
Concurrent Non-Malleable Commitments∗

Rafael Pass † Alon Rosen ‡

Abstract

We present a non-malleable commitment scheme that retains its security properties even
when concurrently executed a polynomial number of times. That is, a man-in-the-middle ad-
versary who is simultaneously participating in multiple concurrent commitment phases of our
scheme, both as a sender and as a receiver, cannot make the values he commits to depend on the
values he receives commitments to. Our result is achieved without assuming an a-priori bound
on the number of executions and without relying on any set-up assumptions.

Our construction relies on the existence of standard claw-free permutations and only requires
a constant number of communication rounds.

1 Introduction

The notion of commitment is central in cryptographic protocol design. Often described as the
“digital” analogue of sealed envelopes, commitment schemes enable a party, known as the sender,
to commit itself to a value while keeping it secret from the receiver. This property is called hiding.
Furthermore, the commitment is binding, and thus in a later stage when the commitment is opened,
it is guaranteed that the “opening” can yield only a single value determined in the committing stage.

For some applications, the above security guarantees are not sufficient and additional properties
are required. For instance, the definition of commitments does not rule out the possibility that
an adversary, upon seeing a commitment to a specific value v, is able to commit to a related
value (say, v − 1), even though it does not know the actual value of v. This kind of attack
might have devastating consequences if the underlying application relies on the independence of
committed values (e.g., consider a case in which the commitment scheme is used for securely
implementing a contract bidding mechanism). The state of affairs is even worsened by the fact that
many of the known commitment schemes are actually susceptible to this kind of attack.

1.1 Non-Malleable Commitments

In order to address the above concerns, Dolev, Dwork and Naor (DDN) introduced the concept
of non-malleable commitments [16]. Loosely speaking, a commitment scheme is said to be non-
malleable if no adversary can succeed in the attack described above. That is, it is infeasible for the
adversary to maul a commitment to a value v into a commitment to a “related” value ṽ.

The first non-malleable commitment protocol was constructed by Dolev, Dwork and Naor [16].
The security of their protocol relies on the existence of one-way functions, and requires O(log n)
rounds of interaction, where n ∈ N is a security parameter. A more recent result by Barak presents

∗Preliminary version appeared in FOCS 2005, pages 563-572, 2005.
†Cornell University. E-mail: pass@csail.mit.edu. Part of work done while at CSAIL, MIT.
‡Harvard DEAS, Cambridge, MA. E-mail: alon@eecs.harvard.edu. Part of work done while at CSAIL, MIT.

1

a constant-round protocol for non-malleable commitment, whose security relies on the existence of
trapdoor permutations and hash functions that are collision-resistant against sub-exponential sized
circuits [2]. Even more recently, Pass and Rosen present a constant-round protocol for the same
task, assuming only collision resistant hash function secure against polynomial sized circuits [42].

1.2 Concurrent Non-Malleable Commitments

The basic definition of non-malleable commitments only considers a scenario in which two execu-
tions take place at the same time. A natural extension of this scenario (already suggested in [16])
is one in which more than two invocations of the commitment protocol take place concurrently.
In the concurrent scenario, the adversary is receiving commitments to multiple values v1, . . . , vm,
while attempting to commit to related values ṽ1, . . . , ṽm. As argued in [16], non-malleability with
respect to two executions can be shown to guarantee individual independence of any ṽi from any
vj . However, it does not rule out the possibility of an adversary to create joint dependencies be-
tween more than a single individual pair (see [16], Section 3.4.1 for an example in the context of
non-malleable encryption). Resolving this issue has been stated as a major open problem in [16].

Partially addressing this issue, Pass demonstrates the existence of commitment schemes that
remain non-malleable under bounded concurrent composition [40]. That is, for any (predetermined)
polynomial p(·), there exists a non-malleable commitment that remains secure as long as it is not
executed more than p(n) times, where n ∈ N is a security parameter.

One evident disadvantage of the above solution is that it requires that the number of execu-
tions is fixed before the protocol is specified, or otherwise no security guarantee is provided. Less
evidently, the length of the messages in the protocols has to grow linearly with the number of
executions. Thus, from both a theoretical and a practical point of view, the solution is still not
satisfactory. What we would like to have is a single protocol that preserves its non-malleability
even when it is executed concurrently for any (not predetermined) polynomial number of times.

1.3 Our Results

We present a new protocol for concurrent non-malleable commitments. Our protocol remains non-
malleable even when concurrently executed an (unbounded) polynomial number of times. We do
not rely on any kind of set-up assumption (such as the existence of a common reference string).

The resulting commitment is statistically binding, and satisfies non-malleability with respect to
commitment. The former condition implies that, except with negligible probability, a transcript of
a commitment corresponds to a unique value, whereas the latter implies that, upon concurrently
participating in polynomially many commitments, both as a receiver and as a sender, the adversary
is not able to commit to a sequence of related values.1 Here we assume that the adversary does
not get to see the de-commitment to any of the values he is receiving a commitment to until he is
done with committing to all of his values.

Theorem 1 (Concurrent non-malleable commitment) Suppose that there exists a family of
pairs of claw-free permutations.2 Then, there exists a constant-round statistically-binding commit-

1In a different variant, called non-malleable commitment with respect to opening [19], the adversary is considered
to have succeeded only if it manages to de-commit to a related value. This paper only considers the notion of
non-malleability with respect to commitments.

2The existence of claw-free permutations follows from the assumption that factoring Blum integers is hard (or
from the hardness of finding discrete-logarithms modulo a prime). They are required for obtaining perfectly hiding-
commitments, as well as collision resistant hashing.

2

ment scheme that is concurrently non malleable with respect to commitment.

To the best of our knowledge, this result yields the first instance of a non-trivial protocol that
simultaneously satisfies non-malleability and unbounded concurrency without relying on set-up
assumptions.

Additional contributions. Our proof also yields the first commitment scheme that satisfies non-
malleability using a strict polynomial-time simulator (a.k.a. strict non-malleability) with respect
to commitment.3 By this we mean that the simulation used to prove non-malleability runs in strict
(as opposed to expected) polynomial time. This was the security notion originally defined (but not
achieved in) the DDN paper [16].

Our definitions of non-malleable commitments are somewhat different (stronger) than the ones
appearing in the DDN paper [16]. Specifically, we formalize the notion of two values being unre-
lated through the concept of computational indistinguishability (rather than using polynomial time
computable relations). The main reason for strengthening the definition is that it yields a notion
that is more intuitive and easier to work with (especially in the concurrent setting). We stress that
any protocol satisfying our definition also satisfies the original one.

Techniques and ideas. Our construction follows the paradigm introduced by Pass and Rosen,
of using a protocol for non-malleable zero-knowledge in order to obtain (single execution) non-
malleable commitments [42], and relies on the “message-length” technique of Pass [40]. While our
construction relies on the same high-level structure, the analysis of the protocol is significantly
different. The central observation that enables the analysis is that concurrent simulation of the
underlying (non-malleable) zero-knowledge protocol is not actually necessary for proving concurrent
non-malleability of our commitments. Indeed, for our analysis to go through, it will be sufficient to
simulate only a single execution of the underlying zero-knowledge protocol. This will be performed
while concurrently extracting multiple witnesses for the statements proved by the adversary. We
call the above property one-many simulation extractability. We prove that this property is indeed
satisfied by a variant of the non-malleable zero-knowledge protocols of [40, 42]. To show this,
we rely on a non-black box simulation argument, which is delicately combined with a black-box
extraction technique. (Here we use the fact that concurrent extraction is significantly easier than
concurrent simulation (cf. [33]).)

1.4 Related Work

A large body of previous work deals with the construction of non-malleable protocols assuming
various kinds of trusted set-up. Known constructions include non-malleable commitment schemes
assuming the existence of a common reference string [19, 11], as well as non-malleable commitment
schemes and non-interactive non-malleable ZK protocols assuming the existence of a common
random string [15, 14, 13].

Several of the above works explicitly address the issue of multiple executions of non-malleable
schemes [13, 11, 9] (also called reusability in the terminology of [11]). Perhaps most notable amongst
the works addressing concurrency, is the one on Universally composable commitments [9]. Universal
composability implies concurrent non-malleability. However, it is impossible to construct univer-
sally composable commitments without making set-up assumptions [9].

3This should not be confused with a previous result showing the existence of commitment schemes that are strictly
non-malleable with respect to opening [42].

3

Other related works involve the task of session-key generation in a setting where the honest
parties share a password that is taken from a relatively small dictionary [22, 39, 3]. These protocols
are designed having a man-in-the-middle adversary in mind, and only require the usage of a “mild”
set-up assumption (namely the existence of a “short” password). Some of these works explicitly
address the issue of multiple protocol execution (cf. [22]), but their treatment is limited to the case
of sequential composition. A treatment of the full concurrent case appears in [31] (see also [10, 3]),
but it relies on the existence of a common reference string.

2 Preliminaries

2.1 Basic notation

We let N denote the set of all integers. For any integer m ∈ N , denote by [m] the set {1, 2, . . . ,m}.
For any x ∈ {0, 1}∗, we let |x| denote the size of x (i.e., the number of bits used in order to write it).
For two machines M,A, we let MA(x) denote the output of machine M on input x and given oracle
access to A. The term negligible is used for denoting functions that are (asymptotically) smaller
than one over any polynomial. More precisely, a function ν(·) from non-negative integers to reals
is called negligible if for every constant c > 0 and all sufficiently large n, it holds that ν(n) < n−c.

2.2 Witness Relations

We recall the definition of a witness relation for an NP language [20].

Definition 2.1 (Witness relation) A witness relation for a language L ∈ NP is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by

L = {x : ∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also let RL(x) denote
the set of witnesses for the membership x ∈ L, i.e.,

RL(x) = {y : (x, y) ∈ L}

In the following, we assume a fixed witness relation RL for each language L ∈ NP.

2.3 Computational indistinguishability and statistical closeness

The following definition of (computational) indistinguishability originates in the seminal paper of
Goldwasser and Micali [26].

Let X be a countable set of strings. A probability ensemble indexed by X is a sequence of random
variables indexed by X. Namely, any A = {Ax}x∈X is a random variable indexed by X.

Definition 2.2 ((Computational) Indistinguishability) Let X and Y be countable sets. Two
ensembles {Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said to be computationally indistinguishable over X,
if for every probabilistic “distinguishing” machine D whose running time is polynomial in its first
input, there exists a negligible function ν(·) so that for every x ∈ X, y ∈ Y :

|Pr [D(x, y, Ax,y) = 1]− Pr [D(x, y, Bx,y) = 1]| < ν(|x|)

{Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said to be statistically close over X if the above condition
holds for all (possibly unbounded) machines D.

4

2.4 Interactive Proofs, Zero-Knowledge and Witness-Indistinguishability

We use the standard definitions of interactive proofs (and interactive Turing machines) [27, 20] and
arguments [4]. Given a pair of interactive Turing machines, P and V , we denote by 〈P, V 〉(x) the
random variable representing the (local) output of V when interacting with machine P on common
input x, when the random input to each machine is uniformly and independently chosen.

Definition 2.3 (Interactive Proof System) A pair of interactive machines 〈P, V 〉 is called an
interactive proof system for a language L if machine V is polynomial-time and the following two
conditions hold with respect to some negligible function ν(·):

• Completeness: For every x ∈ L,

Pr [〈P, V 〉(x) = 1] ≥ 1− ν(|x|)

• Soundness: For every x 6∈ L, and every interactive machine B,

Pr [〈B, V 〉(x) = 1] ≤ ν(|x|)

In case that the soundness condition is required to hold only with respect to a computationally
bounded prover, the pair 〈P, V 〉 is called an interactive argument system.

Zero-knowledge. An interactive proof is said to be zero-knowledge (ZK) if it yields nothing
beyond the validity of the assertion being proved. This is formalized by requiring that the view
of every probabilistic polynomial-time adversary V ∗ interacting with the honest prover P can be
simulated by a probabilistic polynomial-time machine S (a.k.a. the simulator). The idea behind
this definition is that whatever V ∗ might have learned from interacting with P , he could have
actually learned by himself (by running the simulator S).

The notion of ZK was introduced by Goldwasser, Micali and Rackoff [27]. To make ZK robust
in the context of protocol composition, Goldreich and Oren [25] suggested to augment the definition
so that the above requirement holds also with respect to all z ∈ {0, 1}∗, where both V ∗ and S are
allowed to obtain z as auxiliary input. The verifier’s view of an interaction consists of the common
input x, followed by its random tape and the sequence of prover messages the verifier receives
during the interaction. We denote by viewP

V ∗(x, z) a random variable describing V ∗(z)’s view of
the interaction with P on common input x.

Definition 2.4 (Zero-knowledge) Let 〈P, V 〉 be an interactive proof system. We say that 〈P, V 〉
is zero-knowledge, if for every probabilistic polynomial-time interactive machine V ∗ there exists a
probabilistic polynomial-time algorithm S such that the ensembles {viewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and
{S(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable over L.

A stronger variant of zero-knowledge is one in which the output of the simulator is statistically close
to the verifier’s view of real interactions. We focus on argument systems, in which the soundness
property is only guaranteed to hold with respect to polynomial time provers.

Definition 2.5 (Statistical zero-knowledge) Let 〈P, V 〉 be an interactive argument system. We
say that 〈P, V 〉 is statistical zero-knowledge, if for every probabilistic polynomial-time V ∗ there
exists a probabilistic polynomial-time S such that the ensembles {viewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and
{S(x, z)}x∈L,z∈{0,1}∗ are statistically close over L.

