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Abstract algorithm [9], is known to be in practiceastly superiorto

DP. For example, in experimental data [20], a version of
DP utilizing modern heuristics for computing good elimi-
nation orders performed much worse than DPLL based al-
d gorithms. Its behavior on the “jhn” family of problems was
typical. This family contains 50 problems each with 100
variables, 34 of which are unsatisfiable. The fastest DPLL
based procedure is able to solak 50 problems in 0.86
CPU seconds. The variable elimination DP algorithm was
unable to solve any of these problems, either running out of
memory, or exceeding a 10,000 CPU seconds time bound
oneachproblem.

1 Introduction This performance gap raises the question of whether or
not DPLL like algorithms can be used to solveNsPROD

and BAYES. In this paper we provide some affirmative an-
swers to this question. In particular, we present new and
simple extensions of the DPLL procedure that allow it to
achieve the same performance guarantees as state-of-the-
art exact algorithms for BrEs, in terms of both time and
space. We also present instances where our new DPLL
based algorithms can achieve an exponential speedup over
existing algorithms. Besides these theoretical resuieset

are also good reasons to believe that our DPLL based algo-
rithms have the potential to perform much better than their
worst case guarantees on problems that arise from real do-
mains. In other work, [2], we have investigated in more
depth the practical application of the ideas presented here
to the problem of BYES, with very promising results.

Bayesian inference is an important problem with numerous ap
plications in probabilistic reasoning. Counting satisfgiassign-
ments is a closely related problem of fundamental theakiin-
portance. In this paper, we show that plain old DPLL equippe
with memoization (an algorithm we call #DPLLCache) can solv
both of these problems with time complexity that is at leagiaod
as state-of-the-art exact algorithms, and that it can alsbiave
the best known time-space tradeoff. We then proceed to $tadw t
there are instances where #DPLLCache can achieve an exponen
tial speedup over existing algorithms.

Bayesian inference (&Es) is an important and well-
studied problem with numerous practical applications in
probabilistic reasoning [16]. #8 is also a well-studied
problem that is of fundamental theoretical importance.
These two problems are known to be closely related. In
particular, the decision versions of both ##8Sand BAYES
are #P-complete [21, 22], and there aegural polynomial-
time reductions from each problem to the other [14].

A more direct relationship between these two problems
arises from the observation that they are both instances o
a more general “sum of products” problemui$ProD).!
Perhaps the most fundamental algorithm fayM$PROD
(developed in a general way in [11]) is based on the idea
of eliminating the variables of the problem one by one fol-
lowing some fixed order. This algorithm is called variable
elimination (VE), and it is the core notion in almost all stat An outline of the paper follows. In Section 2, we define
of-the-art exact algorithms foriB1PRoOD (and BAYES). SUMPROD, #SAT, and BaYES, and review two core state-

A simple observation is that the Davis-Putnam algorithm Of-the-art exact algorithms for &€s. In Section 3, we
(DP) for satisfiability [10] is an instance of variable elimi  discuss DPLL-based algorithms with caching for solving
nation. This observation is interesting because the atern #SAT and SIMPRoOD and prove that our algorithms achieve

algorithm for satisfiability, the backtracking search DPLL the best known time and space guarantees for these prob-

lems. In Section 4, we introduce a framework for compar-

) ’_‘T'Giss Ergscearcc:] Ff’LIJingzd by governments of Ontario and Canadagh ing nondeterministic algorithms for these problems. This

their an programs. . . o
1Dechter [11] casts BrEs as an instance of the more general prob- allows us to prove that #DPLLCache can emCIeme SI_Fﬂ

lem SUMPROD. That #S\T is also an instance of B1PROD is probably ulate known exact algorithms, and can moreover achieve

known, but we have not seen it stated explicitly in the litere. exponential speedup on some instances.




2 Background

SuMPRroD: In [11] it was show that BYES and many

other problems are instances of a more general prOblemExact Algorithms for SuMPROD:

that we will call SUMPROD (sum-of-products). The input
to SUMPROD is a pair(V, F), whereF = {fi,..., fm}is
a set of functions an® = {X3,...,X,} is a set of dis-

tions f;. Clearly the number of satisfying assignmentsdor

is ZXl sz s an H:11 fi(Vars(Cy)).

Next we briefly re-
view two prominent exact algorithms foraBes. Both of
these algorithms in fact solve the more general problem
SuUMPROD and we present them in that general context.

crete valued variables. The range of each function is ﬂxed-l-hese algorithms are in fact nondeterministic algorithms

depending on the problem (typically boolean or the reals).
Each functionf; has adomain setZ; C V. The problem is
tocomputed "y >y, ... >k [1in, fi(Ei): i.e., the sum
over all assignments of values to the variablexf the prod-

uct of thef; evaluated at those assignments.

BAYES: BAVES is the problem of computing probabili-
ties in a Bayesian Network (BN). Developed by Pearl [16],
a Bayesian network is a triple/, E, P) where(V, E) de-
scribes a directed acyclic graph, in which the nottes-

{X4,...,X,} represent discrete random variables, edges{X1

represent direct correlations between the variables, and a
sociated with each random variablg; is a conditional
probability table CPT (or function)f;(X;, 7(X;)) € P,
that specifies the conditional distribution &f; given as-
signments of values to its parentéX;) in (V, E). A BN
represents a joint distribution over the random variables
in which the probability of any assignmeft;, ..., z,) to
the variables is given by the equatidhr(z1,...,2,) =
[T, fi(zs, m(x;)), wheref;(z;, (x;)) is f; evaluated at
this particular assignment.

The generic BYES problem is to compute the poste-
rior distribution of a variableX; given a particular assign-
ment to some of the other variables i.e., Pr(X;|a).
Since X; has only a finite set of values, this problem
can be further reduced to that of computing thealues
Pr(X; = d; A «) and then normalizing them so that they
sum to 1. Pr(X, = d; A «) can be computed by making
all of the assignments in as well asX; = d;, and then
summing out the other variables from the joint distribution
Pr(zy,...,z,). Giventhe above product decomposition of
Pr(z1,...,z,), this is equivalent to reducing the functions
fi € P by setting the variables assignedirand X; = d;,
and then summing their product over the remaining vari-
ables; i.e., it is an instance oU$1 PROD.

SAT and #SAT: LetV = (Xi,X,,...,X,) be a col-
lection of n Boolean variables, and let()’) be ak-CNF
Boolean formula on these variables with clauses. SAT
asks, given a Boolean formug)) in k-CNF, does it have
a satisfying assignment? TH(SAT search problem asks,
given a Boolean formula(V) in k-CNF, how many of its
assignments are satisfying? #8Scan be expressed as an in-
stance of 8MPROD as follows. We view each claugg of

¢ as being a functiorf; on the variables irC;, Vars(C;).

fi evaluates to 1 on a particular assignment to these vari-

ables iff the assignment satisfi€s. Let (V,F) be the in-
stance of 8MPRoOD whereF is the set of “clause” func-

that should be considered to be families of procedures, each
member of which is a particular deterministic realization.
Variable Elimination: The most fundamental algorithm
for BAYES is variable or bucket elimination (VE) [1£].
Given an instanc¢), F) of SUMPROD, we define itsun-
derlying hypergraph H. The vertices ofH are the vari-
ablesV, and its hyperedges are the domain sEtsof

the functionsf;. Variable elimination begins by choos-
ing an elimination orderingsr for the variablesy =

vy Xn}t Xey, oo Xpny- (This is the nondeter-
ministic part of the computation.) The algorithm then pro-
ceeds im phases. In the first phase, all functions involving
Xr1)» Fx,» are collected together, and a new function,
Fy is computed by “summing outX ;). The new func-

tion sums the product of all the functions J?ﬁxm) over

all of X 1y's values. Specifically, for any assignment

to the other variables iFx_,,, we have thatF («)
ZdeVals(Xﬂ(l))erfxﬂ(l) f(a, Xz1y = d). This induces

a new hypergraph¥i{,, where the hyperedges correspond-
ing to the set of functiongx_ , are replaced by a single
hyperedge corresponding to the new functian The pro-
cess then continues to sum aldf. ;) from 7; and so on
until all n variables are summed out.

