linear inx.) Further, the follow-
ing conditions are satisfied: (1) for allx, y pairs,V (x, y)
either outputsf(x) or V (x, y) outputs “nil”; (2) for all x
there exists ay such thatV (x, y) outputsf(x); (3) V (x, y)
runs in time bounded bytA(|x|, |y|) and space bounded by
sA(|x|, |y|).

DEFINITION 5 Letf be a function from{0, 1}n to N . Let
A andB be two proof systems forf as defined above, with
time complexitiestA and tB and space complexitiessA

andsB respectively. ThenA ptime-lspace simulatesB if
there exists a functionφ(x, y) such that: (1)φ(x, y) is com-
putable by a deterministic machine that runs in output poly-
nomial time, i.e., the runtime is a polynomial function ofx
andy and the output; (2) for allx, y, tA(|x|, |φ(x, y)|) is
polynomial intB(|x|, |y|); (3) for all x, y, sA(|x|, |φ(x, y)|)
is linear insB(|x|, |y|). We say thatA ptime simulatesB if
conditions (1) and (2) above hold, but not necessarily con-
dition (3).

Our definitions are consistent with the usual definitions
for UNSAT. By decoupling the number of bits needed to

write down the proof and the verification time, we can for
example, distinguish between the search spaces for ordered
resolution versus resolution forUNSAT. In the former
case, the proof is simply an ordering of variables and the
verifier runs in time that is not necessarily polynomial in
the size of the proof; in the latter case, the proof is the en-
tire resolution proof but now the verifier is polynomial time.

5 Polynomial-simulation results
THEOREM 5 RC ptime simulates VE.

The proof of the above theorem is implicit in [8].

THEOREM 6 #DPLLCache ptime simulates RC, RC+ and
VE. #DPLLSpace ptime-lspace simulates linear-space
bounded RC.

The idea behind the proof is as follows. RC when run on
a particular branch decomposition can be simulated in poly-
nomial time by #DPLLCache searching an ordered DPLL
tree in which the variables are queried in the order given by
a depth-first preorder traversal of the branch decomposition.
A direct simulation can also be shown, where each execu-
tion step of RC with caching (RC) on(x, y) is simulated
by #DPLLCache (#DPLLSpace) on(x, y′). Thus it can
be shown that #DPLLCache, restricted tostatic orderings
polynomially simulates RC with caching (#DPLLSpace
polynomially simulates RC).

6 Lower bounds
THEOREM 7 Neither RC, VE, nor RC+ ptime simulates
#DPLLCache. Moreover, neither RC, VE, nor RC+ ptime
simulates #DPLL.

To prove this theorem we first observe that from a result
of Johannsen [12], #DPLLCache and #DPLL can solve the
negation of the propositional string-of-pearls principle[5]
in time nO(log n), when run with adynamicvariable order-
ing. This immediately gives the above result for VE and
for RC, since the branch width of these problems isO(n).
However, the domination of RC on these problems is not so
interesting, since as we pointed out in Section 2, there are
some obvious ways to improve RC. The more substantial
result, that RC+, the improved version of RC, is also domi-
nated on these problem, requires a non-trivial argument.

We continue to use the string-of-pearls principle, intro-
duced in in [5]. From a bag ofm pearls, which are colored
red and blue,n pearls are chosen and placed on a string.
The string-of-pearls principle says that if the first pearl in
the string is red and the last one is blue, then there must be
a red-blue or blue-red pair of pearls side-by-side somewhere
on the string. The negation of the principle,SPm,n, is ex-
pressed with variablespi,j andpj for i ∈ [n] andj ∈ [m]
wherepi,j represents whether pearlj is mapped to vertexi
on the string, andpj represents whether pearlj is colored
blue (pj = 0) or red (pj = 1). The clauses ofSPm,n are as
follows. (1)∨m

j=1pi,j , i ∈ [n]. (2) (¬pi,j ∨ ¬pi,j′), i ∈ [n]

j ∈ [m] ,j′ ∈ [m], j 6= j′. (3) (¬pi,j ∨ ¬pi′,j), i ∈ [n],
i′ ∈ [n], i 6= i′, j ∈ [m]. (4) (¬p1,j∨pj) and(¬pn,j∨¬pj),
j ∈ [m]. (5) (¬pi,j ∨ ¬pi+1,j′ ∨ ¬pj ∨ pj′), 1 ≤ i < n,
j ∈ [m], j′ ∈ [m], j 6= j′. (6)(¬pi,j∨¬pi+1,j′ ∨pj∨¬pj′),
1 ≤ i < n, j ∈ [m], j′ ∈ [m], j 6= j′.