In case that the ensembles {viewP
V ∗(x, z)}x∈L,z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ are identically

distributed, the protocol 〈P, V 〉 is said to be perfect zero-knowledge.

5

Witness Indistinguishability. An interactive proof is said to be witness indistinguishable (WI)
if the verifier’s view is “computationally independent” of the witness used by the prover for proving
the statement. In this context, we focus on languages L ∈ NP with a corresponding witness
relation RL. Namely, we consider interactions in which on common input x the prover is given a
witness in RL(x). By saying that the view is computationally independent of the witness, we mean
that for any two possible NP-witnesses that could be used by the prover to prove the statement
x ∈ L, the corresponding views are computationally indistinguishable.

Let V ∗ be a probabilistic polynomial time adversary interacting with the prover, and let
viewP

V ∗(x,w, z) denote V ∗’s view of an interaction in which the witness used by the prover is
w (where the common input is x and V ∗’s auxiliary input is z).

Definition 2.6 (Witness-indistinguishability) Let 〈P, V 〉 be an interactive proof system for a
language L ∈ NP. We say that 〈P, V 〉 is witness-indistinguishable for RL, if for every probabilistic
polynomial-time interactive machine V ∗ and for every two sequences {w1

x}x∈L and {w2
x}x∈L, such

that w1
x, w2

x ∈ RL(x) for every x ∈ L, the probability ensembles {viewP
V ∗(x,w1

x, z)}x∈L,z∈{0,1}∗ and
{viewP

V ∗(x,w2
x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable over L.

In case that the ensembles {viewP
V ∗(x, w1

x, z)}x∈L,z∈{0,1}∗ and {viewP
V ∗(x,w2

x, z)}x∈L,z∈{0,1}∗ are
identically distributed, the proof system 〈P, V 〉 is said to be witness independent.

2.5 Universal Arguments

Universal arguments (introduced in [5] and closely related to the notion of CS-proofs [34]) are used
in order to provide “efficient” proofs to statements of the form y = (M,x, t), where y is considered
to be a true statement if M is a non-deterministic machine that accepts x within t steps. The
corresponding language and witness relation are denoted LU and RU respectively, where the pair
((M,x, t), w) is in RU if M (viewed here as a two-input deterministic machine) accepts the pair
(x,w) within t steps. Notice that every language in NP is linear time reducible to LU . Thus, a
proof system for LU allows us to handle all NP-statements. In fact, a proof system for LU enables
us to handle languages that are presumably ”beyond” NP, as the language LU is NE-complete
(hence the name universal arguments).4

Definition 2.7 (Universal argument) A pair of interactive Turing machines (P, V) is called a
universal argument system if it satisfies the following properties:

• Efficient verification: There exists a polynomial p such that for any y = (M,x, t), the total
time spent by the (probabilistic) verifier strategy V , on common input y, is at most p(|y|). In
particular, all messages exchanged in the protocol have length smaller than p(|y|).

• Completeness by a relatively efficient prover: For every ((M,x, t);w) in RU ,

Pr[(P (w), V)(M,x, t) = 1] = 1

Furthermore, there exists a polynomial q such that the total time spent by P (w), on common
input (M,x, t), is at most q(TM (x,w)) ≤ q(t), where TM (x,w) denotes the running time of
M on input (x,w).

4Furthermore, every language in NEXP is polynomial-time (but not linear-time) reducible to LU

6

• Computational Soundness: For every polynomial size circuit family {P ∗n}n∈N , and every
triplet (M,x, t) ∈ {0, 1}n \ LU ,

Pr[(P ∗n , V)(M ;x; t) = 1] < ν(n)

where ν(·) is a negligible function.

• Weak proof of knowledge: For every positive polynomial p there exists a positive polynomial p′

and a probabilistic polynomial-time oracle machine E such that the following holds: for every
polynomial-size circuit family {P ∗n}n∈N , and every sufficiently long y = (M ;x; t) ∈ {0, 1}∗ if
Pr[(P ∗n ;V)(y) = 1] > 1/p(|y|) then

Pr[∃w = w1, . . . wt ∈ RU (y) s.t. ∀i ∈ [t], EP ∗
n

r (y; i) = wi] >
1

p′(|y|)

where RU (y) def= {w : (y, w) ∈ RU} and E
P ∗

n
r (·, ·) denotes the function defined by fixing the

random-tape of E to equal r, and providing the resulting Er with oracle access to P ∗n .

2.6 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself to a
value while keeping it secret from the receiver (this property is called hiding). Furthermore, the
commitment is binding, and thus in a later stage when the commitment is opened, it is guaranteed
that the “opening” can yield only a single value determined in the committing phase. Commitment
schemes come in two different flavors, statistically-binding and statistically-hiding. We sketch the
properties of each one of these flavors. Full definitions can be found in [20].

Statistically-binding: In statistically binding commitments, the binding property holds against
unbounded adversaries, while the hiding property only holds against computationally bounded
(non-uniform) adversaries. Loosely speaking, the statistical-binding property asserts that,
with overwhelming probability over the coin-tosses of the receiver, the transcript of the in-
teraction fully determines the value committed to by the sender. The computational-hiding
property guarantees that the commitments to any two different values are computationally
indistinguishable.

Statistically-hiding: In statistically-hiding commitments, the hiding property holds against un-
bounded adversaries, while the binding property only holds against computationally bounded
(non-uniform) adversaries. Loosely speaking, the statistical-hiding property asserts that com-
mitments to any two different values are statistically close (i.e., have negligible statistical dis-
tance). In case the statistical distance is 0, the commitments are said to be perfectly-hiding.
The computational-binding property guarantees that no polynomial time machine is able to
open a given commitment in two different ways.

Non-interactive perfectly-binding commitment schemes can be constructed using any 1–1 one-
way function (see Section 4.4.1 of [20]). Allowing some minimal interaction (in which the receiver
first sends a single random initialization message), statistically-binding commitment schemes can
be obtained from any one-way function [35, 30]. We will think of such commitments as a family of
non-interactive commitments, where the description of members in the family will be the initial-
ization message. Statistically-hiding commitment schemes can be constructed from any one-way

7

function [36, 28], but constant-round schemes are only know to exists under stronger assump-
tions; specifically, assuming collision-resistant hashfunctions [12, 29]. Perfectly-hiding commitment
schemes, on the other hand, can be constructed from one-way permutations [37], but constant-
round schemes are only known under stronger assumptions, such as the existence of a collection of
certified claw-free permutations [21].

2.7 Proofs of Knowledge

Informally an interactive proof is a proof of knowledge if the prover convinces the verifier not only
of the validity of a statement, but also that it possesses a witness for the statement. This notion is
formalized by the introduction of an machine E, called a knowledge extractor. As the name suggests,
the extractor E is supposed to extract a witness from any malicious prover P ∗ that succeeds in
convincing an honest verifier. More formally,

Definition 2.8 (Proof of Knowledge) Let (P, V) be an interactive proof system for the language
L with witness relation RL. We say that (P, V) is a proof of knowledge if there exists a polynomial
q and a probabilistic oracle machine E, such that for every probabilistic polynomial-time interactive
machine P ∗, there exists some negligible function µ(·) such that for every x ∈ L and every y, r ∈
{0, 1}∗ such that Pr[〈P ∗x,y,r, V (x)〉 = 1] > 0, where P ∗x,y,r denotes the machine P ∗ with common
input fixed to x, auxiliary input fixed to y and random tape fixed to r, the following holds

1. The expected number of steps taken by EP ∗
x,y,r is bounded by

q(|x|)
Pr[〈P ∗x,y,r, V (x)〉 = 1]

where EP ∗
x,y,r denotes the machine E with oracle access to P ∗x,y,r.

2. Furthermore,
Pr[〈P ∗x,y,r, V (x)〉 = 1 ∧ EP ∗

x,y,r /∈ RL(x)] ≤ µ(|x|)

The machine E is called a (knowledge) extractor.

We remark that as our definition only considers computationally bounded provers, we only get
a “computationally convincing” notion of a proof of knowledge (a.k.a arguments of knowledge)
[4]. We additionally point out that our definition is slightly different from the definition of [6] in
that we require that the expected running-time of the extractor is always bounded by poly(|x|)/p,
where p denotes the success probability of P ∗, whereas [6] allows for some additional slackness in
the running-time. On the other hand, whereas [6] requires the extractor to always output a valid
witness, we instead allow the extractor to fail with some negligible probability. We will rely on the
following theorem:

Theorem 2.9 ([7, 4]) Assume the existence of claw-free permutations. Then there exists a constant-
round public-coin witness independent argument of knowledge for NP.

Indeed, standard techniques can be used to show that the parallelized version of the protocol of [7],
using perfectly-hiding commitments, is an argument of knowledge (as defined above). As usual:
the knowledge extractor E proceeds by feeding new “challenges” to the prover P ∗ until it gets two
accepting transcripts. If the two accepting challenges contain the same challenge, or if the prover
manages to open up a commitment in two different ways, the extractor outputs fail; otherwise it
can extract a witness.

8

3 Concurrent Non-Malleable Commitments

Non-malleable commitments were introduced by Dolev, Dwork and Naor (DDN) [16]. Our defini-
tions of non-malleability are somewhat stronger that the ones proposed by DDN [16]. Specifically,
we formalize the notion of two values being unrelated through the concept of computational indis-
tinguishability (rather than using polynomial time computable relations).

3.1 The General Setting

Let 〈C,R〉 be a commitment scheme and consider a man-in-the-middle adversary A that is simulta-
neously participating in multiple concurrent executions of 〈C,R〉. Executions in which A is playing
the role of the receiver are said to belong to the left interaction, whereas executions in which A is
playing the role of the sender are said to belong to the right interaction. We assume for simplicity,
and without loss of generality, that the number of commitment schemes taking place in the left
and right interactions is identical. The total number of the interactions in which the adversary is
involved (either as a sender or as a receiver) is not a-priori bounded by any polynomial (though it
is assumed to be polynomial in the security parameter). We assume that the adversary does not
get to see the de-commitment to any of the values he is receiving a commitment to until he is done
with committing to all of his values.

Besides controlling the messages that it sends in the left and right interactions, A has control
over their scheduling. In particular, it may delay the transmission of a message in one interaction
until it receives a message (or even multiple messages) in the other interaction. It can also arbitrarily
interleave messages that belong to different executions within an interaction.

The adversary A is trying to take advantage of his participation in the commitments taking
place in the left interaction in order to commit to a related value in the right interaction. The
honest sender and receiver are not necessarily aware to the existence of the adversary, and might
be under the impression that they are interacting one with the other. We let v1, . . . , vm denote the
values committed to in the left interaction and ṽ1, . . . , ṽm denote the values committed to in the
right interaction.5 The above scenario is depicted in Figure 1 (with no explicit demonstration of
possible interleavings of messages between different executions).

C A R

Com(v1) Com(ṽ1)

... ↘ ↗
...

Com(vi) → → Com(ṽi)... ↗ ↘
...

Com(vm) Com(ṽm)

Figure 1: A concurrent man-in-the-middle adversary.

The traditional definition of non-malleable commitments [16] considers the case when m = 1.
Loosely speaking, it requires that the left interaction does not “help” the adversary A in committing
to a value ṽ1 that is somehow correlated with the value v1. In this work we focus on non-malleability
with respect to commitment [16], where the adversary is said to succeed if it manages to commit

5The adversary does not necessarily “know” the values ṽ1, . . . , ṽm. However, since the commitment is statistically
binding, this value is (almost always) well defined.

9

to a related value (even without being able to later de-commit to this value). Note that this notion
makes sense only in the case of statistically-binding commitments.

3.2 Non-Malleability via Indistinguishability

Following the simulation paradigm [26, 27, 23, 24], the notion of non-malleability is formalized
by comparing between a man-in-the-middle and a simulated execution. In the man-in-the-middle
execution the adversary is simultaneously acting as a receiver in one interaction and as a committer
in another interaction. In the simulated execution the adversary is engaged in a single interaction
where it is acting as a committer.

The original definition of non malleability required that for any polynomial time computable
(non-reflexive) relation R, the value ṽ committed to by the adversary in the simulated execution
is no (significantly) less likely to satisfy R(v, ṽ) = 1 than the value committed to by the adversary
in the man-in-the-middle execution [16].

To facilitate the formalization for m > 1, we choose to adopt a slightly different definitional
approach and will actually require an even stronger condition (which we are still able to satisfy
with our protocol). Specifically, we require that for any adversary in a man-in-the-middle execution,
there exists an adversary that commits to essentially the same value in the simulated execution. By
essentially the same value, we mean that the value committed to by the simulator is computationally
indistinguishable from the value committed to by the adversary in the man-in-the middle execution.

Since copying cannot be ruled out, we will only be interested in the case where copying is not
considered success. We therefore impose the condition that whenever the adversary has fully copied
a transcript of an interaction in which it acts as a receiver, the value ṽ that he has committed to
in the corresponding execution is set to be a special “failure” symbol, denoted ⊥.

3.3 The Actual Definition

Let 〈C,R〉 be a commitment scheme, and let n ∈ N be a security parameter. Consider man-in-
the-middle adversaries that are participating in left and right interactions in which m = poly(n)
commitments take place. We compare between a man-in-the-middle and a simulated execution.