Davis-Putnam is an instance of variable elimination.
Consider applying variable elimination to the formulation
of SAT given above. For &r, the new functiond”; com-
puted at each stage need only preserve whether or not the
product of the functions itFy_,, is 0 or 1, the exact num-
ber of satisfying assignments need not remembered. This
can be accomplished by representing fjesymbolically
as a set of clauses. Furthermore, this set of clauses can be
computed by generating all clauses that can be obtained by
resolving onX;), and then discarding all old clauses con-
taining X ;). This resolution step corresponds to the sum-
ming out operation, and yields precisely the Davis-Putnam
(DP) algorithm for satisfiability.

Branch Decompositions: The second algorithm for
SumPROD requires the notion of a branch decomposition.

2In practice the junction-tree clustering (JT) algorithn3][is the most
popular algorithm for BYES. This algorithm can be reduced to a version
of VE that remembers some of its intermediate results ansliruthe same
time and space as VE.

3Dechter and Rish [17] have previously made a connection dstw
DP and variable elimination. They were thus able to show,Bfaruns in
time n29 (%) wherew is the branch width of the underlying hypergraph
of the instance.



DEeFINITION 1 (Robertson and Seymour [18]) Lét = Complexity and Branch Width: All known algorithms

(V, E) be a hypergraph. Aranch decomposition for H for BAYES and #3T run in exponential-time in the worst

is a binary tredl” such that each node @fis labelled with case. However, when the branch width of the underlying hy-
a subset of/. There ardE| many leaves of", and their la- pergraph of the instance;, is small, the above algorithms
bels are in one-to-one correspondence with the hyperedgeare much more efficient. In fact, both algorithms run in time
E. For any other node in T', let A denote the union of the  and space©()20(®),

labels of leaves in the subtree rootechabind letB denote The general problem of computing an optimal branch de-
the union of the labels of the rest of the leaves. Then thecomposition (i.e., one that has width equal to the branch
label forn is the set of all vertices that are in the intersec-  width of H) is NP-complete. However, Robertson and Sey-
tion of A andB. Thewidth of 7" is the maximum size of  mour[19] give an algorithm for computing a branch decom-
any labelling inT". Thebranch width of H is the minimum position with width that is within a factor of 2 of optimal

of the widths of all possible branch decompositiongof and that runs in time©(M2°() wherew is the branch
width of H. By first running thisdeterministicalgorithm

to compute a good branch decomposition one obtains a de-
terministic version of RC that runs in tim2¥(wlogn) gnd
space thatis only linear in. This deterministic version will

run in time and space®(1)2°) f recursively computed
values are cached. Similarly the decomposition can be used
to obtain a deterministic version of VE that runs in time and
spacen@(1)20(w),

Recursive Conditioning (RC and RC*):  Recursive con-
ditioning [8] (RC) is another algorithm fori81PRroD. Let
(V,F) be an instance of ®8MPrRoD and’H be its under-
lying hypergraph. Recursive conditioning is a divide and
conquer algorithm that instantiates the variable¥ aio as
to break the problem into disjoint components. The origi-
nal version of RC, as specified in [8], begins with a branch
decompositio” of H with width w and height!. (This is
the nondeterministic part of the computatiofi.ppecifiesa 3 g ng DPLL for #SAT and SumPROD
recursive decomposition of the problem used by RC as fol-
lows. Letlabel(n) be the label of a node ifi. Starting at We will first present all of our DPLL-based algorithms as
the root ofT", RC computesF|, for all assignments to the algorithms for #3871, and then later explain how to modify
variables inlabel (left(r)) N label (right (1)), whereleft(r) them to solve 8mMPROD.
andright(r) are the left and right children ef Each sucla DPLL and #DPLL: DPLL is a nondeterministic algo-
renders the set of functions in the subtree belgi(r) (i.e., rithm for SaT, that has also been used to solve general-
the leaf labels) disjoint from the functions belavght(r). izations of &, including #31 [3]. The standard DPLL
By makingleft(r) andright(r) roots of their reduced sub- algorithm for solving 3T is given in Table 1. We use the
trees, RC can then recursively sum out the product of thenotationg|,_,,, to denote the new CNF formula obtained
functions in those subtrees. Since these functions are disfrom reducingp by setting the variable to 0 or 1. It should
joint, the sums can be multiplied to obtain the sum of the be clear that DPLL is a nondeterministic procedure that gen-
product of all of the functions below conditioned on the  erates alecision tregepresenting the underlying CNF for-
instantiations inv. Repeating this process for each possible mula. For solving &T, the decision tree is traversed in a
« and summing yields the final answer. depth-first manner until either a satisfying path is encoun-
A simple extension of RC is to compufé, iteratively tered, or until the whole tree is traversed (and all paths fal
rather than all at once. That is, rather than instantiatefall ~ sify the formula).
the variables in the sét = label (left(r)) N label (right (1)) A slight modification of DPLL allows it to count all sat-
at once, these variables can be instantiated one at a timesfying assignments as it traverses the decision treeeTabl
and F reduced after each instantiation. We will call this gives the #DPLL algorithm for counting. The algorithm ac-
extended version of RRC™. tually computes the probability of the set of satisfying as-
RC (RC") has the attractive feature that it can achieve a signments under the uniform distribution. Hence, the num-
non-trivial space-time tradeoff, taking less time if it bas ber of satisfying assignments can be obtained by multiply-
its recursively computed values. The DPLL based algo- ing by 2™, wheren is the number of variables .
rithms presented here share a number of features with RC; Known exponential worst-case time bounds for DPLL
they also reduce and decompose the input problem by mak-also apply to #DPLL: for unsatisfiable formulas, both algo-
ing instantiations, gain efficiency by caching, and achieve rithms have to traverse an entire decision tree before termi
a similar space-time tradeoff. However, our algorithms are nating. This lower bound does not, however, help us dis-
based on the paradigm of backtracking, rather than dividecriminate between algorithms sinedl known algorithms
and conquer. As a result, they are not limited to following for #SAT and BAYES take exponential-time in the worst-
a static decomposition scheme specified by a fixed branchcase. Nevertheless, it is not hard to see, however, that un-
decomposition. As we will see, the limitation of a static like VE and RC, #DPLL requires exponential time even
decomposition scheme means that RC must perform expo-on instances with small branch width. To see this, con-
nentially worse than our algorithms on some instances.