Johannsen [12] shows thatSPn,n has quasipolynomial
size tree Resolution proofs. It follows that #DPLLCache
as well as #DPLL can also solveSPn,n in quasipolynomial
time.

LEMMA 8 SPn,n can be solved in timenO(log n) by
#DPLLCache and by #DPLL.

THEOREM 9 Let ε = 1/5. Any VE or RC or ordered
#DPLLCache algorithm forSPn,n requires time2nε

.

Proof: It suffices to prove that #DPLLCache under any
static ordering requires time2nε

for SPm,n, m = n. By a
static ordering, we mean that the variables are queried ac-
cording to this ordering as long as they are mentioned in the
current formula. That is, we allow a variable to be skipped
over if it is irrelevant to the formula currently under consid-
eration. We will visualizeSPn,n as a bipartite graph, with
n vertices on the left, andn pearls on the right. There is a
pearl variablepj corresponding to each of then pearls, and
an edge variablepi,j for every vertex-pearl pair. (Note that
there are no variables corresponding to the vertices but we
will still refer to them.)

Fix a particular total ordering of the underlyingn2 + n
variables,θ1, θ2, . . . , θl. For a pearlj, let fanint(j) equal
the number of edge variablespk,j incident with pearlj that
are one of the firstt variables queried. Similarly, for a ver-
tex i, let fanint(i) equal the number of edge variablespi,k

incident with vertexi that are one of the firstt variables
queried. For a set of pearlsS, let fanint(S) equal the num-
ber of edge variablespk,j incident with some pearlj ∈ S
that are one of the firstt variables queried. Similarly for a
set of verticesS, fanint(S) equals the number of edge vari-
ablespi,k incident with some vertexi ∈ S that are one of
the firstt variables queried. Letedgest(j) andedgest(S)
be defined similarly although now it is the set of such edges
rather than the number of such edges. It should be clear
from the context whether the domain objects are pearls or
vertices.

We use a simple procedure, based on the particular or-
dering of the variables, for marking each pearl with either
a C or with anF as follows. In this procedure, a pearl may
at some point be marked with aC and then later overwrit-
ten with anF; however, once a pearl is marked with anF, it
remains anF for the duration of the procedure. If a pearlj
is marked with aC at some particular point in time,t, this
means that at this point, the color of the pearl has already
been queried, andfanint(j) is less thannδ, δ = 2/5. If a
pearlj is marked with anF at some particular point in time
t, it means that at this pointfanint(j) is at leastnδ. (The

color of j may or may not have been queried.) If a pearlj
is unmarked at timet, this means that its color has not yet
been queried, andfanint(j) is less thannδ.

For l from 1 ton2 + n, we do the following. If thelth

variable queried is a pearl variable (θl = pj for somej),
and less thannδ edgespi,j incident toj have been queried
so far, then markpj with a C. Otherwise, if thelth variable
queried is an edge variable (θl = pi,j) andfanin l(j) ≥ nδ,
then mark pearlj with anF (if not already marked with an
F). Otherwise, leave pearlj unmarked.

Eventually every pearl will become markedF. Consider
the first timet∗ where we have either a lot ofC’s, or a lot
of F’s. More precisely, lett∗ be the first time where either
there are exactlynε C’s (and less than this manyF’s) or
where there are exactlynε F’s (and less than this manyC’s.)
If exactly nε C’s occurs first, then we will call this case
(a). Extendt∗ to t∗a as follows. Letθt∗+1, . . . , θt∗+c be the
largest segment of variables that are all pearl variablespj

such thatj is already marked with anF. Thent∗a = t∗ + c.
Notice that the query immediately followingθt∗a is either
a pearl variablepj that is currently unmarked, or an edge
variable. On the other hand, if exactlynε F’s occurs first,
then we will call this case (b). Again, extendt∗ to t∗b to
ensure that the query immediately followingθt∗

b
is either a

pearl variablepj that is currently unmarked, or is an edge
variable.