The man-in-the-middle execution. In the man-in-the-middle execution, the adversary A is
simultaneously participating in m left and right interactions. In the left interactions the man-in-
the-middle adversary A interacts with C receiving commitments to values v1, . . . , vm. In the right
interaction A interacts with R attempting to commit to a sequence of related values ṽ1, . . . , ṽm.
Prior to the interaction, the values v1, . . . , vm are given to C as local input. A receives an auxiliary
input z, which may contain a-priori information about v1, . . . , vm. Let mimA

com(v1, . . . , vm, z) denote
a random variable that describes the values ṽ1, . . . , ṽm to which the adversary has committed in
the right interaction. (Since we are dealing with statistically binding commitments, ṽ1, . . . , ṽm

are (almost always) well defined. Whenever the value of the commitment is not uniquely defined
(which can happen with some negligible probability in case of statistically binding commitments),
the value of the commitment is defined to be ⊥.) If the transcript of the ith right commitment
is identical to the transcript of any of the left interactions (which means that adversary has fully
copied a specific commitment that has taken place on the left), the value ṽi is set to be ⊥.6

6This approach allows ṽi = vj for some i, j ∈ {1, . . . , m}, as long as the man-in-the-middle does not fully copy the
messages from one of the left executions. This is in contrast to the original definition which does not handle the case
of ṽi = vj (as R is non-reflexive). This means that the new approach takes into consideration a potentially larger
class of attacks.

10

The simulated execution. In the simulated execution a simulator S directly interacts with R.
As in the man-in-the-middle execution, the values v1, . . . , vm are chosen prior to the interaction
and S receives some a-priori information about v1, . . . , vm as part of its auxiliary input z. We
let simS

com(z) denote a random variable that describes the values committed to in the output of S
(which consists of a sequence of values ṽ1, . . . , ṽm).

Definition 3.1 A commitment scheme 〈C,R〉 is said to be concurrent non-malleable with respect
to commitment if for every polynomial p(·), and every probabilistic polynomial-time man-in-the-
middle adversary A that participates in at most m = p(n) concurrent executions, there exists a
probabilistic polynomial time simulator S such that the following ensembles are computationally
indistinguishable over {0, 1}∗:

•
{
mimA

com(v1, . . . , vm, z)
}

v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗

•
{
simS

com(z)
}

v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗

It can be seen that for m = 1 any protocol that satisfies Definition 3.1 also satisfies the original
(relation based) definition of non-malleability of [16]. Loosely speaking, this is because the existence
of a polynomial time computable relation R that violates the original definition of non-malleability
could be used to distinguish between the values of mimA

com(v, z) and simS
com(z). We additionally

point out that even when only considering the case when m = 1, Definition 3.1 is stronger than
relation-based definition in that it prevents an adversary from producing a different commitment
to the same value that it receives a commitment to; the original definition did not consider this as
a successful attack.7

3.4 One-Many Concurrent Non-Malleable Commitments

A seemingly more relaxed (and thus potentially easier to satisfy) notion of concurrent non-malleable
commitments is one in which the man-in-the-middle adversary A engages in only a single commit-
ment protocol in the left interaction (but still polynomially many in the right interaction). Such a
notion is a special case of Definition 3.1 in which the adversary A participates in only one commit-
ment session on the left hand side (instead of m sessions).

A commitment protocol that satisfies the relaxed definition is said to be one-many concur-
rent non-malleable. As we argue below, the relaxed notion “in essence” implies full-fledged non-
malleability. In particular, in order to construct concurrent non-malleable commitments, it will
be sufficient to come up with a protocol that is one-many concurrent non-malleable. To formalize
this composability property we need to restrict our attention to certain “natural” commitment
schemes.8 We say that a commitment scheme is natural if any commitment where the committer
aborts (sending ⊥) before the end of the protocols makes the commitment invalid (i.e., a commit-
ment to ⊥).

Proposition 3.2 Let 〈C,R〉 be a natural one-many concurrent non-malleable commitment. Then,
〈C,R〉 is also a (full fledged) concurrent non-malleable commitment.

7In contrast, the definition of non-malleable encryption of [16] indeed also prevents this type of attack. In a sense,
our definition is thus more in line with their definition of non-malleability for encryptions schemes.

8Similar technical restrictions are needed to show composability of non-malleable encryption [43].

11

Proof: Let A be a man-in-the-middle adversary that participates in at most m = p(n) concur-
rent executions. We show the existence of a simulator S such that the following ensembles are
computationally indistinguishable over {0, 1}∗:

•
{
mimA

com(v1, . . . , vm, z)
}

v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗

•
{
simS

com(z)
}

v1,...,vm∈{0,1}n,n∈N,z∈{0,1}∗

The simulator S proceeds as follows on input z. S incorporates A(z) and internally emulates
all the left interactions for A by simply honestly committing to the string 0n (i.e., in order to
emulate the ith left interaction, S executes the algorithm C on input 0n). Messages from the right
interactions are instead forwarded externally, with the following exception: whenever A wishes to
send the last message qi in the i’th right session, S “holds-on” to it without (yet) forwarding it
externally. Finally, when S has completed the emulation of all left interactions for A, it checks
whether A fully copied any of the left executions. For each execution i where A fully copied one of
the left executions, S externally sends ⊥ as its last message in the i’th right execution (to invalidate
that commitment); for all other executions j, A instead sends the final message qj .

We show that the values that S commits to are indistinguishable from the values that A commits
to. Suppose, for contradiction, that this is not the case. That is, there exists a polynomial-
time distinguisher D and a polynomial p(n) such that for infinitely many n, there exist strings
v1, . . . , vm ∈ {0, 1}n, z ∈ {0, 1}∗ such that

Pr
[
D(mimA

com(v1, . . . , vm, z) = 1
]
− Pr

[
D(simS

com(z)) = 1
]
≥ 1

p(n)

Fix a generic n for which this happens. We provide a hybrid argument that will contradict the
one-many non-malleability of 〈C,R〉. The “hybrid” random variable hybk(v1, . . . , vm, z) involves
an execution where A(z) is participating in m left and m right interactions, and is defined in the
following way:

• For j ≤ k, the jth session in the left interaction consists of a commitment to 0n.

• For j > k, the jth session in the left interaction consists of a commitment to vj .

• Output the values ṽ1, . . . , ṽm committed to by A in the right interactions with an honest R.
As in the definition of mimcom (see Definition 3.1), the value ṽi of a commitment ci is set to
⊥ if A fully copies one of the left executions.

Note that the values ṽ1, . . . , ṽm are not efficiently computable, but are well defined nevertheless.
Just as in Definition 3.1, if a commitment can be opened to two (or more) different values, we set
its value to ⊥. By construction, it directly follows that:

hyb0(v1, . . . , vm, z) = mimA
com(v1, . . . , vm, z)

By additionally relying on the naturality property of 〈C,R〉, it holds that:9

hybm(v1, . . . , vm, z) = simS
com(z)

9The naturality property together with the construction of S is used to make sure that S produces a commitment
to ⊥ whenever A copies the left interaction.

12

It follows by a standard hybrid argument that there exists an i ∈ [m] such that

Pr
[
D(hybi−1(v1, . . . , vm, z) = 1

]
− Pr

[
D(hybi(v1, . . . , vm, z)) = 1

]
≥ 1

p(n)m

Note that the only difference between the experiments hybi−1(v1, . . . , vm, z) and hybi(v1, . . . , vm, z),
is that in the former A receives a commitment to vi in session i, whereas in the latter it re-
ceives a commitment to 0n. Now, consider the one-many adversary Ã that when receiving z̃ =
(i, v1, . . . , vm, z) as auxiliary input proceeds as follows. Ã internally incorporates A(z) and emu-
lates the left and right interactions for A.

1. Ã forwards messages in its jth right execution directly to and from A (as part of its jth right
execution) with the following exception: whenever A wishes to send the last message qi in
the i’th right execution, Ã holds on to it without forwarding it externally.

2. Ã forwards messages from its left session directly to and from A (as part of its ith session).

3. Ã emulates all left sessions j 6= i, by committing to vj if j > i, and committing to 0n otherwise.

4. Whenever Ã has completed the emulation of all left executions, it checks whether A fully
copied any the left executions; for each such copied execution i, Ã sends ⊥ as its last message
in the i’th right execution, and otherwise sends qi.

It follows directly from the construction and the natural property of 〈C,R〉 that

mimÃ
com(vi, z̃) = hybi−1(v1, . . . , vm, z)

mimÃ
com(0, z̃) = hybi(v1, . . . , vm, z)

This contradicts the fact that there exists a simulator S̃ for Ã such that both:

1. mimÃ
com(vi, z̃) and simS̃

com(z̃) are indistinguishable, and

2. mimÃ
com(0, z̃) and simS̃

com(z̃) are indistinguishable.

We conclude that 〈C,R〉 is not one-many concurrent non-malleable.

4 The Protocol

Our construction of concurrent non-malleable commitments follows the paradigm introduced by
Pass and Rosen for obtaining (single execution) non-malleable commitments [42]. The commit
phase of the Pass–Rosen protocol consists of having the sender engage in a (standard) statistically
binding commitment with the receiver and thereafter also provide a non-malleable ZK proof of
knowledge of the value committed to. The reveal phase consists of sending the de-commitment
information of the statistically binding commitment used in the commit phase.

The basic scenario in which non-malleable ZK protocols take place involves a man-in-the-middle
adversary A that is simultaneously participating in two executions of the protocol. These executions
are called the left and the right interaction.

The left interaction is tagged by an identity string tag ∈ {0, 1}n, and the right interaction
is tagged by an identity ˜tag ∈ {0, 1}n. The instructions of the protocol executed in each of the
interactions depend on the corresponding identities tag and ˜tag. (The way in which the identity

13

Ptag A V ˜tag

x∈L=====⇒ x̃∈L=====⇒

Figure 2: The man-in-the-middle adversary.

strings are determined and used will become clear at a later stage.) We let 〈Ptag, Vtag〉 denote a
protocol execution in which the identity tag is used as a tag.

In the left interaction, the adversary A is verifying the validity of a statement x by interacting
with an honest prover Ptag using a protocol 〈Ptag, Vtag〉. In the right interaction A proves the
validity of a statement x̃ to the honest verifier V ˜tag. The statement x̃ proved in the right interaction
is chosen by A, possibly depending on the messages it receives in the left interaction. As in the
case of concurrent non-malleable commitments, A has control over the scheduling of the messages.

Loosely speaking, a protocol is non-malleable if for any such man-in-the-middle adversary, there
exists a “stand-alone” prover that convinces the verifier in the right interaction with essentially the
same success probability as the adversary does in a man-in-the-middle execution. See [42] and
Section 4.1 for further details.

4.1 Non-Malleability and Simulation-Extractability

In [42] it is shown that a commitment is non-malleable provided that the underlying ZK pro-
tocols satisfy a simulation extractability property (a strengthening of non-malleability). Loosely
speaking, simulation extractability requires that for any man-in-the-middle adversary A, there ex-
ists a simulator-extractor that can simulate both the left and the right interactions for A, while
outputting a witness for the statement proved by the adversary in the right interaction.

For the purpose of the current work we will need to show that the ZK protocols used in the
compilation satisfy an even stronger property, which we call one-many simulation-extractability.
This is a strengthening of the simulation extractability property in that it guarantees simulation
and extraction (of all witnesses on the right) even if there is an unbounded number of concurrent
right interactions (but still with only one left interaction).

As we will show later, a (non-interactive) commitment scheme that is compiled with one-many
simulation-extractable ZK will result in a one-many concurrent non-malleable commitment protocol
〈C,R〉. By Proposition 3.2, this implies that 〈C,R〉 is also concurrent non-malleable.

Let A be a man-in-the middle adversary that is simultaneously participating in one left inter-
action of 〈Ptag, Vtag〉 while acting as verifier, and an (unbounded) polynomial number of right-
interactions of 〈P ˜tagi

, V ˜tagi
〉mi=1 while acting as prover.

Let viewA(x, z,tag) denote the joint view of A(x, z) and the honest verifier V ˜tag when A is
verifying a left-proof of the statement x, using identity tag, and and proving in the right interactions
statements of its choice using tags of its choice. (The view consists of the messages sent and received
by A in both left and right interactions, and the random coins of A, and V ˜tag).10 Given a function
t = t(n) we use the notation {·}x,z,tag as shorthand for {·}x∈L,z∈{0,1}∗,tag∈{0,1}t(|x|) .

Definition 4.1 (One-many Simulation-extractability) A family {〈Ptag, Vtag〉}tag∈{0,1}∗ of in-
teractive proofs for L is said to be simulation extractable with tags of length t = t(n) if for any
polynomial p(·) and any man-in-the-middle adversary A that participates in one left interaction

10Since the messages sent by A are fully determined given the code of A and the messages it receives, including them
as part of the view is somewhat redundant. The reason we have chosen to do so is for convenience of presentation.

14

and at most m = p(n) right interactions, there exists a probabilistic expected poly-time machine S
such that:

1. The probability ensembles {S1(x, z,tag)}x,z,tag and {viewA(x, z,tag)}x,z,tag are statistically
close over L, where S1(x, z,tag) denotes the first output of S(x, z,tag).

2. Let x ∈ L, z ∈ {0, 1}∗,tag ∈ {0, 1}t(|x|), and let (view, w̄) denote the output of S(x, z,tag)
(on input some random tape). Let x̃1 . . . , x̃m be the right-execution statements appearing
in view and let ˜tag1 . . . ˜tagm denote the correspoding right-execution tags. Then, for any
i ∈ [m] such that the ith right-execution in view is accepting AND tag 6= ˜tagi, w̄ contains
a witness wi so that RL(x̃i, wi) = 1.