Table 1 Standard DPLL algorithm for SAT DPLL modified to count satisfy solutions

DPLL(¢) #DPLL(¢)
if ¢ has no clauses, outpusdtisfiablé and HALT if ¢ has no clauses, return 1
else-if ¢ does not contain an empty clause then else-if¢ has an empty clause, return 0
choose a variable that appears ig else
Call DPLL(¢|z=0) Choose a variable that appears i
Call DPLL(¢|z=1) return #DPLL(¢|z—0) X 1 + #DPLL(¢|o=1) x 2
return
sider a 3CNF formula oven variables consisting of dis- its formulas).

joint clauses. This formula has branch width 3; however  Surprisingly, simple caching, does reasonably well as the
any complete decision tree has exponential size. Thereforéollowing theorem shows.

A#DPLL will require exponential time. THEOREM 1 For solving#SAT onn variables, there is an

DPLL with caching: If one considers the above example execution of #DPLLSimpleCache that runs in time bounded
of applying #DPLL to disjoint sets of clauses, it is clearttha by 20(wlogn) wherew is the underlying branch width of
#DPLL's poor performance arises from the fact that during the instance. Furthermore, the algorithm can be made de-
the course of its execution the same subproblem can be enterministic with the same time guarantees.

co_untere_d a_nd r_ecomputed many tim_es. One way t(.) _prevent Although the theorem shows that #DPLLSimpleCache
this duplication is to apply memoization. More specifically does fairly well, its performance is not quite as good as

associated with every node in the DPLL tree is a formyula the best BYES algorithms (which run in tim@©(1)20(w)).

such that the subtree rooted at this node is trying to COMPUtE~ o of our main contributions is to show that a variant
the number of satisfying assignmentsftoWhen perform- of simple caching allows #DPLL to perform as well as
ing a depth-first search of the tree, we can keepacachethalrhe best known algorithms. We call the new algorithm

Eogzalk?itstii” g);ngwiiégfgfTEZ?ZZ?:%;?ZC;SI':/rz(\j/é?sr;: #DPLLCache, and its implementation is given in Table 2.
P 9 9 The algorithm again creates a DPLL tree, caching inter-

its subtree if the value of its corresponding formula is al- diate f I h ted. H the al-
ready stored in the cache. The above form of caching, whichTediate formuias as they are computed. HOWEVeT, Ihe a
we will call simple cachingcan be easily implemented as gonthrn_ tgkes as input formulas thgt have be_en decompos_ed
shown in Table Z.On return the value of the input formula into disjoint cpmponents, and the_ |ntermed|ate formulas "F
has been stored in the cache, so a call to GetValuwil caches are similarly stored as disjoint componen_ts. Thu;, i
return the desired valie. ’ we have already computed the number of satl_sf_yl_ng assign-
ments forf and forg, wheref andg are over disjoint sets

th I? zﬁd\?\/l;[gon fvforrg‘ul?: sl,torsv(:]m th\? (I:ac?e theret are r?:soof variables, we can later compute the number of satisfying
€ foflowingobviousormulas whose value IS easy to com- assignments fof A g without further work.

pute. (1) The empty formul§} containing no clauses has . . .
- The new algorithm uses the subroutines previously de-
value 1. (2) Any formul ntaining the em I has _. . - .
alue 1. (2) Any formula containing the empty clause has fined along with two additional (low complexity) subrou-

value 0. Obvious formulas need not be stored in the cache,. .
i . tines. (4) ToComponent$): takes as input a formula,
rather their values can be computed as required. We sa ) . U . L
reaks it up into a set of minimal sized disjoint components,

that a formula iknownif its value is currently stored in the .
cache or if itis obvious. We can generalize to sets of formu- and return; this set. (5) RemongachedCompo(@ﬂrts
returns the input set of formul@swith all known formulas

las as follows. If® is a set of formulas we assign it a value ) i L
equal to the product of the values of the formulas in it. We ren:ovec_ir.hTI:(-_:‘ |n{:)ut o ZEE)FI)DII_II_CCaCme IS atshet (f)f dlsj?mt for-
say that® is knownif either (a) all¢; € ® are known, or mulas. That IS, 1o run ache on the formylave
(b) there exists &; € ® whose value is known to be 0. initially make the call #DPLLCacf{§oComponents))).

. When the call #DPLLCach{@®) returns, the cache will con-

The following (low complexity) suproutmes are used to tain sufficient information so that the call GetVajdg will
access the cache. (1) AddToCaghe-): adds to the cache : . .
return the desired value. We can obtain the following upper

Fhefact that formul@ has value-. (2) InCa.ch.@). takes as bound on the runtime of #DPLLCache.

input a set of formula® and returns true i is known. (3)

GetVa|u¢(I)): takes as input a sét of known formulas and THEOREMZ2 For SOlVing#SAT onn Variables, there exists
returns the value of the set (i.e., the product of the valfies o @n execution of #DPLLCache that runs in time bounded by
nPW20w) wherew is the underlying branch width of the
4Simple caching has been utilized before in [15], but withixoreti- instance. Furthermore, the algorithm can be made deter-

cal analysis. _ N _ ministic with the same time guarantees.
5The cached value is actually the probabilitygofso we must multiply

it by 2" to get the number of satisfying assignments. Finally, there is a third variant of #DPLL with caching,




Table 2 #DPLL algorithm with simple caching

#DPLL algorithm withmmponent caching

#DPLLSimpleCachef) #DPLLCaché®)

If InCachg{¢}), return If InCachg®), return

else else
Pick a variabley in ¢ $ = RemoveCachedComponefity
¢~ = ¢lv=o Pick a variablev in some component € ®
#DPLLSimpleCachgy ™) ®~ = ToComponent&s|,—o)
¢t = plo=s #DPLLCach¢d — {¢} U ™)
#DPLLSimpleCach@ ) &+ = ToComponent&h|,—1)

GetValug{¢~}) x 1 #DPLLCach¢®d — {¢p} U DT
AddTocaCh‘€¢’ +Getv§|ﬂ¢{§>)+})2x 1 ) AddToc hé G{et{/alue(g*) x 1
return otac ‘{d)’ + GetValug®™) x 1 )
return

#DPLLSpace, that achieves a nontrivial time-space trade-variables in the intersection dfars(f;) and Vars(f—f:).

off. This algorithm is the natural variant of #DPLLCache,

modified to remove cached values so that only linear spaceof clauses.f;,

is consumed. The algorithm utilizes one additional subrou-
tine. (6) RemoveFromCacl®): takes as input a set of

Each nodé in Ty, partitions the clauses gfinto three sets
L, andff, wheref? is the conjunction of
clauses at the leaves ©}, to the left of f;, andfiR is the
conjunction of clauses at the leaves to the righf,of

formulas (a set of components) and removes all of them  All of our DPLL caching algorithms achieve the stated
from the cache. After splitting a component with a vari- run time bounds by querying the variables in a specific,
able instantiation and computing the value of each part, static order. That is, down any branch of the DPLL de-
#DPLLSpace cleans up the cache by removing all of thesecision tree,DT, the same variables are instantiated in the

sub-components, so that only the value of the whole com-
ponentis retained. Specifically, #DPLLSpace is exacthy lik
#DPLLCache, except that it calls RemoveFromCa®he.