The intuition is that in case (a) (a lot ofC’s), a lot
of pearls are colored prematurely–that is, before we know
what position they are mapped to–and hence a lot of queries
must be asked. For case (b) (a lot ofF’s), a lot of edge vari-
ables are queried thus again a lot of queries will be asked.
We now proceed to prove this formally.

We begin with some notation and definitions. Letf =
SPn,n, and letVars(f) denote the set of all variables un-
derlyingf . A restrictionρ is a partial assignment of some
of the variables underlyingf to either0 or to1. If a variable
x is unassigned byρ, we denote this byρ(x) = ∗. Let T
be the DPLL tree based on the variable orderingθ. That is,
T is a decision tree where variableθi is queried at leveli
of T . Recall that corresponding to each nodev of T is a
formulaf |ρ whereρ is the restriction corresponding to the
partial path from the root ofT to v. The treeT is traversed
by a depth-first search. For each vertexv with correspond-
ing pathp that is traversed, we check to see iff |p is already
in the cache. If it is, then there is no need to traverse the
subtree rooted belowv. If it is not yet in the cache, then we
traverse the left subtree ofv, followed by the right subtree
of v. After both subtrees have been traversed, we then pop
back up tov, and storef |p in the cache. This induces an
ordering on the vertices (and corresponding paths) ofT that
are traversed—whenever we pop back up to a vertexv (and
thus, we can store its value in the cache), we putv (p) at the
end of the current order.

LEMMA 10 Letf beSPn,n and letπ be a static ordering of
the variables. Letρ be a partial restriction of the variables.
Then the runtime of #DPLLCache on(f, ρ) is not less than
the runtime of #DPLLCache on(f |ρ, π′), whereπ′ is the
ordering of the unassigned variables consistent withπ.

LEMMA 11 For any restrictionρ, if f |ρ 6= 0 andρ(pi,j) =
∗, thenpi,j occurs inf |ρ.

Proof: Consider the clauseCi = (pi,1 ∨ . . . ∨ pi,m) in
f . Sincepi,j is in this clause, ifpi,j does not occur inf |ρ,
thenCi|ρ must equal1. Thus there existsj′ 6= j such that
ρ(pi,j′) = 1. But then the clause(¬pi,j ∨¬pi,j′)|ρ = ¬pi,j

and thuspi,j does not disappear fromf |ρ.

COROLLARY 12 Let θ be a total ordering ofVars(f).
Let ρ, ρ′ be partial restrictions such thatρ sets exactly
θ1, . . . , θq andρ′ sets exactlyθ1, . . . , θq′ , q′ < q. Suppose
that there existsθk = pi,j such thatρ setsθk butρ′(θk) = ∗.
Then eitherf |ρ = 0 or f |ρ′ = 0 or f |ρ 6= f |ρ′ .

Case (a). Let θ be a total ordering toVars(f) such that
case (a) holds. LetPC denote the set of exactlynε pearls
that are markedC and letPF denote the set of less thannε

pearls (disjoint fromPC) that are markedF. Note that (the
color of) all pearls inPC have been queried by timet∗a; the
color of the pearls inPF may be queried by timet∗a, and the
color of all pearls inP − PC − PF have not been queried
by timet∗a. Note further that the total number of edgespi,j

that have been queried is at mostnε+δ + n1+ε ≤ 2n1+ε.
We will define a partial restriction,Ma, to all but2nε

of
the variables inθ1, . . . , θt∗a as follows. For eachj ∈ PF , fix
a one-to-one mapping fromPF to [n] such thatrange(j) ∈
edgest∗a(j) for eachj. For eachj ∈ PC , for any variable
pi,j queried inθ1, . . . θt∗a , setpi,j to 0. For any vertexi such
that all variablespi,j have been queried inθ1, . . . , θt∗a , map
i to exactly one pearlj such thatpj ∈ P −PC −PF . There
are at most2nε suchi. (This can be arbitrary as long as it is
consistent with the one-to-one mapping already defined on
PF .) For all remainingpj ∈ P − PC − PF that have not
yet been mapped to, set all queried variablespi,j to 0. For
all pearlspj in PF that have been queried inθ1, . . . , θt∗a ,
assign a fixed color to each such pearl (all Red or all Blue)
so that the smallest Red/Blue gap is as large as possible.
Note that the gap will be of size at leastn1−ε. Ma sets all
variables inθ1, . . . θt∗a except for the variablespj, j ∈ PC .
Since there arenε such variables, the number of restrictions
ρ to θ1, . . . , θt∗a consistent withMa is exactly2nε

. Let S
denote this set of restrictions.