4.2 A Simulation Extractable Protocol

We now describe our construction of simulation extractable protocols. At a high level, the con-
struction proceeds in two steps:

1. For any n ∈ N , construct a family {〈Ptag, Vtag〉}tag∈[2n] of simulation-extractable arguments
with tags of length t(n) = log n + 1.

2. For any n ∈ N , use the family {〈Ptag, Vtag〉}tag∈[2n] to construct a family {〈Ptag, Vtag〉}tag∈{0,1}n
of simulation extractable arguments with tags of length t(n) = n.

The construction of the family {〈Ptag, Vtag〉}tag∈[2n] relies on Barak’s non black-box techniques
for obtaining constant-round public-coin ZK for NP [1], and are very similar in structure to the
ZK protocols used by Pass in [40]. Overall, the construction of 〈Ptag, Vtag〉 is essentially identical
to the construction of the simulation-extractable protocols in [42]; the only difference is that in the
current paper we will replace statistically hiding commitments with perfectly hiding commitments,
and statistically witness indistinguishable arguments with witness independent arguments.

Let n ∈ N , and let T : N → N be a function that satisfies T (n) = nω(1). Our construction
relies on a “special” NTIME(T (n)) relation, which we denote by Rsim. It also makes use of a
”special-purpose” universal argument (UARG) [18, 17, 32, 34, 5, 42]. Let {Hn}n be a family of
hash functions where a function h ∈ Hn maps {0, 1}∗ to {0, 1}n, and let Com be a perfectly hiding
commitment scheme for strings of length n, where for any α ∈ {0, 1}n, the length of Com(α) is
upper bounded by 2n. The relation Rsim is described in Figure 3.

Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}n × {0, 1}poly(n).

Witness: A program Π ∈ {0, 1}∗, a string y∈{0, 1}∗ and a string s ∈ {0, 1}poly(n).

Relation: Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1 if and only if:

1. |y| ≤ |r| − n.

2. c = Com(h(Π); s).

3. Π(y) = r within T (n) steps.

Figure 3: The relation Rsim.

15

Remark 1 (Simplifying assumption) For simplicity of exposition, we view Com as a one-
message perfectly hiding commitment scheme (even though such commitments cannot exist). In
reality, Com would be taken to be a 2-message commitment scheme (which may be based on col-
lections of claw-free permutations [21]).

The construction of our protocol employs a universal argument that is specially tailored for
our purposes (a variant of which has already appeared in [42]). The main distinguishing features
of this universal argument, which we call the special purpose argument, are: (1) it is witness
independent; and (2) it will enable us to prove that our protocols satisfy the proof of knowledge
property of Definition 2.8.11 Let 〈PpWI, VpWI〉 be a witness independent argument of knowledge,
and let 〈PUA, VUA〉 be a 4-message, public-coin universal argument where the length of the messages
is upper bounded by n.12 The special purpose UARG, which we denote by 〈PsUA, VsUA〉, handles
statements of the form (x, 〈h, c1, c2, r1, r2〉), where the triplets 〈h, c1, r1〉 and 〈h, c2, r2〉 correspond
to instances for Rsim. The protocol 〈PsUA, VsUA〉 is described in Figure 4.

Parameters: Security parameter 1n.

Common Input: x∈{0, 1}n, 〈h, c1, c2, r1, r2〉 where for i∈{1, 2}, 〈h, ci, ri〉 is an instance for Rsim.

Stage 1 (Encrypted UARG):

V → P : Send α
r← {0, 1}n.

P → V : Send β̂ = Com(0n).

V → P : Send γ
r← {0, 1}n.

P → V : Send δ̂ = Com(0n).

Stage 2 (Body of the proof):

P ↔ V : A witness independent argument of knowledge 〈PpWI, VpWI〉 proving the OR of the
following statements:

1. ∃ w ∈ {0, 1}poly(|x|) so that RL(x,w) = 1.
2. ∃ 〈β, δ, s1, s2〉 so that:

• β̂ = Com(β; s1).

• δ̂ = Com(δ; s2).
• (α, β, γ, δ) is an accepting transcript for 〈PUA, VUA〉 proving the statement:

– ∃ 〈i, Π, y, s〉 so that Rsim(〈h, ci, ri〉, 〈Π, y, s〉)=1

Figure 4: A special-purpose universal argument 〈PsUA, VsUA〉.

4.2.1 A family of 2n protocols

We next present a family of protocols {〈Ptag, Vtag〉}tag∈[2n] (with tags of length t(n) = log n + 1).13

These protocols are a ”two-slot” version of Barak’s ZK arguments [1]. (The idea of using a multiple
11The “weak” proof of knowledge property of a universal argument (as defined in [5]) is not sufficient for our

purposes. Specifically, while in a weak proof of knowledge it is required that the extractor succeeds with probability
that is polynomially related to the success probability of the prover, in our proof of security we will make use of an
extractor that succeeds with probability negligibly close to the success probability of the prover.

12Both witness independent arguments of knowledge, and 4-message, public-coin, universal arguments can be
constructed assuming a family Hn of claw-free permutations (cf. [20] and [32, 34, 5]).

13A closer look at the construction will reveal that it will in fact work for any t(n) = O(log n). The choice of
t(n) = log n + 1 is simply made for the sake of concreteness (as in our constructions it is the case that tag ∈ [2n]).

16

slot version of Barak’s protocol already appeared in [41, 40], and the “message-length” technique
appeared in [40].) There are two aspects in which the protocols presented here differ from the
protocol of [40]: the new protocols satisfy a (1) perfect secrecy property (note that this is also
different from [42], where secrecy is statistical), and (2) a proof of knowledge property.

Let Com be a perfectly-hiding commitment scheme for strings of length n, where for any
α ∈ {0, 1}n, the length of Com(α) is upper bounded by 2n. Let Rsim be the perfect variant of the
relation Rsim, and let 〈PsUA, VsUA〉 be the special purpose universal argument. Protocol 〈Ptag, Vtag〉
is described in Figure 5.

Common Input: An instance x ∈ {0, 1}n

Parameters: Security parameter 1n, length parameter `(n).

Tag String: tag ∈ [2n].

Stage 0 (Set-up):

V → P : Send h
r← Hn.

Stage 1 (Slot 1):

P → V : Send c1 = Com(0n).

V → P : Send r1
r← {0, 1}tag·`(n).

Stage 1 (Slot 2):

P → V : Send c2 = Com(0n).

V → P : Send r2
r← {0, 1}(2n+1−tag)·`(n).

Stage 2 (Body of the proof):

P ⇔ V : A special-purpose UARG 〈PsUA, VsUA〉 proving the OR of the following statements:

1. ∃ w ∈ {0, 1}poly(|x|) s.t. RL(x, w) = 1.
2. ∃ 〈Π, y, s〉 s.t. RSim(〈h, c1, r1〉, 〈Π, y, s〉)=1.
3. ∃ 〈Π, y, s〉 s.t. RSim(〈h, c2, r2〉, 〈Π, y, s〉)=1.

Figure 5: Protocol 〈Ptag, Vtag〉.

Note that the only difference between two protocols 〈Ptag, Vtag〉 and 〈P ˜tag, V ˜tag〉 is the length of
the verifier’s “next messages”: in fact, the length of those messages in 〈Ptag, Vtag〉 is a parameter
that depends on tag (as well as on the length parameter `(n)). This property will be crucial for
the analysis of these protocols in the man in the middle setting.

4.2.2 A family of 2n protocols

Relying on the protocol family {〈Ptag, Vtag〉}tag∈[2n], we now show how to construct a family
{〈Ptag, Vtag〉}tag∈{0,1}n with tags of length t(n) = n. The protocols are constant-round and involve
n parallel executions of 〈Ptag, Vtag〉, with appropriately chosen tags. This new family of protocols
is denoted {〈Ptag, Vtag〉}tag∈{0,1}n and is described in Figure 6.

Notice that 〈Ptag, Vtag〉 has a constant number of rounds (since each 〈Ptagi
, Vtagi

〉 is constant-
round). Also notice that for i ∈ [n], the length of tagi = (i,tagi) is

|i|+ |tagi| = log n + 1 = log 2n.

17

Common Input: An instance x ∈ {0, 1}n

Parameters: Security parameter 1n, length parameter `(n)

Tag String: tag ∈ {0, 1}n. Let tag = tag1, . . . ,tagn.

The protocol:

P ↔ V : For all i ∈ {1, . . . , n} (in parallel):

1. Set tagi = (i,tagi).
2. Run 〈Ptagi

, Vtagi
〉 with common input x and length parameter `(n).

V : Accept if and only if all runs are accepting.

Figure 6: Protocol 〈Ptag, Vtag〉.

Viewing (i,tagi) as elements in [2n] we infer that the length of verifier messages in 〈Ptagi
, Vtagi

〉
is upper bounded by 2n`(n). Hence, as long as `(n) = poly(n) the length of verifier messages in
〈Ptag, Vtag〉 is 2n2`(n) = poly(n).

As shown in [42], for any tag ∈ 2n, the protocol 〈Ptag, Vtag〉 is an interactive argument. In fact,
what they show is a stronger statement. Namely, that the protocols 〈Ptag, Vtag〉 are arguments of
knowledge (as in Definition 2.8). What [42] actually show is how to prove the above assuming a
family of hash functions that is collision resistant against T (n) = nω(1)-sized circuits. As mentioned
in [42], by slightly modifying Rsim, one can prove the same statement under the more standard
assumption of collision resistance against polynomial-sized circuits (c.f. [5]).

Proposition 4.2 (Argument of knowledge [42]) Let 〈PpWI, VpWI〉 and 〈PUA, VUA〉 be the pro-
tocols used in the construction of 〈PsUA, VsUA〉. Suppose that {Hn}n is collision resistant for T (n)-
sized circuits, that Com is perfectly hiding, that 〈PpWI, VpWI〉 is a witness independent argument of
knowledge, and that 〈PUA, VUA〉 is a universal argument. Then, for any tag ∈ {0, 1}n, 〈Ptag, Vtag〉
is a perfect zero-knowledge argument of knowledge.

The main technical contribution of the current paper consists of proving that the protocol
{〈Ptag, Vtag〉}tag∈{0,1}n is one-many simulation extractable.

Lemma 4.3 (Main technical lemma) Let 〈PpWI, VpWI〉 and 〈PUA, VUA〉 be the protocols used in
the construction of 〈PsUA, VsUA〉. Suppose that {Hn}n is collision resistant for T (n)-sized circuits,
that Com is perfectly hiding, that 〈PpWI, VpWI〉 is a witness independent argument of knowledge,
that 〈PUA, VUA〉 is a universal argument and that `(n) ≥ 2n3 + n. Then, {〈Ptag, Vtag〉}tag∈{0,1}n is
one-many simulation extractable with tags of length t(n) = n.

Before we go on and prove Lemma 4.3, we turn to describe our commitment protocol and to
show how one many simulation extractability is used in order to establish its one-many concurrent
non-malleability. The full proof of Lemma 4.3 can be found in Section 5.

4.3 The Commitment Protocol

Using protocols from {〈Ptag, Vtag〉}tag∈{0,1}n as a subroutine, we present the construction of con-
current non-malleable commitments. Let {Comr}r∈{0,1}∗ be a family of non-interactive statistically
binding commitment schemes (e.g., Naor’s commitment [35]). Let (Gen,Sign,Verify) be a one-time

18

signature scheme secure against a chosen-message attack. Consider the following protocol (which
is a variant of the non-malleable commitment of Pass and Rosen [42]).14

Security Parameter: 1n.

String to be committed to: v ∈ {0, 1}n.

Commit Phase:

R→ C: Send a uniformly chosen r ∈ {0, 1}n.

C → R: Let vk, sk ← Gen(1n). Pick uniformly s ∈ {0, 1}n.
Set tag = vk and send c = Comr(v; s),tag.

C ↔ R: Prove using 〈Ptag, Vtag〉 that there exist v, s ∈ {0, 1}n so that c = Comr(v; s).

C → R: Let T denote the transcript of the above interaction.
Compute σ = Sign(sk, T) and send σ.

R: Verify that 〈Ptag, Vtag〉 is accepting and that Verify(vk, T, σ) = 1.

Reveal Phase:

C → R: Send v and s.

R: Verify that c = Comr(v; s).

Figure 7: Concurrent non-malleable commitment - 〈C,R〉.

As argued in [42], the statistical binding property of 〈C,R〉 follows directly from the statistical
binding of Com. The computational hiding property follows from the computational hiding of Com,
as well as from the (stand alone) ZK property of 〈Ptag, Vtag〉. Hence, we have:

Proposition 4.4 ([42]) Suppose that {Comr}r∈{0,1}∗ is a family of non-interactive statistically
binding commitment schemes, and that all members in the family {〈Ptag, Vtag〉}tag∈{0,1}n are
(stand-alone) zero-knowledge. Then, 〈C,R〉 is a statistically-binding commitment protocol.

4.4 Concurrent Non-Malleablity

Relying on the one-many simulation extractability of 〈Ptag, Vtag〉, we next argue that 〈C,R〉 is
one-many non-malleable.

Theorem 4.5 Suppose that {Comr}r∈{0,1}∗ is a family of non-interactive statistically binding com-
mitment schemes, and that {〈Ptag, Vtag〉}tag∈{0,1}n is one-many simulation extractable and natural.
Then, 〈C,R〉 is a natural one-many concurrent non-malleable commitment.

Proof: We start by noting that it follows directly from the fact that the last message of 〈C,R〉 is
supposed to be a signature on the transcript (in case the commitment is valid), that any commitment
where the committer aborts before the last round is invalid—in other words, 〈C,R〉 is natural.