&) just before returning.

THEOREM 3 For solving#SAT on n variables, there is an
execution of #DPLLSpace that uses only space linear in
and runs in time bounded B (*1°2™) wherew is the un-
derlying branch width of the instance. Furthermore, the al-
gorithm can be made deterministic with the same time and
space guarantees.

We now prove these theorems. For the proof of theo-
rems 1 and 2 we will need some common notation and def-
initions. Let f be k-CNF formula withn variables andn
clauses, let be the underlying hypergraph associated with
f with branch widthw. By [8], there is a branch decom-
position of H of depthO(logm) and widthO(w). Also
by [19], it is possible to find a branch decompositiGy,
such thatl; has branch widtl)(w) and depthO(log m),
in time poly(n)2°). Thus our main goal for each of the

same order. The variable ordering usedlii’ is deter-
mined by the depth-first pre-ordering of the vertices in the
branch decompositiofi,; and by the labeling of these ver-
tices. Let(i,1),...,(¢,7;) denote the variables ifubel (i)
that do not appear in the label of an earlier vertexpf.
Note that since the width ofyy is w, j; < w for all
i. Letl,..., 2 be the sequence of vertex numbersip§.
Then our DPLL algorithm will query the variables under-
lying f in the following static orderr = ((i1,1), (i1,2),

c (B, 701), (i2,1), oony (B2,92), <oy (s, 1), o ony (2, 45))
i1 < ig < ...<is <z andji,...,7s < w. Note that
for some vertices of T}4, nothing will be queried since all
of the variables in its label may have occurred in the labels
of earlier vertices. Our notation allows for these vertices
to be skipped. The underlying complete decision t/e#,
created by our DPLL algorithms on inptftis thus a tree
with j; + j2 + ...+ js = n levels. The levels are grouped
into s layers, with the*” layer consisting of; levels. Note
that there ar@’ nodes at level in DT, and we will identify
a particular node at levélby (I, p) wherep is a particu-

three theorems will be to prove the stated time and spacear assignment to the firgtvariables in the ordering, or by
bounds for our DPLL-based procedures, when they are run((q,r), p), where(q, r) is thel*” pair in the orderingr, and

on a static ordering that is easily obtainable frdyp.

Recall that the leaves @}, are in one-to-one correspon-
dence with the clauses ¢f We will number the vertices of
Tyq according to a depth-first preorder traversal pf. For
a vertex numbered let f; denote the subformula ¢fcon-
sisting of the conjunction of all clauses corresponding to
the leaves of the tree rootediat_et Vars(f;) be the set of
variables in the (sub)formulf. Recall that in a branch de-
composition the label of each vertéxXabel(i), is the set of

pis as before.

The DPLL algorithms carry out a depth-first traversal
of DT, keeping formulas in the cache that have already
been solved along the way. (For #DPLLSimpleCache, the
formulas stored in the cache are of the fofiy, and for
#DPLLCache and #DPLLSpace, the formulas stored are
various components of ToCompong(fts,).) If the algo-
rithm ever hits a node where the formula to be computed
has already been solved, it can avoid that computation, and



thus it does not do a complete depth-first search@fbut
rather it does a depth-first search gfranedversion of DT'.

on any variabler;. Using the notation specified abova,
corresponds to some pdig, ) in the orderingr used by

For our theorems, we want to get an upper bound on the sizetDPLLCache. That isg; is ther'th new variable in the

of the pruned tree actually searched by the algorithm.

Proof of Theorem 1: We want to show that the size of
the subtree ofDT searched by #DPLLSimpleCache is at
most2€(wlegn) \When backtracking from a particular node
(I,p) = ((g,7),p) atlevell in DT, the formula put in the
cache, if it is not already known, is of the forfi,. (Recall

p is a setting to the first variables.) However, we will see
that although there ag different ways to set, the number
of distinct formulas of this form is actually much smaller
than2!. Consider a partial assignment, where we have
set all variables up to and includirtg, ), for someg < i,
and somer < j,. The number of variables set y(the
lengthof p) isj1 + jo + ... + jg—1 + 7.

label of vertexg of the branch decompositidhi,;.

When #DPLLCache utilizes the static ordering it
branches on, or queries, the variables according to that or-
der, always reducing the component containing the vari-
able x; that is currently due to be queried. However,
since previously cached components are always removed
(by RemoveCachedComponents in the algorithm), it can be
that when it is variable:;’s turn to be queried, there is no
component among the active components that contgins
In this case, #DPLLCache simply moves on to the next vari-
able in the ordering, continuing to advance until it finds the
first variable that does appear in some active component. It
will then branch on that variable reducing the component it

Let p~ denote the partial assignment that is consistent appears in, leaving the other components unaltered.

with p where only the variables ip that came from the
labels of the vertices on the path from the rootlgf up
to and including vertex are set. The idea is that is a
reduction ofp, wherep™ has removed the assignmentsof
that are irrelevant tg, and f*.

Consider what happens when the DPLL algorithm
reaches a particular nodgy, ), p) atlevell of DT. Atthat
point the algorithm is solving the subproblgf,, and thus,
once we backtrack to this nodfl,, = fZ[, A fql, A fE|, is
placed in the cache, if it is not already known. Note that all
variables in the subformulfatf are set by, and thus either
qu|p = 0, in which case nothing new is put in the cache, or
fFl, = linwhichcasef|, = fol,AfEl, = falo- ALS -
is put in the cache. Thus, the set ditinct subformu-
las placed in the cache at leviel= (g,r) is at most the
set of all subformulas of the fornfi,|,- A f%|,-, where
p~ is a setting to all variables in the labels from the root
to vertexq, plus the variablegqg, 1), ..., (¢,7). There are
at mostd - w such variables, where has depthd in Ty
(each label has at most variables since this is the width
of Tp4). Hence the total number of sugh'’s is at most
2(wd) " This implies that the number of subtrees/ii” at
levell+1 that are actually traversed by #DPLLSimpleCache
is at most2 - 24 = 20(wd) ‘whered is the depth of node
q in Tyq. Lett be the number of nodes iRT that are actu-
ally traversed by #DPLLSimpleCache. Thens at most
n20(wlegn) sincet is the sum of the number of nodes
visited at every level ofDT" and for each node in Ty
d € O(logm) = O(logn).

Accounting for the time to search the cache, the over-
all runtime of #DPLLSimpleCache is at most, where
againt is the number of nodes IWT that are traversed
by the algorithm. Thus, #DPLLSimpleCache runs in time
(n20(w~logn))2 — 20(w-logn). u

Proof of Theorem 2: We prove the theorem by placing

This implies that at any time when #DPLLCache selects
x; as the variable to next branch on it must be the case that
(1) x; appears in an active component. In particular the
value of this component s not already in the cache. And (2)
no variable prior tac; in the orderingr appears in an active
component. All of these variables have either been assigned
a particular value by previous recursive invocations, er th
component they appeared in has been removed because its
value was already in the cache.

In the branch decompositidf,; let p be ¢'s parent §
must have a parent since the root has an empty label). We
claim that whenever #DPLLCache seleaisas the next
variable to branch on, the active component containing
must be a component in the reductionfgfwhose form is
determined solely by the settings of the variableg #nd
ther variables ofy that have already been set. If this is the
case, then there can be at mast*+") = 20() different
components that; can appear in, and hence #DPLLCache
can branch om; at most2°() times as each time one more
of these components gets stored in the cache.