Let f ′ = f |Ma
and letθ′ be be the ordering on the

unassigned variables consistent withθ. (The set of unas-
signed variables is:pj , for j ∈ PC , plus all variables in
θk, k > t∗a.) Let T ′ be the DPLL tree corresponding to
θ′ for solving f ′. By Lemma 10, it suffices to show that
#DPLLCache when run on inputsf ′ andT ′, takes time at
least2nε

.

Note that the firstnε variables queried inT ′ are the pearl
variables inPC , and thus the set of all2nε

paths of height
exactlynε in T ′ correspond to the setS of all possible set-
tings to these variables. We want to show that for each ver-
tex v of heightnε in T ′ (corresponding to each of the2nε

settings of all variables inPC), thatv must be traversed by
#DPLLCache, and thus the runtime is at least2nε

.
Fix such a vertexv, and corresponding pathρ ∈ S. If

v is not traversed, then there is someρ′ ⊆ ρ and someσ
such thatσ occurs beforeρ′ in the ordering, and such that
f ′|σ = f ′|ρ′ . We want to show that this cannot happen.
There are several cases to consider.

1a. Suppose that|σ| ≤ nε andσ 6= ρ′. Then bothρ′ and
σ are partial assignments to some of the variables in
PC that are inconsistent with one another. It is easy to
check that in this case,f ′|ρ′ 6= f ′|σ.

2a. Suppose that|σ| > nε, and the(nε + 1)st variable
set byσ is an edge variablepi,j . Because|ρ′| ≤ nε,
ρ′(pi,j) = ∗. By Corollary 12, it follows thatf ′|ρ′ 6=
f ′|σ.

3a. Suppose that|σ| > nε and the(nε + 1)st variable set
by σ is a pearl variablepj . (Again, we know that
pj is unset byρ′.) Since this is case (a), we can as-
sume thatpj ∈ P − PC − PF . Call a vertexi bad
if P − PF − PC ⊂ edgest∗a(i). If i is bad, then
fanint∗a

(i) is greater thann − 2nε ≥ n/2. Since the
total number of edges queried is at most2n1+ε, if fol-
lows that the number of bad vertices is at most4nε.
This implies that we can find a pairi, i + 1 of ver-
tices and a pearlj′ such that: (1)pi,j is not queried in
θ1, . . . , θt∗a ; (2)pi+1,j′ is not queried inθ1, . . . , θt∗a ; (3)
pj′ is in P −PC −PF and thuspj′ is also not queried.
Thus the clause(¬pi,j ∨¬pj ∨¬pi+1,j′ ∨ pj′)|ρ′ does
not disappear or shrink inf ′|ρ′ , and thusf ′|ρ′ 6= f ′|σ.

Case (b). Let θ be a total ordering toVars(f) such that
case (b) holds. Now letPC denote the set of less thannε

pearls markedC and letPF denote the set of exactlynε

pearls markedF.
We define a partial restrictionMb to all but 2nε

of the
variables inθ1, . . . , θt∗ as follows. Call a vertexi full if all
variablespi,j have been queried inθ1, . . . , θt∗

b
. There are at

mostnε full vertices. For eachj ∈ PF , we will fix a pair
of verticesFj = (ij , i

′
j) in [n]. Let the union of allnε sets

Fj be denoted byF . F has the following properties. (1)
For eachj, no element ofFj is full; (2) For eachj ∈ PF ,
Fj ∈ edgest∗

b
(j); and (3) every two distinct elements inF

are at least distance 4 apart. Sincefanint∗
b
(j) ≥ nδ, and

δ = 2/5 > ε, it is possible to find such setsFj satisfying
these criteria.

For eachpi,j queried inθ1, . . . θt∗
b
, wherej ∈ PF and

i 6∈ Fj , Mb will set pi,j to 0. For eachj ∈ PC , and for
any variablepi,j queried inθ1, . . . θt∗

b
, setpi,j to 0. For

any full vertexi , map i to exactly one pearlj such that
pj ∈ P−PC−PF . (Again this can be arbitrary as long as it
is consistent with a one-to-one mapping.) For the remaining
pj ∈ P − PC − PF that have not yet been mapped to, set
all queried variablespi,j to 0. For all pearlspj in PC , color
them Red. For all pearlspj in PF that have been queried,
assign a fixed color to each pearl.