Next, consider a man-in-the-middle adversary A that participates in one left execution and
m = m(n) right executions. We assume without loss of generality that A is deterministic (this is

14The difference between this protocol and the protocol of [42] is that here we also employ a signature scheme. We
note that the important difference, nevertheless, lies in the analysis of the protocol.

19

w.l.o.g since A can obtain its “best” random tape as auxiliary input). Consider the simulator S that
proceeds as follows on input z. S incorporates A(z) and internally emulates the left interactions for
A by simply honestly committing to the string 0n (i.e., S executes the algorithm C on input 0n).
Messages from the right interactions are instead forwarded externally, with the following exception:
whenever A wishes to send the last message qi in the i’th right session, S “holds-on” to it without
(yet) forwarding it externally. Finally, when S has completed the emulation of the left interactions
for A, it checks whether A fully copied any of the left executions. For each execution i where A
fully copied any of the left executions, S externally sends ⊥ as its last message in the i’th right
execution (to invalidate that commitment); for all other executions j, Ã instead sends the final
message qj . We show that the following distributions are indistinguishable over {0, 1}∗.

•
{
mimA

com(v, z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

•
{
simS

com(z)
}

v∈{0,1}n,n∈N,z∈{0,1}∗

Suppose, for contradiction, that this is not the case. That is, there exists a polynomial-time
distinguisher D and a polynomial p(n) such that for infinitely many n, there exists strings v ∈
{0, 1}n, z ∈ {0, 1}∗ such that

Pr
[
D(mimA

com(v, z) = 1
]
− Pr

[
D(simS

com(z)) = 1
]
≥ 1

p(n)

Fix a generic n for which this happens. We show how this contradicts the simulation-extractability
property of 〈Ptag, Vtag〉. We start by providing an (oversimplified) sketch. On a high-level, the
proof consists of the following steps:

1. We first note that since the commit phase of (C,R) “essentially” only consists of a statement
(c, r) (i.e., the commitment) and a proof of the validity of (c, r), A can be interpreted as a
one-many simulation-extractability adversary A′ for 〈Ptag, Vtag〉.

2. It follows from the simulation-extractability property of 〈Ptag, Vtag〉 that there exist a com-
bined simulator-extractor S′ for A′ that outputs a view that is statistically close to that of
A′, while at the same time outputting witnesses to all accepting right proofs.

3. Since the view output by the simulator-extractor S′ is statistically close to the view of A′ in the
real interaction, it follows that also the values committed to in that view are are statistically
close to the values committed to by A′. (Note that computational indistinguishability would
not have been enough to argue the indistinguishability of these values, since they are not
efficiently computable from the view.)

4. It also follows that except with negligible probability, the simulator-extractor S′ will output
also the witnesses to all accepting right executions.15 We conclude that S′ additionally outputs
the values committed to in the right executions.

5. We finally note that if D can distinguish between the values committed to by A and by S,
then D can also distinguish the second output (which consists of the committed values) of S′

when run on input a commitment (using Com) to v, and the second output of S′ when run
on input a commitment to 0. This contradicts the hiding property of Com.

15More precisely, the simulator-extractor only outputs witnesses to all right-executions that use a different tag than
the left interaction. We rely on the use of the digital signature to handle the case when A copies the tag of the left
interaction.

20

We proceed to a formal proof. One particular complication that arises with the above proof
sketch is that in the construction of 〈C,R〉 we are relying on the use of a family of commitment
schemes {Comr}r∈{0,1}∗ and not a single non-interactive commitment scheme. To address this issue
we make use of non-uniformity to show the existence of particular “prefix” of right-interactions such
that A always chooses the instance Comr in its left interaction, yet A commits to different values
when receiving a commitments to v (as in mim) and 0 (as in sim).

More precisely, since in both experiments mim and sim are identical up until the point where
A sends its first message in the left interaction, there must exists some fixed prefix transcript τ of
A’s right interactions such that

1. A sends its first message rτ in its left interaction directly after receiving the messages in τ
(as part of its right executions).

2. D distinguishes between mimA
com(v, z) and simS

com(z) with probability 1/p(n), conditioned on
the event that the right executions are consistent with τ .

C R

A
←−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−→

rτ
←−−−−−−−−−−−−

}
the prefix τ

Figure 8: The prefix τ before rτ is sent.

Note that since the receiver R sends the first message in the protocol, τ contains all first messages
r sent by the honest R in all m right executions. Let r

(1)
τ , .., r

(m)
τ denote these first messages. Let

committedτ ⊆ [m] denote the set of executions i such that A(z) has sent its first message in the
i’th execution in τ . (Recall that the first message sent by A, playing the “role” of C in execution
i, consists of a commitment using Com

r
(i)
τ

.) For each i ∈ committedτ , let valueτ (i) denote the
value committed to in the first message sent by A(z) in execution i in τ . (If this value is not
uniquely defined, set valueτ (i) = ⊥). Additionally, for each i ∈ committedτ , let coinsτ (i) be a
random tape for R such that D distinguishes between mimA

com(v, z) and simS
com(z) with probability

1
p(n) , conditioned on the event that the right executions are consistent with τ and that in each
right execution i ∈ committedτ , R uses the random tape coinsτ (i). (It follows by an averaging
argument that such random tapes must exist).

Given the partial transcript τ we next proceed in the following three steps:

1. We first define a simulation-extractability adversary A′.

2. We next show that A′ can be used to violate the non-malleability property of Com.

3. In the final step, we show how to use the simulator-extractor S′ for A′ to violate the hiding
property of Com.

Step 1: Defining a simulation-extractability adversary A′. We define a one-many simula-
tion extractability adversary A′ for 〈Ptag, Vtag〉. On a high-level A′ internally incorporates A on

21

input the transcript τ , externally forwards all messages that are part of 〈Ptag, Vtag〉 while internally
handling all other messages. Additionally, A′ internally emulates (without externally forwarding)
all messages that are part of executions i ∈ committedτ (note that messages in these executions
cannot be externally forwarded as the execution of protocol 〈Ptag, Vtag〉 could potentially have
already begun).

We proceed to a formal description of A′. To simplify notation we assume that the machine A′

that has the values τ, committedτ , coinsτ hard-coded in its description (as it can always receive
them as part of its auxiliary input z′). On input x′,tag′, z′ (i.e., A′(z′) expects to receive a proof
of the statement x′ using tag tag′), where x′ = (c, rτ), and z′ = (z, sk) such that sk is the
corresponding secret key for the signature verification key tag′, A′ then internally incorporates
A(z) and emulates the left and right interactions for A in the following manner.

1. It starts by feeding A all messages in τ as part of its right executions.

2. For each i ∈ committedτ , A′ internally emulates the (rest of the) i’th right execution for A
by honestly following the strategy of R using the random tape coinsτ (i).

3. For each i ∈ [m] such that i /∈ committedτ , A′ externally forwards messages in the i’th right
interaction, as follows. Whenever A sends its first message ci, vki, in the ith execution, A

externally forwards (ci, r
(i)
τ) as its statement and vki as its tag. Thereafter, it externally

forwards all the messages from 〈Ptag, Vtag〉. (Note that since i /∈ committedτ , A has not yet
sent any messages in execution i; thus, A is expected to produce a proof of the statement
(c′, r(i)

τ) using tag′ as tag).

4. Messages in A’s left interaction are instead forwarded externally as part of A′’s left interaction.
Once A has sent its first message rτ , A′ start by feeding it c,tag′, and next externally forwards
all remaining messages (i.e., all the messages that are part of 〈Ptag, Vtag〉). Once the execution
of 〈Ptag, Vtag〉 has concluded A′ signs the transcript of the left interaction using sk (received
as auxiliary input) and feeds the signature to A. (Recall that whereas A′ receives only a proof
as part of its left interaction, A expects to see a commitment using 〈C,R〉. It is therefore
essential that A′ adds a signature to the proof.)

Step 2: Show that A′ violates non-malleability of Com. Define the following experiment
hyb1(v′):

1. Pick vk, sk ← Gen(1n), and pick uniformly s ∈ {0, 1}n.

2. Let c = Comrτ (v′, s).

3. Let x′ = (c, rτ),tag′ = vk, z′ = (z, sk).

4. Emulate an execution for A′(x′,tag′, z′) by honestly providing a proof of x′ (using tag tag′

and the witness (v′, s)) as part of its left interaction, and honestly verifying all right interac-
tions.

5. Finally, given the view of A′ in the above emulation, reconstruct the view of A in the emulation
by A′. Output the pair (view, v̄) where view denotes the reconstructed view of A and v̄ denotes
the values committed to in the view of A. (As in Definition 3.1, if a commitment is undefined,
invalid, or if the transcript of the commitment is identical to the transcript of the commitment
received by A on the left, its value is set to ⊥). Note that although the values committed to
are not necessarily efficiently computable from the view of A, they are determined.

22

Note that hyb1(·) is not efficiently samplable, since the last step in the description of hyb1 is not
efficient. However, except for that last step, every other operation in hyb1 is indeed efficient. (This
will be useful to us at a later stage).

Claim 4.6
Pr

[
D(hyb1(v)) = 1

]
− Pr

[
D(hyb1(0

n)) = 1
]
≥ 1

p(n)

Proof: By construction of A′ and hyb1, it directly follows that: the view of A in hyb1(v) is
identically distributed to the view of A in mimA

com(v, z), conditioned on the event that the right
executions (in the view of A) are consistent with τ and coinsτ . Additionally, by relying on the
natural property of 〈C,R〉 (which guarantees that S outputs a commitment to ⊥ whenever A fully
copies any of the left executions), it holds that: the view of A in hyb1(0n) is identically distributed
to the view of A in simS

com(z), conditioned on the event that the right executions (in the view of
A) are consistent with τ and coinsτ . Since the outputs of hyb1, mim and sim are computed by
applying the same function to the view of A, in the corresponding experiments, it follows that

1. The output of hyb1(v) is identically distributed to the output of mimA
com(v, z), conditioned on

the event that that the right executions (in the view of A) are consistent with τ and coinsτ .

2. The output of hyb1(0n) is identically distributed to the output of simS
com(v, z), conditioned on

the event that that the right executions (in the view of A) are consistent with τ and coinsτ .

The claim now follows from the fact that D distinguishes mimA
com(v, z) and simS

com(z) with proba-
bility 1

p(n) , conditioned on the right executions being consistent with τ and coinsτ .

Step 3: Show that the simulator for A′ violates the hiding property of Com. We next use
the simulator-extractor S′ for A′ to construct a (non-uniformly) efficiently computable experiment
that is statistically close to hyb1. Towards this goal, we first define an additional hybrid experiment
hyb2(·). hyb2(·) proceeds just as hyb1, except that instead of emulating the left and right interactions
for A′, hyb2 runs the combined simulator-extractor S′ for A′ to generate the view of A′. (The second
output of hyb2 is, however, still computed as in hyb1—i.e., hyb2 ignores the second output of S′).

Claim 4.7 The ensembles {hyb1(v′)}v′∈{0,1}∗ and {hyb2(v′)}v′∈{0,1}∗ are stat. close over {0, 1}∗.

Proof: It directly follows from the statistical indistinguishability property of S′, that the first
output of hyb1(·) is statistically close to the first output of hyb2(·). The claim is concluded by
observing that the second output in both experiments are determined in the same way (as a
function of the first output).

Remark 2 Note that the proof of Claim 4.7 inherently relies on the statistical indistinguishability
property of S′. Indeed, if the simulation had only been computationally indistinguishable, we would
not have been able to argue indistinguishability of the second output of hyb1(·) and hyb2(·). This
follows from the fact that the second output (which consists of the actual committed values) is not
efficiently computable from the first output (i.e., the view).

We next define the final experiment hyb3(·). hyb3(·) proceeds just as hyb2 with the exception
that instead of setting its second output, v̄, to the actual values committed to in the view of
A, hyb3 efficiently computes values v̄ = v1, .., vm as follows. Recall that the combined-simulator

23

extractor S′ outputs both a view and witnesses to all accepting right interactions. For each accepting
right interaction i in the reconstructed view of A, hyb3 lets vi = valueτ (i) if i ∈ committedτ and
otherwise set vi to be consistent with the witness output for execution i by the combined simulator-
extractor S′. For all right executions j for which the reconstructed view of A is rejecting, instead
set vj = ⊥.16 Note that in contrast to hyb2(·), hyb3(·) is efficiently computable.

Claim 4.8 The ensembles {hyb2(v′)}v′∈{0,1}∗ and {hyb3(v′)}v′∈{0,1}∗ are stat. close over {0, 1}∗.

Proof: Recall that the only difference between the experiments hyb2(·) and hyb3(·) is the way the
second output is computed; in the former it is computed as the actual values committed to in the
view of A, whereas in the latter it is computed by relying on valueτ , and the witnesses output
by the simulator-extractor S′. We show that except with negligible probability these values are
identical, which concludes the claim.

First, note that in any given view of A, it “trivially” holds that hyb3 outputs the correct value for
all rejecting right-executions, and all accepting right-executions i such that i ∈ committedτ . It only
remains to consider accepting right-executions i such that i /∈ committedτ . For these executions
the value vi computed by hyb3 is obtained from the witnesses output by the simulator-extractor S′.

Assume, first, that A never is able to violates the security of (Gen,Sign,Verify), or is able to
construct a commitment using Com that can be opened up in two different ways (i.e., violate the
statistical binding property of Com). Under these assumptions, we show that the values computed
by hyb3 are identical to the actual values committed to in the view of A.