Now we prove the claim. The label gfconsists of vari-
ables appearing ip’s label and variables appearing in the
label of ¢’s sibling. Since all of the variables ifubel(p)
have been set; and its sibling must now have an identical
set of unqueried variables in their labels. Hencmust be
the left child ofp as by the time the right child is visited in
the orderingy; will have already been queried. Thus, at the
time x; is queried,f, will have been affected only by the
current setting ofabel (p) (as these are the only variables it
shares with the rest of the formula) and the firgjueried
variables fromiabel(q). Thatis,f, can be in at most(“+")
different configurations, and thus the component contginin
x; can also be in at most this many different configurations.

Thus withn variables we obtain a bound on the number
of branches in the decision tree explored by #DPLLCache

a bound on the number of times #DPLLCache can branchof n2°(®). As in the proof of the previous theorem,



the overall runtime is at most quadratic in the num-
ber of branches traversed, to give the claimed bound of
nO1)20(w) m

Proof of Theorem 3:  For this proof, it will be more nat-
ural to work with atree decompositiorather than a branch
decomposition. Unlike branch width, tree width is defined

der:S(1),5(2),...,5(c), where somé (i) may be empty.
The underlying decision tre&)T", created by #DPLLSpace
is a complete tree with levels. As before we will identify a
particular nodes at levell of DT by s = (I, p) wherep is a
particular assignment to the firstariables in the ordering,
orbys = ((q,r), p) (ther" variable inS(q)).

over ordinary graphs. However, hypergraphs can reduced to #DPLLSpace carries out a depth-first traversalxF,

ordinary graphs by replacing each hyperedge with a clique
of edges.

DEFINITION 2 LetH = (V, E) be a hypergraph. Then the
moralized graph or primal graphGx = (V', E’) corre-
sponding toH is as follows. FirstV’ = V and secondly,
an edge(i, j) is in E’ if and only if : andj occur together
in some edge” of H.

DEFINITION 3 LetG = (V, E) be an undirected graph. A
tree decomposition of G is a binary treel” such that each
node of7" is labelled with a subset df in the following
way. First, for every edgé, j) € E, some leaf node i’
must have a label that contains bo#md;. Secondly, given
labels for the leaf nodes every internal nadeontainsy €

V in its label if and only ifn is on a path between two
leaf noded; andiy, whose labels contain. The width of
T is the maximum size of any labelling ifi, and thetree
width of G is the minimum of the widths of all possible tree
decompositions of7.

Branch and tree width are essentially interchangeable.

LEMMA 4 (ROBERTSON ANDSEYMOUR [18]) Let H be
a hypergraph and leG; be the corresponding moralized
graph. Then the branch width &f is at most the tree width
of Gy plus 1, and the tree width a4, is at most 2 times
the branch width ofH.

Let f be ak-CNF formula with n variables andm
clauses and let{ be the underlying hypergraph associ-
ated with f. We begin with a tree decompositicfi,
of depthO(logm) and widthO(w) (computable in time
nPM20w)) We can assume without loss of generality that
the leaves of’;, are in one-to-one correspondence with the
clauses off. Each node in T}, partitionsf into three dis-
joint sets of clausesy;, the conjunction of clauses at the
leaves of the subtree @, rooted ats, fl-L, the conjunc-
tion of clauses of the leaves @t to the left of f;, and
ff? the conjunction of clauses of the leavesigf to the
right of f;. #DPLLSpace will query the variables associ-
ated with the labels df},; according to the depth-first pre-
order traversal. Let the variables lmbel (i) not appearing
in an earlier label on the path from the root to nade de-
noted byS(i) = (i,1),...,(4,4;). If i is a non-leaf node
with j andk being its left and right children, then the vari-
ables inS(i) are exactly the variables that occur in bgth
and f; but that do not occur outside gf. If we let ¢ be
the total number of nodes iy, then #DPLLSpace will
guery the variables underlyinfin the following static or-

storing the components of formulas in the cache as they
are solved. However, now components of formulas are also
popped from the cache so that the total space ever utilized is
linear. If the algorithm hits a node where all of the compo-
nents of the formula to be computed are known, it can avoid
traversing the subtree rooted at that node. Thus it searches
a pruned version oDT'.

During the (pruned) depth-first traversal 6f", each
edge that is traversed is traversed twice, once in each di-
rection. At a given time in the traversal, let; = E; U F,
be the set of edges that have been traversed, whigage
the edges that have only been traversed in the forward direc-
tion, andFs are the edges that have been traversed in both
directions. The edges if; constitute a partial path start-
ing at the root ofDT'. Each edge i is labelled by either
Oorl. Letpy,...,px be the set of all subpaths pf(be-
ginning at the root) that end in a 1-edge. lgt. .., px be
subrestrictions corresponding 9, . . ., pr except that the
last variable that was originally assigned a 1 is now assigne
a 0. For example, ipis (z1 = 0,23 = 1,24 = 0,25 =
1,26 = 0,20 = 0), thenp1 = ($1 =0,x3 = 0), andp2 =
(x1 = 0,23 = 1,24 = 0,25 = 0). Then the information
that is in the cache at timecontains ToComponeritg|,,, ).

1 < k.

For a nodey of T34 and corresponding subformuyfg,
thecontextof f, is a set of variables defined as follows. Let
(g1, -..,qq) denote the vertices ifi,; on the path from the
root to ¢ (excludingg itself). Then the context of, is the
setContext(fy) = S(q1)US(g2)U...US(ga). Intuitively,
the context off,, is the set of all variables that are queried
at nodes that lie along the path 40 Note that when we
reach levell = (q,1) in DT, where the first variable of
S(q) is queried, we have already queried many variables,
including all the variables irContext(f,). Thus the set of
all variables queried up to levek (g, 1) can be partitioned
into two groups relative tgf,: the irrelevant variables, and
the setContext(f,) of relevant variables. We claim that at
an arbitrary level = (q,r) in DT, the only nodes at levél
that are actually traversed are those nadesr), p) where
all irrelevant variables ip (with respect tof,) are set to 0.
The total number of such nodes at levet (g, r) is at most
2lContext(fo)l+r which is at mosR® °8 ™, Since this will be
true for all levels, the total number of nodes/ii” that are
traversed is bounded by2*1°s™  Thus, all that remains is
to prove our claim.



Consider some node = ((¢,7),a) in DT. That is,
a = ata?...a? b, ... b,_1, where for each, o' is an
assignment to the variablest{i), andb; ... b,_1 is an as-
signment to the first — 1 variables inS(q). Let the context

of f, beS(q1) U...US(qq), d <logn. Now suppose that

puted ., ... in,l inﬂ e me H;nzl Fi(Ej)x,=d
where f;(E;)|x,=a IS F; reduced by settingl; = d.
#DPLLSimpleCache caches the reduced problem to avoid
recomputing it, and #DPLLCache caches the solution to
components of the reduced problem. It is not hard to

« assigns a 1 to some non-context (irrelevant) variable, andshow that the above three theorems continue to hold for

say the first such assignment occursiat the ¢! variable
ina®, u < g— 1. We want to show that the algorithm never
traverses.