The only variables that were queried inθ1, . . . θt∗
b

and
that are not set byMb are the edge variables,pi,j , where
j ∈ PF , andi ∈ Fj . LetS denote the set of all2nε

settings
of these edge variables such that eachj ∈ PF is mapped to
exactly one element inFj . Let f ′ = f |Mb

and letT ′ be the
DPLL tree corresponding toθ′ for solving f ′, whereθ′ is
the ordering on the unassigned variables consistent withθ.
By Lemma 10, it suffices to show that #DPLLCache onf ′

andT ′ takes time at least2nε

.
Note that the first2nε variables queried inT ′ are the

variablesPij ,j, Pi′
j
,j, j ∈ PF . The only nontrivial paths of

height2nε in T ′ are those were eachj ∈ PF is mapped to
exactly one vertex inFj , since otherwise the formulaf ′ is
set to 0. Thus, the nontrivial paths inT ′ of height2nε cor-
respond toS. We want to show that for each such nontrivial
vertexv of height2nε in T ′ (corresponding to each of the
restrictions inS), thatv must be traversed by #DPLLCache,
and thus the runtime is at least2nε

.
Fix a vertexv and corresponding pathρ ∈ S. Again we

want to show that for anyρ′ ⊆ ρ, andσ whereσ occurs
beforeρ′ in the ordering, thatf ′|ρ′ 6= f ′|σ. There are three
cases to consider.

1b. Suppose that|σ| ≤ 2nε. If σ is nontrivial, then both
ρ′ andσ are partial mappings of the pearlsj in PF to
Fj , that are inconsistent with one another. It is easy to
check that in this casef ′|σ 6= f ′|ρ′ .

2b. Suppose that|σ| > 2nε and the(2nε + 1)st variable
set byσ is an edge variablepi,j . Because|ρ′| ≤ 2nε,
ρ′(pi,j) = ∗. By Corollary 12, it follows thatf ′|σ 6=
f ′|ρ′ .

3b. Suppose that|σ| > 2nε and the(2nε + 1)st variable
set byσ is a pearl variablepj . By the definition oft∗b ,
we can assume thatpj ∈ P − PC − PF . By reason-
ing similar to case 3a, can find verticesi, i + 1, and
pearlj′ ∈ P − PC − PF such that none of the vari-
ablepi,j , pi+1,j , pj′ are queried inθ1, . . . , θt∗

b
. Thus

the clause(¬pi,j∨¬pj∨¬pi+1,j′∨pj′)|ρ′ does not dis-
appear to shrink inf ′|ρ′1, and thereforef ′|ρ′ 6= f ′|σ.

Thus for each of the two cases, #DPLLCache onf ′ and
T ′ takes time at least2nε

and thus #DPLLCache onf and
T takes time at least2nε

.

7 Final Remarks
In this paper we have studied DPLL with caching, ana-

lyzing the performance of various types of caching for #SAT

and Bayesian inference. Similar caching methods have re-
cently been explored for solving SAT [4], Our results also
extend in a certain way the recent paper [1].

We have proved that from a theoretical point of view,
#DPLLCache is just as efficient in terms of time and space
as state-of-the-art exact algorithms for BAYES. Moreover,
we have shown that on specific instances, #DPLLCache
substantially outperforms other algorithms. It is an impor-
tant question whether this advantage can be realized in prac-
tice, on typical real-world instances. Here we point out a
few reasons why this might be the case.

In section 3 we described how our DPLL algorithms
solve the input problem by recursively solving a set of re-
duced problems, where the reductions arise from assigning
variables. These reduced problems might have structure
that can be effectively exploited in the recursive invocations
of DPLL. There are two prominent examples of this.

First, some of the subproblems might contain zero val-
ued functions. In this case our algorithms need not recurse
further—the reduced subproblem must have value 0.6 In
VE the corresponding situation is when one of the interme-
diate functions,Fi, produced by summing out some of the
variables, has value 0 for some setting of its inputs. In VE
there is no obvious way of gaining computational efficiency
from this:Fi is computed all at once.