By the definition of the simulator-extractor, it holds that the witnesses output by S′, for all
accepting right interactions which use a different tag than the one used in the left interaction,
are valid. In other words, values for all (non-rejected) right-commitments that use a verification
key vk for the signature scheme that is different from the one used in the left-commitment, are
extracted. Furthermore, by our assumption that A is not able to break the statistical binding
property of Com it follows that the extracted values are identical to the actual values committed to
in the view of A. Additionally, note that values for right-commitments that have exactly the same
transcript as the left-commitment are “trivially” extracted (as they are just ⊥). It only remains to
analyze what happens to (non-rejecting) right-commitments that use the same verification key as
the left-commitment, but a different transcripts. In this case, A must have been able to produce
a signature on a new message, given only a randomly generated verification key, and single signed
message of its choice (namely the transcript on the left). This contradicts our assumption that A
does not forge signatures.

We conclude that, conditioned on the event that A is not able to forge a signature, or is able
to break the statistical binding property of Com, hyb2(·) and hyb3(·) are identical. The claim now
follows by the security of (Gen,Sign,Verify) and Com.

Combining the above two claims we thus get:

Claim 4.9 The ensembles {hyb1(v′)}v′∈{0,1}∗ and {hyb3(v′)}v′∈{0,1}∗ are stat. close over {0, 1}∗.
Furthermore, hyb3(·) is (non-uniformly) efficiently computable.

Finally, by combining Claim 4.9 with Claim 4.6 we get that D distinguishes the second outputs
of hyb3(v) and hyb3(0n) with inverse polynomial probability. However, since hyb3 is (non-uniformly)
efficiently samplable, this contradicts the (non-uniform) hiding property of Comrτ . More formally,
define the distinguisher D′ that proceeds as follows on input a commitment c′ using Comrτ :

16Note that an interaction that is accepting in the view of A′ can still be rejecting in the view of A, since in the
latter we additionally require a valid signature.

24

1. D′ performs the same operations as hyb3, except that instead of generating the commitment
c, it simply sets c = c′. Let (view, v̄) denote the output when executing H̃ in this manner.

2. Finally, D′ outputs D(view, v̄).

It directly follows from the construction that D′(c′) is identically distributed to D(hyb3(0n)) when
c′ is a random commitment to 0n, and identically distributed to D(hyb3(v)) when c′ is a random
commitment to v. We conclude that D′—which is efficient—distinguishes commitments (using
Comrτ) to 0n and v.

5 Simulation-Extractability

We now turn to prove Lemma 4.3. We start by proving an analogous lemma for the “small”
family {〈Ptag, Vtag〉}tag∈[2n] of 2n protocols. Then we show how to extend the analysis to the family
{〈Ptag, Vtag〉}tag∈{0,1}n .

Lemma 5.1 Suppose that {Hn}n is collision resistant for T (n)-sized circuits, that Com is perfectly
hiding, that 〈PpWI, VpWI〉 is a witness independent argument of knowledge, that 〈PUA, VUA〉 is a
universal argument and that `(n) ≥ 2n2 + n. Then, {〈Ptag, Vtag〉}tag∈[2n] is one-many simulation
extractable with tags of length t(n) = log n + 1.

Proof: Recall that one-many simulation-extractability (Definition 4.1) means that there exists a
combined simulator-extractor S = (SIM,EXT) that is able to simulate both the left and the right
interactions for a man-in-the-middle adversary A, while simultaneously extracting witnesses to the
m statements proved in the right interaction. The construction of S is fairly complex. To keep
things simple, we decompose the description of the simulator into three simulation procedures,
where each procedure relies on the previous (simpler) ones:

Basic simulator. This consists of the simulator that is used to establish the traditional (stand-
alone) zero-knowledge property of 〈Ptag, Vtag〉. The simulator is similar to the one used in
Barak’s original protocol [1].

Alternative simulator. This consists of the simulator that is used for establishing the “simu-
lation soundness” (cf. [44]) of 〈Ptag, Vtag〉. The simulator is designed to work in the presence
of a man-in-the-middle adversary that is conducting a single left interaction of 〈Ptag, Vtag〉
concurrently with a single right interaction of 〈P ˜tag, V ˜tag〉. It guarantees that an adversary
whose left view consists of a simulated execution of 〈Ptag, Vtag〉 cannot break the soundness
of 〈P ˜tag, V ˜tag〉. The simulator is essentially identical to the one used by Pass [40].

Simulator-extractor. The description of the simulation extraction procedure S = (SIM,EXT)
relies on the previous two simulators. The simulator SIM relies on the basic simulator, whereas
the extractor EXT (which also employs a simulation of the left interaction) makes use of the
alternative simulator.

We turn to provide a description of the above simulation procedures. (We only provide a brief
sketch of the basic and alternative simulators, and assume familiarity with the protocols of [1] and
[40]. For completeness, the description of the simulator-extractor is nevertheless self-contained.)

25

5.1 Basic Simulator

Given the program, V ∗tag, of an adversary verifier, the basic simulator acts as follows. In Stage
1 of the protocol (i.e., in Slots 1 and 2), the simulator proceeds by committing to the program
Π def= V ∗tag. Let s1, s2 the randomness used for the commitments.

In Stage 2 of the protocol, the simulator proves that it committed to the program of the verifier
in Slot 1. More concretely, the simulator uses the tuple 〈Π, c1, s1〉 as a witness for 〈h, c1, r1〉 ∈ Lsim

(where Lsim is the language that corresponds to Rsim). This is a valid witness, since: (1) by
the definition of Π it holds that Π(c1) = r1, and (2) as long as `(n) ≥ 3n, for every tag ∈ [n],
|ri| − |ci| = `(n)− |ci| ≥ n.

5.2 Alternative Simulator

The alternative simulator is constructed having a man-in-the middle adversary A in mind. Consider
an A that manages to violate the soundness of protocol 〈P ˜tag, V ˜tag〉, while verifying a simulated proof
of 〈Ptag, Vtag〉. We show how to construct a cheating prover P ∗ for a single instance of 〈P ˜tag, V ˜tag〉 by
forwarding A’s messages in 〈P ˜tag, V ˜tag〉 to an external honest verifier V and internally simulating the
messages of 〈Ptag, Vtag〉 for A. The problem that arises in the attempt to simulate is that the code of
the external verifier V is not available to the simulator. This means that a stand-alone simulation
of the protocol 〈Ptag, Vtag〉 cannot be completed as it is, since it explicitly requires possession of a
“short” program Π that would have generated the corresponding verifier messages.

On a high-level, the prover P ∗ simulates the left interaction in the following way.17 In Slot 1 of
the protocol, the simulator proceeds by committing to the program Π1

def= A. So far its instructions
are just like the basic simulator. In Slot 2, however, the simulator commits to a program Π2 which
consists of both the code of A and all messages A has received from V ˜tag in the right interaction.
In Stage 2 of the protocol, the simulator attempts to prove that it committed to the program of
the verifier in either Slot 1 or Slot 2. The simulator will succeed in this task provided that there
exists a “short” message y (the actual required length of y is determined by the tag tag and the
slot number) such that Π1(y) = r1 or Π2(y) = r2, where r1, r2 denote the challenges receives in
Slot 1 and 2 respectively (of 〈Ptag, Vtag〉).

Note that except for the “long” challenges r̃1, r̃2 sent by the verifier of 〈P ˜tag, V ˜tag〉 we do have
a description of all messages sent to the adversary A that is shorter than `(n) − n (since `(n) =
`′(n)+n, where `′(n) upper bounds the total length of both prover and verifier messages, except for
the challenges r1, r2). In order to show that we can still perform a simulation, even in the presence
of these messages (for which we do not have a short description), we use the fact that it is sufficient
to have a short description of the messages sent in one of the slots of 〈Ptag, Vtag〉. As in [40], we
separate between two different schedulings:

There exists one “free” slot j in 〈Ptag, Vtag〉 in which neither of r̃1, r̃2 are contained. In
this case the “free” slot j in 〈Ptag, Vtag〉 can be used to perform a basic simulation (since in
this case the simulator did indeed produce a commitment cj to the code of a machine that
on input cj outputs the challenge rj in slot j).

The messages r1, r2 in 〈P ˜tag, V ˜tag〉 occur in slot 1,2 respectively in 〈Ptag, Vtag〉. By the
construction of the protocols it follows that the length of either the first or the second challenge
in 〈P ˜tag, V ˜tag〉 is at least `(n) bits longer than the corresponding challenge in 〈Ptag, Vtag〉. Thus

17We provide a detailed description of the actual simulation procedure when we later apply it in the construction
of the simulator-extractor.

26

there exist a slot j in 〈Ptag, Vtag〉 such that even if we include the verifier’s challenge r̃j from
the protocol 〈P ˜tag, V ˜tag〉 in the description y, we still have `(n)− n bits to describe all other
messages.

5.3 Simulator-Extractor

Consider a man-in-the-middle adversary A. We assume without loss of generality that A is de-
terministic and has the auxiliary input z hardwired in. Let k denote the number of rounds in
〈Ptag, Vtag〉, and let m be an upper-bound on the number of right interactions that A participates
in. We describe a combined simulator-extractor S = (SIM,EXT), that proceeds as follows on input
x, z, and tag.

5.3.1 Simulation of view

We start by describing a machine SIM that simulates the view of A. This requires simulating all
the left and the right interactions for A. In the right interactions SIM acts as a verifier. Thus,
simulation is straightforward, and is performed by simply playing the role of an honest verifier in
all the executions of the protocol. In the left interaction, on the other hand, SIM is supposed to act
as a prover, and thus the simulation task is more involved. Towards its goals, SIM acts as follows.

1. For all i ∈ [m], pick random r̄i = (ri,1, . . . , ri,k) honest verifier messages for the right in-
teractions. Messages in the right interactions are then emulated by playing the role of the
honest verifiers with the fixed random messages r̄1, . . . , r̄m. That is, in order to emulate the
jth message in the ith right interaction, SIM forwards the message ri,j to A.

2. The left interaction is simulated as follows. SIM views the execution of A and the emulation
of the right interactions (with the fixed messages r̄1, . . . , r̄m) as a stand-alone verifier for the
left interaction and applies a close variant of the basic simulator to this interaction. Let Π(·)
denote the joint code of A and the emulation of the right interactions (including the coins
r̄1, . . . , r̄m). Whereas the basic simulator would have committed to Π(·), we instead let SIM
commit to a program Π′(b, ·) that is defined as follows:

(a) if b = 0, execute Π(·);
(b) if b = 1, execute Π(·) with the exception that messages r̄i = (ri,1, . . . , ri,k) (i.e., messages

of the ith right interaction) are not emulated, but rather received externally as input.

Thereafter, SIM proceeds exactly as the basic simulator, by additionally using both b = 0 and
Π′ as a witness in stage 2 of the protocol. More concretely, SIM starts by computing h = Π(·).
It then generates prover commitments c1 = Com(h(Π′); s1) and c2 = Com(h(Π′); s2), where
s1, s2

r← {0, 1}poly(n). Using c1 and c2, it computes r1 = Π(c1), and r2 = Π(c1, c2). Combining
the messages together, this results in a Stage 1 transcript τ1 = 〈h, c1, r1, c2, r2〉.
By definition of 〈Ptag, Vtag〉, the transcript τ1 induces a Stage 2 WIUARG with Π(h, c1, c2)
as verifier and (x, 〈h, c1, r1〉, 〈h, c2, r2〉) as common input. Using 〈Π′, (0, h, c1), s1〉 as witness
for the statement 〈h, c1, r1〉 ∈ Lsim, the SIM follows the prescribed prover strategy of the
WIUARG and produces a convincing stage 2 transcript τ2. Since r1 = Π(c1) = Π′(0, c1) and
since |0|+ |c1| ≤ `(n) it follows that SIM can always succeed in this task.

Figure 9 demonstrates the definition of SIM, as well as of the program Π′(b, ·) (for simplicity
the various sessions are depicted as if they were executed sequentially).

27

SIM Π′(0, ·) Π′(1, ·)
P A V

←−−−−→←−−−−→
...

←−− ←−−−−→ −−→←−− ←−−−−→ −−→
...
←−−−−→←−−−−→

}
r̄1

}
r̄i

}
r̄m

A V
←−−−−→←−−−−→
...

←−− ←−−−−→ −−→←−− ←−−−−→ −−→
...
←−−−−→←−−−−→

}
r̄1

}
r̄i

}
r̄m

A V
←−−−−→←−−−−→
...

←−− ←−−−−−−−−−−−−−−→ −−→←−− ←−−−−−−−−−−−−−−→ −−→
...
←−−−−→←−−−−→

}
r̄1

}
r̄i

}
r̄m

Figure 9: The simulator SIM and the program Π′(b, ·).

5.3.2 Extraction of witnesses

Once the view of A has been simulated, we turn to the extraction of witnesses to the statements
proved by A. Note that we need to extract witnesses to all concurrent right interactions. Towards
this goal we rely on a variant of Lindell’s concurrent extraction technique [33], combined with the
alternative simulator technique described in Section 5.2. In a sense, this can be seen as a (non-
trivial) extension of the method of Pass and Rosen [42] (which was used to show a similar property
for the simpler case of only one right interaction).

The machine EXT fixes the random coins of the simulator SIM and iteratively extracts witnesses
for each of the right interactions. More specifically, EXT starts by sampling a random execution of
SIM, using random coins s̄, r̄. Let x1, . . . , xm be the inputs corresponding to the m sessions that
have taken place in the right interaction.