Associated withy is a partial path inDT"; we will also
call this partial patti. Consider the subpath/subassignment
p of a up to and includingy} 1. If « is traversed,
then we start by traversing Since the last bit op is 1
(i.e., oy = 1) when we get to this point, we have stored
in the cache ToComponef(f§,) wherep is exactly likep
except that the last bity}', is zero. Letj be the first node in
q1, G2, - - - qa With the property that the set of variablé§;)
are not queried ip. (On the path tagy in T}4, j is the first
node along this path such that the variable$'{ii) are not
queried inp.) Then ToComponentg|,) consists of three
parts: (a) ToComponer(gfgﬂp), (b) ToComponenty;|,),
and (c) ToComponents/|,).

Now consider the patp’ that extend® on the way tos
in DT, wherep’ is the shortest subpath of where all of
the variablesS (i) for i < j have been queried. The restric-
tion corresponding tp’ is a refinement op where all vari-
ablesinS(1) U S(2) U...S(j — 1) are set. Since we have
already set everything that occurs befgrewe will only
go beyondy’ if some component of ToComponefif$, )
is not already in the cache. ToComponéfits) con-
sists of three parts: (a) ToCompone{[f;-%|pz), (b)
ToComponents;|, ), and (c) ToComponer(tﬁﬂ,,/). Be-
cause we have set everything that occurs befowd! for-
mulas in (a) will be known. Since’ andp agree on all
variables that are relevant t§, ToComponents;|, ) =
ToComponents/;|,) and hence these formulas in (b) in the
cache. Similarly all formulas in (c) are in the cache since
ToComponents?|,;) = ToComponenig|,). Thus all
components of ToComponeffs,/) are in the cache, and
hence we have shown that we never traverse beybadd
hence never traverse Therefore the total number of nodes
traversed at any levél = (q,r) is at most2*?, whered
is the depth ofy in T}4, as desired. This yields an overall
runtime of2€(wloen) m

Using DPLL algorithms for BAYES: The DPLL al-
gorithms described in this section can be easily mod-
ified to solve ®MPROD, and thus are able to solve
BAYES directly. For $YMPrROD, we want to com-
pute > ... >« [[j-, fj(E;). DPLL chooses a
variable, X;, and for each valued of X; it recur-
sively solves the reduced problet|x,—qs. (Hence,
instead of a binary decision tree it builds Zary
tree). The reduced problenf|x,—4 is to com-

#DPLL, #DPLLCache, and #DPLLSpace modified to solve
SUMPROD.

4 A Framework for comparing BAYES and

#SAT algorithms

The algorithms in the literature for®8Es as well as our
new DPLL-based algorithms, are actualigndeterminis-
tic algorithms, or families of algorithms. In a seminal pa-
per, Cook and Reckhow [7] defingdopositional proof sys-
temswhich give a way to classify families of algorithms for
coNP-complete problems. In the same spirit, we can de-
fine propositional proof systems fany function, not just
for the coNP-complete predicates, thus making it possible
to compare different families of algorithms fomBes and
#SAT. Moreover, we extend the original Cook-Reckhow
definition so thatime, spaceandnondeterministic bitare
explicit computational resources, rather than fime This
is motivated by theoretical as well as by practical consider
ations: real systems forA&Es can often run in time that is
not polynomially bounded, but it is important that the space
be kept nearly linear.

DEFINITION 4 Let f be a function from{0,1}" to \/. A
proof systemd for f is a uniform algorithni/(z, y) where
2 is an instance of andy is an additional binary advice
string (or proof). V' will be implemented by a 2-tape ma-
chine, where the input tape is read-once and the other work
tape is unrestricted. (This detail is necessary in ordel-to a
low V to runin time that is linear ir.) Further, the follow-
ing conditions are satisfied: (1) for afl y pairs,V(z,y)
either outputsf(z) or V(x,y) outputs “nil"; (2) for all =
there exists g such thal/ (z, y) outputsf (z); (3) V(z,y)
runs in time bounded by (|«|, |y|) and space bounded by
sa(lz], [yl)-
DEFINITION 5 Let f be a function from{0,1}" to \V. Let
A and B be two proof systems fof as defined above, with
time complexitiest 4, andtp and space complexities,
and sp respectively. Them ptime-Ispace simulateB if
there exists a function(x, y) such that: (1)(«x, y) is com-
putable by a deterministic machine that runs in output poly-
nomial time, i.e., the runtime is a polynomial functionaof
andy and the output; (2) for alk,y, ta(|z|, |o(x,y)|) IS
polynomialints(|zl, |y|); (3) forall z, y, sa(|z|, |¢(x, y)|)
is linear insg(|zl, |y|). We say thatd ptime simulate$3 if
conditions (1) and (2) above hold, but not necessarily con-
dition (3).

Our definitions are consistent with the usual definitions
for UNSAT. By decoupling the number of bits needed to



write down the proof and the verification time, we can for j € [m] ,j’ € [m], j # 7. (3) (-pi; V —pirj), ¢ € [n],
example, distinguish between the search spaces for ordered € [n],i # i, j € [m]. (4) (—p1,; Vp;) and(—p, ; V—p;),
resolution versus resolution fAANSAT. In the former  j € [m]. (5) (=pi; V —pix1,5 V —pj Vpjr), 1 < i < mn,
case, the proof is simply an ordering of variables and the j € [m], j' € [m],j # 7. (6) (=i ; V—Dix1,5» VP;j V-Djr ),
verifier runs in time that is not necessarily polynomial in 1 <i<mn,j € [m],j’ € [m],j #j.

the size of the proof; in the latter case, the proof is the en-  johannsen [12] shows th&tP, ,, has quasipolynomial
tire resolution proof but now the verifier is polynomial time  size tree Resolution proofs. It follows that #DPLLCache

5 Polynomial-simulation results as well as #DPLL can also soh#P, ,, in quasipolynomial

. . time.

THEOREMS5 RC ptime simulates VE.

The proof of the above theorem is implicit in [8].
THEOREM6 #DPLLCache ptime simulates RC, R@nd
VE. #DPLLSpace ptime-Ispace simulates linear-space
bounded RC.

The idea behind the proof is as follows. RC when run on Proof: It suffices to prove that #DPLLCache under any
a particular branch decomposition can be simulated in poly-Static ordering requires tin#" for SP, ,, m = n. By a
nomial time by #DPLLCache searching an ordered DPLL Static ordering, we mean that the variables are queried ac-
tree in which the variables are queried in the order given by €ording to this ordering as long as they are mentioned in the
a depth-first preorder traversal of the branch decompasitio Current formula. That s, we allow a variable to be skipped

LEMMA 8 SP,, can be solved in timen®U°e™) py
#DPLLCache and by #DPLL.

THEOREMO Let € 1/5. Any VE or RC or ordered
#DPLLCache algorithm foS P, ,, requires time2"".

tion step of RC with caching (RC) ofx, y) is simulated
by #DPLLCache (#DPLLSpace) ofx,y’). Thus it can
be shown that #DPLLCache, restrictedstatic orderings
polynomially simulates RC with caching (#DPLLSpace
polynomially simulates RC).

6 Lower bounds

THEOREM7 Neither RC, VE, nor RE€ ptime simulates
#DPLLCache. Moreover, neither RC, VE, nor R@time
simulates #DPLL.