Second, it can be that some of the input functions be-
come constant prior to all of their variables being set (e.g.,
a clause might vanish because one of its literals has become
true), or they might become independent of some of their re-
maining variables. This means the subproblemsf |xi=1 and
f |xi=0 might have quite different underlying hypergraphs.
Our DPLL-based algorithms automatically take advantage
of this fact, since they work on these reduced problems sep-
arately. VE, on the other hand, does not decompose the
problem in this way, and hence cannot take advantage of
this structure. For example, our algorithms are free to use
dynamic variable orderings, where a different variable or-
dering is used solving each subproblem.

In BAYES this situation corresponds to context-specific
independence where the random variableX might be de-
pendent on the set of variablesW, Y, Z when considering all
possible assignments to these variables (sof(X, W, Y, Z)
is one of the input functions), but whenW = True
it might be that X becomes independent ofY (i.e.,
f(X, W, Y, Z)|W=1 might be a functionF (X, Z) rather
than F (X, Y, Z)). Currently only ad-hoc methods have
been proposed [6] to take advantage of this kind of struc-
ture.

8 Acknowledgements
We thank Stephen Cook and Michael Littman for valu-

able conversations.

6For #SAT this corresponds to the situation where a clause becomes
empty.

References
[1] A. Aleknovich and A. Razborov. Satisfiability, branch-width

and tseitin tautologies. InFOCS, 2002.
[2] F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination:

Bayesian inference via backtracking search. InUncertainty
in Artificial Intelligence (UAI-03), 2003.

[3] R. J. Bayardo and J. D. Pehoushek. Counting models us-
ing connected components. InProceedings of the AAAI Na-
tional Conference (AAAI), pages 157–162, 2000.

[4] P. Beame, R. Impagliazzo, T. Pitassi, and N. Segerlind.
Memoization and DPLL: Formula caching proof systems.
Unpublished manuscript, 2003.

[5] M. Bonet, J. L. Esteban, N. Galesi, and J. Johannsen. Expo-
nential separations between restricted resolution and cutting
planes proof systems. InFOCS, pages 638–647, 1998.

[6] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
Context-specific independence in Bayesian networks. In
UAI 96, pages 115–123, 1996.

[7] S. A. Cook and R. A. Reckhow. The relative efficiency of
propositional proof systems.Journal of Symbolic Logic,
44(1):36–50, 1977.

[8] A. Darwiche. Recursive conditioning.Artificial Intelligence,
126:5–41, 2001.

[9] M. Davis, G. Logemann, and D. Loveland. A machine pro-
gram for theorem-proving.Comm. of the ACM, 4:394–397,
1962.

[10] M. Davis and H. Putnam. A computing procedure for quan-
tification theory.Journal of the ACM, 7:201–215, 1960.

[11] R. Dechter. Bucket elimination: A unifying framework for
reasoning.Artificial Intelligence, 113:41–85, 1999.

[12] J. Johannsen. Exponential incomparability of tree-like and
ordered resolution. Unpublished manuscript, 2001.

[13] S. Lauritzen and D. Spiegelhalter. Local computation with
probabilities on graphical structures and their application to
expert systems.Journal of the Royal Statistical Society Se-
ries B, 50(2):157–224, 1988.

[14] M. Littman, T. Pitassi, and R. Impagliazzo. New and old
algorithms for belief net inference and counting satisfying
assignments. Unpublished manuscript, 2001.

[15] S. M. Majercik and M. L. Littman. Maxplan: A new ap-
proach to probabilistic planning. InArtificial Intelligence
Planning and Scheduling (AIPS), pages 86–93, 1998.

[16] J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, San Mateo, CA, 2nd edition, 1988.

[17] I. Rish and R. Dechter. Resolution versus search: Two strate-
gies for SAT.Journal of Automated Reasoning, 24(1):225–
275, January 2000.

[18] N. Robertson and P. Seymour. Graph minors X. obstructions
to tree-decomposition.Journal of Combinatorial Theory,
Series B, 52:153–190, 1991.

[19] N. Robertson and P. Seymour. Graph minors XIII. the dis-
joint paths problem.Journal of Combinatorial Theory, Se-
ries B, 63:65–110, 1995.

[20] L. Simon and P. Chatalic. Satex web site:
http://www.lri.fr/˜simon/satex/satex.php3.

[21] L. G. Valiant. The complexity of computing the permanent.
Theoretical Computer Science, 8:189–201, 1979.

[22] L. G. Valiant. The complexity of enumeration and reliability
problems.SIAM Journal of Computing, 9:410–421, 1979.