For each i ∈ [m] such that the ith right session was not accepting, EXT will assume that no
witness exists for the corresponding statement xi, and will refrain from extraction. For all i ∈ [m]
so that the ith right session is accepting in this execution of SIM, and for which the tag of the ith

session is different from the tag of the left session, EXT will attempt to extract a witness for the
statement xi being proved in the corresponding session.

To do so EXT constructs a stand-alone prover Pi for the ith right interaction 〈P ˜tagi
, V ˜tagi

〉, and
from which it will later attempt to extract the witness. In principle, the prover Pi will follow SIM’s
actions using the same random coins s̄, r̄ used for initially sampling the execution of SIM. However,
Pi’s execution will differ from SIM’s execution in the following important ways:

1. Messages in the ith right session are no longer emulated internally, but forwarded externally.

2. In the simulation of the left protocol, use the alternative simulator from Section 5.2 in order
to complete stage 2 of the protocol.

Figure 10 demonstrates the definition of Pi (as before, the sessions are depicted sequentially).
The reason for using the alternative simulation instead of the basic one is that the latter might

not be able to commit to the external messages of the ith right interaction (as it might not know
these messages at the time it commits). Note that the way the simulation within Pi is defined, the
program committed to in Stage 1 is Π′. To enable the alternative simulation with a commitment
to Π′ in Stage 1, we let the simulator additionally provide the input b = 1 to Π′ as part of the
witness in Stage 2 (this enables Π′ to depend on the external messages in the ith right session). The
alternative simulation technique, combined with the fact that there is only one external interaction
on the right hand side, are what eventually enables the simulation to go through.

28

Pi V
P A V

←−−−−→←−−−−→
...

←−− ←−−−−−−−−−−−−−−→ −−−−−−−−−−−−→←−− ←−−−−−−−−−−−−−−→ −−−−−−−−−−−−→
...
←−−−−→←−−−−→

}
ith session

Figure 10: The prover Pi.

The actual witness used by the simulator in Stage 2 depends on the scheduling of the messages.
We distinguish between the following cases, depending on where the ith session has started with
relation to the messages c1, c2 in the left hand side protocol (see Figure 11).

(a) (b) (c)

P A V
c1−−−−→
c2−−−−→

session i−−−−−−−−−→

P A V
c1−−−−→

session i−−−−−−−−−→
c2−−−−→

P A V
session i−−−−−−−−−→

c1−−−−→
c2−−−−→

Figure 11: Three possible “starting points” for session i.

In each corresponding case, EXT acts as follows:

Both c1 and c2 have been sent before session i begins (Figure 11.a). In this event Slot 1
has no external messages and the basic simulation can be performed, i.e., EXT can use Π′ as
a witness for 〈h, c1, r1〉 ∈ Lsim in Stage 2 (just as in SIM).

c1 has been sent but not c2 (Figure 11.b). Let M1, M2 denote the “external” messages A
receives on the right hand side in Slot 1 and Slot 2 of the left interaction, respectively (see
Figure 12 for two ”representative” schedulings). In this case, we define Π′2(b, ·) = Π′(b, M1, ·)
and let EXT send c2 = Com(Π′2; s) (whereas c1 is defined just as in SIM).

Consider a Stage 1 transcript τ1 = 〈h, c1, r1, c2, r2〉 of the left interaction. By the construction
of 〈Ptag, Vtag〉, and from the fact that ˜tagi is different from tag, it must be the case that either
|M1| ≤ |r1| − `(n) or |M2| ≤ |r2| − `(n). This is implied by the following simple fact.

Fact 5.2 If tag 6= ˜tag then there exists i ∈ {1, 2} so that |r̃i| ≤ |ri| − `(n).

In particular, either |M1| + |c1| + n ≤ |r1| − n or |M2| + |c1| + n ≤ |r2| − n. Furthermore,
c1 is a commitment to Π′ and c2 is a commitment to Π′2, and r1 = Π′(1, (c1,M1)) and r2 =
Π′2(1, (c1,M2)). Thus, either w1 = Π′, 1, (c1,M1), s1 is a valid witness for 〈h, c1, r1〉 ∈ Lsim

or w2 = Π′2, 1, (c2,M2), s2 is a valid witness for 〈h, c2, r2〉 ∈ Lsim. If the former is true, EXT
follows the prescribed prover using w1 as witness, and otherwise uses w2 as witness.

29

(a) (b)

P A V
c1−−−−→

c̃1−−−−−−−−−→
r̃1←−−−−−−−−−
c̃2−−−−−−−−−→
r̃2←−−−−−−−−−

r1←−−−−
c2−−−−→
r2←−−−−

}
M1

P A V
c1−−−−→

c̃1−−−−−−−−−→
r̃1←−−−−−−−−−

r1←−−−−
c2−−−−→

c̃2−−−−−−−−−→
r̃2←−−−−−−−−−

r2←−−−−

}
M1

}
M2

Figure 12: Two “representative” schedulings.

Neither of c1 or c2 have been sent (Figure 11.c). In this case EXT first generates a commit-
ment c1 just as SIM would, i.e., lets c1 be a commitment to Π′, and then performs the same
operations as in the previous case.

It follows from the description above that the simulation employed by Pi on the left interaction
is always able to convince A of the validity of the statement proved on the left interaction.

Once Pi is constructed, EXT can apply the (stand-alone) extractor, guaranteed by the proof of
knowledge property of 〈Ptag, Vtag〉, to Pi and extract a witness to the statement xi. In the unlikely
event that the extraction failed in any of the m executions, EXT outputs fail, and otherwise it
outputs all the extracted witnesses.

Remark 3 It is important to have a Pi for the entire protocol 〈P ˜tagi
, V ˜tagi

〉 (and not just for
〈PUA, VUA〉). This is in order to argue that the witness extracted is a witness for xi and not a
witness to 〈h, c1, r1〉 ∈ Lsim or to 〈h, c2, r2〉 ∈ Lsim (which could indeed be the case if we fixed the
messages 〈h, c1, r1, c2, r2〉 in advance).

The output of S. Finally the combined simulator-extractor S outputs fail whenever EXT does.
Otherwise, S outputs whatever SIM outputs, followed by whatever EXT outputs.

Remark 4 It is important to have both SIM and EXT use the same simulator program S (with same
random coins) in their respective executions. Otherwise, we are not guaranteed that the statement
x̃ appearing in the output of SIM is the same one EXT extracts a witness from.18

5.4 Correctness of the simulation-extraction

We proceed to show the correctness of the combined simulator-extractor S = (SIM,EXT). We
start by showing that the view of A in the simulation by SIM is identical to its view in an actual
interaction. Let the random variable SIM(x, z,tag) denote the view of A in the simulation by SIM
performed in the execution of S(x, z,tag).

Claim 5.3 {SIM(x, z,tag)}x∈L,z∈{0,1}∗,tag∈[2|x|] and {viewA(x, z,tag)}x∈L,z∈{0,1}∗,tag∈[2|x|] are iden-
tically distributed.

18The statement x̃i will remain unchanged because x̃i occurs prior to any message in 〈P ˜tagi
, V ˜tagi

〉 (and hence does

not depend on the external messages received by Pi).

30

Proof: The claim follows from (1) the perfect zero-knowledge property of 〈Ptag, Vtag〉, and (2)
the fact that the emulation of the right interactions by SIM is perfect. Specifically, consider the
following hybrid experiments.

1. Let H0 denote the view of A in the simulated execution.

2. Let H1 denote the view of A in a simulated execution when letting the simulator use the true
witness w for x in the special-purpose UARG, 〈PsUA, VsUA〉, in Stage 2 (instead of using the
“fake” witness”). Thus the only difference between H0 and H1 is the choice of the witness
used in 〈PsUA, VsUA〉.

3. Let H2 denote the real execution. Note that the only difference between H1 and H2 is that in
H1 A receives commitments c1, c2 to a program Π′, whereas in H2 it receives a commitments
to the string 0k.

Sub Claim 5.4 H0 is identically distributed to H1

Proof: The claim follows from the witness independent property of 〈PpWI, VpWI〉 used in Stage 2.
More precisely, assume for contradiction that H0 is not identically distributed to H1. Then there
must exists some Stage 1 transcript, such that the proofs generated in Stage 2 in H0 and H1 are
not identically distributed, in contradiction to the witness independence property (here we use the
fact that there exist two possible witnesses for stage 2 – one is the witness used by the simulator
and the other is w).

Sub Claim 5.5 H1 is identically distributed to H2

Proof: The claim directly follows from the perfect hiding property of the commitments used to
generate c1 and c2.

This completes the proof of Claim 5.3.

We proceed to show that EXT outputs fail with negligible probability. Let the random variable
EXT(x, z, tag) denote the output of EXT in the execution of S(x, z, tag).

Claim 5.6 There exists a negligible function µ(·) such that for every x ∈ L, z ∈ {0, 1}∗, tag ∈ [2|x|]

Pr [EXT(x, z, tag) = fail] ≤ µ(|x|)

Proof: Recall that EXT proceeds by constructing stand alone provers Pi, and then applying
the (stand-alone) extractor, guaranteed by the proof of knowledge property of 〈Ptag, Vtag〉, to Pi,
in order to extract witnesses wi to the statements xi. Note that EXT outputs fail only in the
event that extraction from one of the right interactions i ∈ [m] fails. By the proof of knowledge
property of 〈Ptag, Vtag〉 it holds that for each execution i extraction for execution i fails only with
negligible probability (recall that the extractor is only invoked when A provides an accepting proof
in execution i). Since the extraction procedure is repeated at most m times (at most once per
right-interaction), we conclude (by the Union Bound) that the probability that extraction fails for
any of the right interactions is negligible.

By combining Claim 5.3 and 5.6, we conclude that, the first output of S is statistically close to A’s
view in an actual interaction. As in Definition 4.1, let the random variable S1(x, z,tag) denote
the first output of S(x, z,tag).

31

Claim 5.7 {S1(x, z,tag)}x∈L,z∈{0,1}∗,tag∈[2|x|] and {viewA(x, z,tag)}x∈L,z∈{0,1}∗,tag∈[2|x|] are sta-
tistically close over L.

Proof: Recall that the first output of S consists of the view of A as generated by SIM. By claim
5.3 if follows that the first output of S is identically distributed to a “real” interaction, conditioned
on the event that S does not output fail. However, since this event only happens when EXT
outputs fail, which by claim 5.6 only happens with negligible probability, the claim follows.

We proceed to show the correctness of the extraction.

Claim 5.8 Let x ∈ L, z ∈ {0, 1}∗,tag ∈ {0, 1}2|x|, and let (view, w̄) denote the output of S(x, z,tag)
(on input some random tape). Let x̃1 . . . , x̃m be the right-execution statements appearing in view
and let ˜tag1 . . . ˜tagm denote the correspoding right-execution tags. Then, for any i ∈ [m] such
that the ith right-execution in view is accepting AND tag 6= ˜tagi, w̄ contains a witness wi so that
RL(x̃i, wi) = 1.

Proof: First, note that since S always outputs fail whenever the extraction by EXT fails, the
claim trivially holds in the event that the extraction by EXT fails. Consider, next, the case when
extraction by EXT does not fail. Recall that EXT performs extraction for all right-executions
which satisfy the properties described in the hypothesis (i.e., accepting proofs and different tags).
Furthermore, for each such interaction i, the stand-alone prover Pi—constructed by EXT—uses
the same random coins as SIM in order to emulate all the interactions before session i begins. In
addition, the prescribed actions for the simulation by EXT are identical to the prescribed actions
for the simulation by SIM. This means that the statement proved by Pi will be identical to the
statement proved in the view output by SIM. Finally, by our assumption that the extraction by
EXT does not fail, we conclude that a valid witness for the statement proved by Pi is extracted.
This concludes the claim.

We conclude the proof by bounding the running time of the combined simulator-extractor S.

Claim 5.9 S(x, z, tag) runs in expected polynomial time (in |x|).

Proof: We start by noting that the running time of SIM is polynomial. Recall that the program Π′

committed to by SIM is of size poly(n). It thus directly follows that simulation of Stage 1 messages
can be done in polynomial time. Furthermore, it follows that the verification time of Rsim on the
instance 〈h, c1, r1〉 is polynomial in n. Finally, by the relative prover efficiency of 〈PUA, VUA〉 it
holds that the simulator can generate also Stage 2 message in polynomial time.

It now only remains to show that the expected running time of EXT is also polynomial. Recall
that EXT proceeds by first sampling a view using SIM and then proceeds to extract witnesses in
all accepting right executions. We show that for every right execution i, the expected running-
time needed to extract a witness from that execution is polynomially bounded. Since the number
of right interactions is polynomially bounded, we conclude by linearity of expectations that the
total expected running time of the combined simulator-extractor S = (SIM,EXT) is polynomially
bounded.

Let viewi denote the partial view for A in an emulation by SIM up until A is about to start
its ith right execution. Let pi(viewi) denote the probability that A produces an accepting proof in
the ith right execution in the simulation by SIM, given that SIM has fed to A the view viewi. Let
p′i(viewi) denote the probability that A produces an accepting proof in the ith right execution in
the simulation by Pi (constructed in EXT), given that EXT has fed A the view viewi.

32

Sub Claim 5.10 Let viewi denote the partial view for A in a emulation by SIM up until A is
about to start its ith right execution. Then, pi(viewi) = p′i(viewi).

Proof: The claim follows from the perfect indistinguishability of the basic simulator used by SIM,
and the alternative simulator used by EXT (this is proved similarly to Claim 5.3).