To prove this theorem we first observe that from a result
of Johannsen [12], #DPLLCache and #DPLL can solve the
negation of the propositional string-of-pearls princifi¢
in time n°(°e™) when run with adynamicvariable order-
ing. This immediately gives the above result for VE and
for RC, since the branch width of these problem®is:).
However, the domination of RC on these problems is not so

eration. We will visualizeSP, ,, as a bipartite graph, with

n vertices on the left, and pearls on the right. There is a
pearl variabley; corresponding to each of thepearls, and

an edge variablp; ; for every vertex-pearl pair. (Note that
there are no variables corresponding to the vertices but we
will still refer to them.)

Fix a particular total ordering of the underlyimd + n
variables 1, 6s,...,6,. For a pearlj, let fanin,(j) equal
the number of edge variablgs ; incident with pearlj that
are one of the first variables queried. Similarly, for a ver-
tex i, let fanin, (i) equal the number of edge variabjgg;
incident with vertex; that are one of the first variables
queried. For a set of pearfs let fanin,(S) equal the num-
ber of edge variableg, ; incident with some pearl € S
that are one of the firgtvariables queried. Similarly for a
set of verticesS, fanin,(S) equals the number of edge vari-
ablesp; ;, incident with some vertex € S that are one of

interesting, since as we pointed out in Section 2, there arethe firstt variables queried. Letdges;(j) andedges;(S)

some obvious ways to improve RC. The more substantial
result, that RC, the improved version of RC, is also domi-
nated on these problem, requires a non-trivial argument.
We continue to use the string-of-pearls principle, intro-
duced in in [5]. From a bag oh pearls, which are colored
red and bluep pearls are chosen and placed on a string.
The string-of-pearls principle says that if the first pearl i

be defined similarly although now it is the set of such edges
rather than the number of such edges. It should be clear
from the context whether the domain objects are pearls or
vertices.

We use a simple procedure, based on the particular or-
dering of the variables, for marking each pearl with either
a C or with anF as follows. In this procedure, a pearl may

the string is red and the last one is blue, then there must beat some point be marked with@and then later overwrit-

ared-blue or blue-red pair of pearls side-by-side somesvher
on the string. The negation of the principfel,, ,,, is ex-
pressed with variables, ; andp, for i € [n] andj € [m]
wherep; ; represents whether pegrls mapped to vertex

on the string, ang; represents whether pegris colored
blue (p; = 0) orred {p; = 1). The clauses of P, ,, are as

follows. (1) \/;nzlpi_’j,i S [n] (2) (_‘pi,j \Y —‘piyj/),i S [n]

ten with anF; however, once a pearl is marked with it
remains arf- for the duration of the procedure. If a pegrl

is marked with aC at some particular point in time, this
means that at this point, the color of the pearl has already
been queried, anfhnin,(5) is less tham?, § = 2/5. If a
pearlj is marked with arF at some particular point in time

t, it means that at this poirfunin,(j) is at least:’. (The



color of j may or may not have been queried.) If a pearl
is unmarked at time, this means that its color has not yet
been queried, anthnin, (j) is less tham?®.

For from 1 ton? + n, we do the following. If the®”?
variable queried is a pearl variablé, (= p; for somejy),
and less tham® edges; ; incident toj have been queried
so far, then marl; with aC. Otherwise, if thd*" variable
queried is an edge variablé, (= p; ;) andfanin,(j) > n?,
then mark pearj with anF (if not already marked with an
F). Otherwise, leave peaflunmarked.

Eventually every pearl will become markédConsider
the first timet* where we have either a lot @’s, or a lot
of F's. More precisely, let* be the first time where either
there are exactly.® C's (and less than this marfy's) or
where there are exacthf F's (and less than this marys.)

If exactly n¢ C’s occurs first, then we will call this case
(a). Extendt* to ¢ as follows. LeWy11,. .., 0. be the
largest segment of variables that are all pearl variapjes
such thayj is already marked with aR. Thent? = t* + c.
Notice that the query immediately following- is either

a pearl variabley; that is currently unmarked, or an edge
variable. On the other hand, if exactly F’s occurs first,
then we will call this case (b). Again, extertl to ¢; to
ensure that the query immediately followitlg is either a
pearl variablep; that is currently unmarked, or is an edge
variable.

The intuition is that in case (a) (a lot &'s), a lot

LEMMA 10 Let f beSP, , and letr be a static ordering of
the variables. Lep be a partial restriction of the variables.
Then the runtime of #DPLLCache @, p) is not less than
the runtime of #DPLLCache off|,, '), wheren’ is the
ordering of the unassigned variables consistent with

LEMMA 11 For any restrictionp, if f|, # 0 andp(p; ;) =
*, thenp; ; occurs inf|,.

Proof: Consider the claus€; = (p;,1 V...V pim) in
f. Sincep; ; is in this clause, ip; ; does not occur irf|,,
thenC;|, must equall. Thus there existg’ # j such that
p(pid*/) = 1. But then the Clauseﬁpi,j Vv ﬁpi,j/)|p = Di,j
and thug; ; does not disappear froif|,. B

COROLLARY 12 Let 0 be a total ordering of Vars(f).
Let p, p’ be partial restrictions such thap sets exactly
61,...,0, andp’ sets exactly, ..., 0y, ¢ < ¢g. Suppose
that there exist8;, = p; ; such thap sets;, butp’(6),) = *.
Then eitherf|, = 0or f|,, =0o0r f|, # fl|,.

Case (a). Let 0 be a total ordering td/ars(f) such that
case (a) holds. LeP® denote the set of exactly’ pearls
that are marke€ and letP!" denote the set of less than
pearls (disjoint fromP¢) that are markeé. Note that (the
color of) all pearls inP® have been queried by tintg; the
color of the pearls i®¥” may be queried by tim&, and the
color of all pearls inP — P¢ — P have not been queried
by timet;. Note further that the total number of edges
that have been queried is at mast? + n!'*tc < 2n!+te,

of pearls are colored prematurely—that is, before we know  \ve will define a partial restriction}Z,, to all but2”* of

what position they are mapped to—and hence a lot of querieshe variables i),

must be asked. For case (b) (a lotd), a lot of edge vari-

..., 0;- asfollows. For each € P*, fix
a one-to-one mapping frof’ to [n] such thatange(j) €

ables are queried thus again a lot of queries will be asked.c;4¢,. () for eachj. For eachj € PC, for any variable

We now proceed to prove this formally.