Note that if we only assume that 〈Ptag, Vtag〉 is statistical zero-knowledge, we could only conclude
that p′i(viewi) is negligibly close to pi(viewi). This would not be sufficient to bound the running-
time of the simulator (as this would have introduced difficulties similar to the ones discussed in [21]).

By the proof of knowledge property of 〈Ptag, Vtag〉 it holds that for any partial view viewi up
until A is about to start its ith right execution, the expected running-time of the extractor is
bounded by

poly(n)
p′i(viewi)

Since the probability of invoking the extraction procedure given this partial view is pi(viewi), the
expected number of steps used to extract a witness is19

pi(viewi)
poly(n)

p′i(viewi)
= pi(viewi)

poly(n)
pi(viewi)

= poly(n)

We conclude that the expected time needed to extract the witness in the ith right execution is
polynomially bounded. The claim follows.

This completes the proof of Lemma 5.1.

5.5 Analyzing the Family of 2n Protocols

Relying on the proof from Section 5.3 we now argue that the family {〈Ptag, Vtag〉}tag∈{0,1}n is also
one-many simulation extractable. The key for demonstrating this is to show that the protocols
〈Ptag, Vtag〉 are simulation-extractable as long as the number of left interactions is a-priori bounded
(in contrast to the single left interaction considered in Def. 4.1), and even if the number of right
interactions is unbounded.

Specifically, consider a man-in-the middle adversary A that is simultaneously participating
in k = k(n) left interactions of 〈Ptag, Vtag〉, acting as verifier, and an (unbounded) polynomial
number of right-interactions of 〈Ptag, Vtag〉, acting as prover. Let viewA(x, z, tag) denote the view
of A(x, z) when receiving left-proofs of statements x̄ = x1, . . . , xk, using identity strings ¯tag =
tag1, . . . , tagk, and proving statements of its choice in the right interaction (using tags of its
choice). Given a function t = t(n) and some k ∈ N , we use the notation {·}x̄,z, ¯tag as shorthand for
{·}x1,...,xk∈L,z∈{0,1}∗,tag1,...,tagk∈{0,1}t(|x|) .

Definition 5.11 (Bounded-many Simulation-extractability) A family {〈Ptag, Vtag〉}tag∈{0,1}∗
of interactive proofs for the language L , is said to be k-bounded-many simulation extractable with
tags of length t = t(n) if for any polynomial p(·) and any man-in-the-middle adversary A that
participates in k = k(n) left interactions and at most m = p(n) right interactions, there exists a
probabilistic expected poly-time machine S such that:

1. The probability ensembles {S1(x̄, z, ¯tag)}x̄,z, ¯tag and {viewA(x̄, z, ¯tag)}x̄,z, ¯tag are statistically
close over L, where S1(x̄, z, ¯tag) denotes the first output of S(x̄, z, ¯tag).

19It is here that complications arise in the case when p′i 6= pi. Note that the expected number of steps is no longer
guaranteed to be polynomial in this case, even if p′i is negligibly close to pi.

33

2. Let x1, . . . , xk ∈ L, z ∈ {0, 1}∗, tag1 . . . tagk ∈ {0, 1}t(|x|), and let (view, w̄) denote the output
of S(x̄, z, ¯tag) (on input some random tape). Let x̃1 . . . , x̃m be the right-execution statements
appearing in view and let ˜tag1, . . . , ˜tagm denote the correspoding right-execution tags. Then,
for any i ∈ [m] such that the ith right-execution in view is accepting AND for all j ∈ [k]
˜tagi 6= tagj, w̄ contains a witness wi so that RL(x̃i, wi) = 1.

Lemma 5.12 Suppose that {Hn}n is collision resistant for T (n)-sized circuits, that Com is per-
fectly hiding, that 〈PpWI, VpWI〉 is a witness independent argument of knowledge, that 〈PUA, VUA〉
is a universal argument and that `(n) ≥ 2n3 + n. Then, {〈Ptag, Vtag〉}tag∈[2n] is n-bounded-many
simulation extractable with tags of length t(n) = log n + 1.

Proof: The proof is essentially identical to the proof of one-many simulation-extractability of
〈Ptag, Vtag〉 (Lemma 5.1). The only difference is that in the simulation by SIM (and EXT), the
message r1 in the ith left execution can no longer be computed as Π(c1), but is in fact defined as
Π(M) where M denotes all left-hand side prover messages that have occurred before r1 (the same
holds analogously for r2). This creates a potential problem when simulating the Stage 2 messages
in the jth left protocol.

The key observation is that the total length of all prover messages on the left interaction does
not exceed 2n3 (here we assume w.l.o.g. that the length of all prover messages in a session is upper
bounded by n2). Thus SIM (as well as EXT) can include all left-hand side prover messages sent to
A before the message r1 (or r2 depending on what “slot” the simulator uses) as part of the witness
for either 〈h, c1, r1〉 ∈ Lsim or 〈h, c2, r2〉 ∈ Lsim.

Our main technical lemma (Lemma 4.3) is finally obtained by combining Lemmata 5.1 and 5.12.

Lemma 4.3 (Main technical lemma) Suppose that {Hn}n is collision resistant for T (n)-sized
circuits, that Com is perfectly hiding, that 〈PpWI, VpWI〉 is a witness independent argument of knowl-
edge, that 〈PUA, VUA〉 is a universal argument and that `(n) ≥ 2n3+n. Then, {〈Ptag, Vtag〉}tag∈{0,1}n
is one-many simulation extractable with tags of length t(n) = n.

Proof: Consider a man-in-the-middle adversary A that is verifying a statement x with identity
string tag = tag1, . . . ,tagn in the left interaction while proving m statements x̃1, . . . , x̃m in the
right interaction, where for i ∈ [m] the ith right session has identity string ˜tagi = ˜tagi

1, . . . , ˜tagi
n.

We show how to construct a simulator-extractor S = (SIM,EXT) that simulates the view of A while
extracting all the witnesses for statements x̃i for which ˜tagi 6= tag.

First, observe that for any i ∈ [m] so that ˜tagi 6= tag, there exist i0 ∈ [n] for which (i0, ˜tagi
i0) 6=

(j,tagj) for all j ∈ [n] (just take the i0 for which ˜tagi
i0 6= tagi0). Let ˜tagi = (i0, ˜tagi

i0).
Given a one-many adversary A for 〈Ptag, Vtag〉, we, next, construct an n-many adversary A′ for

〈Ptag, Vtag〉 that runs n parallel sessions in the left interaction and m′ = mn concurrent sessions in
the right interaction. The inputs and identity strings for the various sessions are defined as follows:

Left sessions. For j ∈ [n] the common input of the jth left session is xj = x and the identity
string is ¯tag = (j,tagj).

Right sessions. For (i, j) ∈ [m]× [n], the input to the (i, j)th right session is x̃j and the identity
string is ˜tagi

j = (j, ˜tagi
j).

By Lemma 5.12 there exists a simulator S′ that produces a view that is statistically close to
the real view of A′, and outputs witnesses to all right executions for which the tag is different from
all of (1,tag1), . . . , (n,tagn). Relying on S′, we construct the simulator-extractor S. S(x, z,tag)

34

proceeds as follows. It parses tag as tag = tag1, . . . ,tagn, where tagi ∈ {0, 1}. For i ∈ [n],
let xi = x, tagi = (i,tagi). Let (view, w̄) denote the output of S′(x1, . . . xn, z, tag1, . . . tagn).
Additionally, let x̃1 . . . , x̃m′ be the right-execution statements appearing in view and ˜tag1 . . . ˜tagm′

the correspoding right-execution tags. As observed above, for any i ∈ [m] so that ˜tagi 6= tag,
there exists some identity ˜tagi that A′ uses in the proof of the ith right interaction which is different
than all identities (tag1, . . . , tagn) used in the n left interactions. Thus, for every i ∈ [m] so that
˜tagi 6= tag, S can successfully find a witness for the statement x̃i in w̄. S finally outputs view and

the witnesses obtained above. The correctness of the simulator-extractor S follows directly from
the construction.

6 Acknowledgments

We are grateful to Silvio Micali and Moni Naor for many helpful discussions and encouragement.
Thanks also to the anonymous reviewers for their careful reading and thoughtful comments.

References

[1] B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages 106–115,
2001.

[2] B. Barak. Constant-Round Coin-Tossing or Realizing the Shared Random String Model. In 43rd
FOCS, pages 345-355, 2002.

[3] B. Barak, R. Canetti, Y. Lindell, R. Pass and T. Rabin. Secure Computation Without Authen-
tication. In CRYPTO 2005.

[4] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS,
Vol. 37, No. 2, pages 156–189, 1988. in 27th FOCS, 1986.

[5] B. Barak and O. Goldreich. Universal Arguments and their Applications. 17th CCC, pages 194–
203, 2002.

[6] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In CRYPTO’92, Springer
(LNCS 740), pages 390–420, 1993.

[7] M. Blum. Coin Flipping by Telephone. In CRYPTO 1981, pages 11-15, 1981.

[8] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error in Compu-
tationally Sound Protocols? In 38th FOCS, pages 374–383, 1997.

[9] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO 2001,
pages 19–40, 2001.

[10] R. Canetti, S. Halevi, J. Katz, Y. Lindell, P. D. MacKenzie. Universally Composable Password-
Based Key Exchange. In EUROCRYPT 2005, pages 404-421, 2005.

[11] I. Damg̊ard and J. Groth. Non-interactive and Reusable Non-Malleable Commitment Schemes.
In 35th STOC, pages 426-437, 2003.

[12] I. Damg̊ard, T. Pedersen and B. Pfitzmann. On the Existence of Statistically Hiding Bit
Commitment Schemes and Fail-Stop Signatures. In CRYPTO 1993, pages 250–265, 1993.

35

[13] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust Non-interactive
Zero Knowledge. In CRYPTO 2001, pages 566-598, 2001.

[14] G. Di Crescenzo, J. Katz, R. Ostrovsky and A. Smith. Efficient and Non-interactive Non-
malleable Commitment. In EUROCRYPT 2001, pages 40-59, 2001.

[15] G. Di Crescenzo, Y. Ishai and R. Ostrovsky. Non-Interactive and Non-Malleable Commitment.
In 30th STOC, pages 141-150, 1998

[16] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Jour. on Computing,
Vol. 30(2), pages 391–437, 2000. Preliminary version in 23rd STOC, pages 542-552, 1991

[17] U. Feige, D. Lapidot and A. Shamir. Multiple Noninteractive Zero Knowledge Proofs under
General Assumptions. Siam Jour. on Computing 1999, Vol. 29(1), pages 1-28.

[18] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22nd
STOC, p. 416–426, 1990.

[19] M. Fischlin and R. Fischlin. Efficient Non-malleable Commitment Schemes. In CRYPTO 2000,
pages 413-431, 2000.

[20] O. Goldreich. Foundation of Cryptography – Basic Tools. Cambridge University Press, 2001.

[21] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Sys-
tems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages 167–189, 1996.

[22] O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords Only. In
CRYPTO 2001, p. 408-432, 2001.

[23] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity or
All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38(1), pages 691–729,
1991.

[24] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game - A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, p. 218–229, 1987.

[25] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems. Jour.
of Cryptology, Vol. 7, No. 1, pages 1–32, 1994.

[26] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28(2), pages 270-299, 1984.

[27] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Jour. on Computing, Vol. 18(1), pages 186–208, 1989.

[28] I. Haitner and O. Reingold. Statistically-hiding commitment from any one-way function. In
38th STOC, pages 1–10, 2007.

[29] S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes from Collision-
Free Hashing. In Crypto96, Springer LNCS 1109, pages 201–215, 1996.

[30] J. H̊astad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Generator
from any One-Way Function. SIAM Jour. on Computing, Vol. 28 (4), pages 1364–1396, 1999.

36

[31] J. Katz, R. Ostrovsky, M. Yung. Efficient Password-Authenticated Key Exchange Using
Human-Memorable Passwords. In EUROCRYPT 2001, pages 475-494, 2001.

[32] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th STOC,
pages 723–732, 1992.

[33] Y. Lindell. Bounded-Concurrent Secure Two-Party Computation Without Setup Assumptions.
In 34th STOC, pages 683–692, 2003.

[34] S. Micali. CS Proofs. SIAM Jour. on Computing, Vol. 30 (4), pages 1253–1298, 2000.

[35] M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology, Vol. 4, pages 151–
158, 1991.

[36] M. Nguyen, S. Ong and S. Vadhan. Statistical Zero-Knowledge Arguments for NP from Any
One-Way Function. In 37th FOCS, pages 3–14, 2006.

[37] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Perfect Zero-Knowledge Arguments for
NP Using any One-Way Permutation. Jour. of Cryptology, Vol. 11, pages 87–108, 1998.

[38] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Applica-
tions. In 21st STOC, pages 33–43, 1989.

[39] M. Nguyen and S. Vadhan. Simpler Session-Key Generation from Short Random Passwords.
In 1st TCC, p. 428–445, 2004.

[40] R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest Majority. In
36th STOC, 2004, pages 232-241, 2004.

[41] R. Pass and A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a Constant
Number of Rounds. In 34th FOCS, pages 404-413, 2003.

[42] R. Pass and A. Rosen. New and Improved Constructions of Non-Malleable Cryptographic
Protocols. In 37th STOC, 2004, pages 533-542, 2005.

[43] R. Pass, A. Shelat, V. Vaikuntanathan. Relations Among Notions of Non-malleability for
Encryption Schemes. To appear in AsiaCrypt’07, 2007.

[44] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext
Security. In 40th FOCS, pages 543-553, 1999.

37