We begin with some notation and definitions. Lfet=
SP, ., and letVars(f) denote the set of all variables un-
derlying f. A restrictionp is a partial assignment of some
of the variables underlying to either0 or to 1. If a variable
x is unassigned by, we denote this by(z) = . LetT
be the DPLL tree based on the variable ordefinghat is,

T is a decision tree where variakfg is queried at level

of T'. Recall that corresponding to each nadef T is a
formula f|, wherep is the restriction corresponding to the
partial path from the root df to v. The tre€l’ is traversed
by a depth-first search. For each vertewith correspond-
ing pathp that is traversed, we check to se¢j is already

pi,j queriedindy, . .. 0;:, setp; ; to 0. For any vertexsuch

that all variableg; ; have been queried i, . . ., 0;-, map

i to exactly one peayisuch thap, € P— P¢ — PF. There

are at mos®n* suchi. (This can be arbitrary as long as it is
consistent with the one-to-one mapping already defined on
PF.) For all remaining; € P — P¢ — PF that have not
yet been mapped to, set all queried variallgsto 0. For

all pearlsp; in P¥ that have been queried #,. .., 0,
assign a fixed color to each such pearl (all Red or all Blue)
so that the smallest Red/Blue gap is as large as possible.
Note that the gap will be of size at least—<. M, sets all
variables indy, . .. ;- except for the variables;, j € Pe.
Since there are€ such variables, the number of restrictions

in the cache. If it is, then there is no need to traverse the, to ¢, . . ., 0;: consistent withM/, is exactly2"". Let S

subtree rooted below. If it is not yet in the cache, then we
traverse the left subtree of followed by the right subtree

denote this set of restrictions.
Let f/ = f|am, and letd’ be be the ordering on the

of v. After both subtrees have been traversed, we then popnassigned variables consistent with (The set of unas-

back up tov, and storef|, in the cache. This induces an
ordering on the vertices (and corresponding path§) thfat
are traversed—whenever we pop back up to a vertg@nd
thus, we can store its value in the cache), wepfgh) at the
end of the current order.

signed variables isp;, for j € P, plus all variables in
Ok, k > t*.) LetT’ be the DPLL tree corresponding to
¢’ for solving f’. By Lemma 10, it suffices to show that
#DPLLCache when run on inpufg and7”, takes time at
least2™".



Note that the firsti variables queried iff” are the pearl
variables inP¢, and thus the set of ali*" paths of height
exactlyn® in T’ correspond to the s& of all possible set-

any full vertexi , mapi to exactly one pearf such that
p; € P—P¢—PF. (Again this can be arbitrary as long as it
is consistent with a one-to-one mapping.) For the remaining

tings to these variables. We want to show that for each ver-p; € P — P¢ — PF that have not yet been mapped to, set

tex v of heightn® in 7" (corresponding to each of th&"
settings of all variables i#°“), thatv must be traversed by
#DPLLCache, and thus the runtime is at le2ist

Fix such a vertex, and corresponding pafh € S. If
v is not traversed, then there is somleC p and somer
such thatr occurs beforg’ in the ordering, and such that

f'le = f'|. We want to show that this cannot happen.

There are several cases to consider.
la. Suppose thaz| < nc ando # p’. Then bothy’ and

all queried variableg; ; to 0. For all pearlg; in P, color
them Red. For all pearls; in P that have been queried,
assign a fixed color to each pearl.

The only variables that were queried fg, . . '9%" and
that are not set by, are the edge variablep; ;, where
j € PF,andi € F;. Let S denote the set of al”” settings
of these edge variables such that each P is mapped to
exactly one element ifi;. Let f = f|a, and letT” be the
DPLL tree corresponding té' for solving f/, whereé’ is

o are partial assignments to some of the variables in the ordering on the unassigned variables consistentévith
PC that are inconsistent with one another. It is easy to By Lemma 10, it suffices to show that #DPLLCache f8n

check that in this casd/|,, # f'|,.

2a. Suppose thalo| > n¢, and the(n® + 1)* variable
set byo is an edge variablg; ;. Becausdp’| < n¢,
p'(pi,;) = *. By Corollary 12, it follows thatf’|,, #
flo

3a. Suppose thafz| > nc and the(n® + 1) variable set
by o is a pearl variablep;. (Again, we know that
p; is unset byp’.) Since this is case (a), we can as-
sume thap; € P — PY — PF. Call a vertexi bad
if P— PF — PC C edges;:(i). If iis bad, then
fanin,. (i) is greater tham — 2n° > n/2. Since the
total number of edges queried is at mpst ¢, if fol-
lows that the number of bad vertices is at mast.
This implies that we can find a pairi + 1 of ver-
tices and a peayl’ such that: (1p; ; is not queried in
O1,. .., 0t (2) pis1,j isnotqueriedidy, ..., 0;-; (3)
pjrisin P — P¢ — PF and thug; is also not queried.
Thus the clausé-p; ; V —p; V —piy1,j V pjr)|,r does
not disappear or shrink iff| -, and thusf’|,» # f'|,.

Case (b). Let 6 be a total ordering td/ars(f) such that

case (b) holds. Now leP¢ denote the set of less than

pearls markedC and let P denote the set of exactly

pearls markedr.

We define a partial restriction/; to all but2™" of the
variables indy, .. ., 6« as follows. Call a vertex full if all
variableg; ; have been queried #y, . . ., Gtg. There are at
mostn® full vertices. For each € P, we will fix a pair
of verticesF; = (i;,i}) in [n]. Let the union of all» sets
F; be denoted by". F' has the following properties. (1)
For eachj, no element of; is full; (2) For eachj € PF,
Fj € edgesy: (7); and (3) every two distinct elements in
are at least distance 4 apart. Sinfagin,: (j) > n°, and
d = 2/5 > ¢, itis possible to find such sefS; satisfying
these criteria.

For eachp; ; queried in6,, .. .Gt;;, wherej € PF and
i ¢ Fj, My, will setp; ; to 0. For eacly € P, and for
any variablep; ; queried infy, .. .Gt;;, setp; ; to 0. For

andT” takes time at least™” .

Note that the firsn® variables queried ir¥” are the
variablesp;; ;, Pi; j»Jj € PF. The only nontrivial paths of
height2n® in T’ are those were eaghe P* is mapped to
exactly one vertex itF;, since otherwise the formulf{ is
set to 0. Thus, the nontrivial pathsTil of height2n® cor-
respond ta5. We want to show that for each such nontrivial
vertexwv of height2n® in T’ (corresponding to each of the
restrictions inS), thatv must be traversed by #DPLLCache,
and thus the runtime is at leat .

Fix a vertexv and corresponding pajhe S. Again we
want to show that for any’ C p, ando whereos occurs
beforep’ in the ordering, thaf’|,, # f’|,. There are three
cases to consider.

1b. Suppose thalg| < 2n. If ¢ is nontrivial, then both
p' ando are partial mappings of the peaylsn P¥ to
F;, that are inconsistent with one another. It is easy to
check that in this cas¢/|, # f'|,.

2b. Suppose thalz| > 2n° and the(2n® + 1) variable
set byo is an edge variablg; ;. Becausep’| < 2n¢,
p'(pi,j) = *. By Corollary 12, it follows thatf’|, #
fl|p’-

3b. Suppose thalz| > 2n° and the(2n® + 1) variable
set byo is a pearl variable;. By the definition oft;,
we can assume that € P — P¢ — PF. By reason-
ing similar to case 3a, can find vertices + 1, and
pearlj’ € P — P¢ — PF such that none of the vari-
ablep; ;, pi+1,5, p; are queried irdy, ..., 0. Thus
the clausé—p; ; V—p;V-pit1,5 Vs )|, does not dis-
appear to shrink irf’| 1, and thereforg’|,» # f'|,.

Thus for each of the two cases, #DPLLCacheféand
T’ takes time at least”” and thus #DPLLCache ofi and
T takes time at leat™ . m

7 Final Remarks

In this paper we have studied DPLL with caching, ana-
lyzing the performance of various types of caching for#S
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