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Abstract

In many control-theory applications one can clas-
sify all possible states of the device by an infinite state
graph with polynomially-growing expansion. In order
for a controller to control or estimate the state of such
a device, it must receive reliable communications from
its sensors; if there is channel noise, the encoding task
is subject to a stringent real-time constraint. We show
a constructive on-line error correcting code that works
for this class of applications. Our code is is compu-
tationally efficient and enables on-line estimation and
control in the presence of channel noise. It establishes
a constructive (and optimal-within-constants) analog,
for control applications, of the Shannon coding theo-
rem.
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1. Introduction

Motivation. In many automatic control applications,
a device (an engine, a terrestrial or aerial mobile robot,
a sensor, etc.) communicates with a base station that
controls its actions. The communication may be wire-
less or wired, synchronous or packet-based. Typically
the devices have a limited set of commands/ controls/
actions/ moves that they can execute. Actions by the
devices combine with environmental disturbances, to
cause a change in the parameters describing the state
of the system (such as location, orientation, or tem-
perature). Such devices need to communicate with the
base station regarding their current state and get fur-
ther instructions. Examples are numerous, and include
remote mobility issues (such as space or submarine
exploration) and web-based on-line control (such as
camera and sensor distributed control) [8, 5].

If the controller is physically remote from the sen-
sors or actuators, information flow between them can
be subject to noise; if so, system performance de-
pends upon encoding the transmissions against chan-
nel noise. In control applications, the encoding of
communications against channel noise faces a special
difficulty due to the need for real-time response to
transmissions. The objective of the base station is to
learn as precisely as possible the current state of each
device in its parameter space. Naturally, there is a
tradeoff between the amount of communication (and
hence delay) and the accuracy and reliability of the in-
formation known at the base station. It is therefore a
challenge to perform the channel coding subject to a
channel capacity constraint.

The problem can be considered within a very gen-
eral framework of interactive communication prob-
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lems [10]; however, the best results in that literature re-
main nonconstructive. Fortunately, there is a feature of
the control application that makes it easier than general
interactive-communication problems, since the con-
trolled devices can typically be described with a finite-
dimensional parameter space. (Example: the loca-
tion, orientation and engine RPM of an aerial drone.)
What characterizes a typical parameter space is that
the growth rate of the state space around any point is
polynomially bounded.

At each step in its state-space the remote device
wishes to send one (or a constant number) of bits to the
base station to indicate its position/configuration. De-
spite channel-noise, the objective of the base-station
is to determine, as accurately as possible, the loca-
tion of the device in its state-space. Of course, one
cannot ask that the base station already have high cer-
tainty about the real value of any measured bit, before
a significant number of subsequent message bits have
been received. More specifically, if the channel has a
constant rate of stochastic noise, then the best one can
hope for (on non-degenerate noisy channels) is that the
base station have probability exp(—£2(n)) of estimat-
ing incorrectly a particular state of a device, if all his-
tories leading to that state diverge from the true history
at least n steps previously. The meaningful question is:
Can we achieve such a bound? Doing so demands that
encoded characters convey information across all time
scales. This is exactly what we achieve in this paper in
a constructive fashion, as we explain below.

Problem statement and results. In this paper, we
initiate the study of error-correcting codes for remote
control of devices that move in a finite-dimensional
parameter space. All of the communication systems
we discuss share the following features. There is at
The state of
the transmitter at any time ¢ is identified with a ver-
tex (which we denote x;) of a state graph (which we
denote (7); the graph (which may be directed or undi-
rected and will typically have self-loops) is known to
both parties, as is the initial state x( of the transmitter.
In each round, the state of the transmitter shifts to an
out-neighbor of the previous state. The transmitter can

least one transmitter and one receiver.
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then use the channel once; the communicated charac-
ter can depend upon the entire history of the transmit-
ter. Our concern is the design of an efficient code for
these communications.

For nodes z, 2’ € G let dg be the length of a short-
est path from z to 2’ in G. Let B(x,¢) = {2/ :
dg(z,2’) < £}. The growth of G as a function of
¢ is the supremum over all z of |B(z,¢)|. If this
is bounded above by a polynomial in ¢ we say G
has polynomial growth. Finite-dimensional grids have
polynomial growth. We suppose that the alphabet of
the channel is a finite set S. S* denotes the set of
finite words over S. If the greatest out-degree or in-
degree of G is A, we say that the rate of the code
is p = (logA)/(log|S]). (We assume below that
A > 2.) We expressly avoid tailoring our results to
particular kinds of noisy channels.
aimed at noisy but non-adversarial channels, in partic-
ular discrete memoryless channels, for which we as-
sume only that the capacity is proportional to log |S]|.

Our results are

Based upon the code and upon the history of com-
munications, the receiver has at time ¢ a guess &y of
the current state of the transmitter. (We understand
the code to include the estimation procedure used by
the receiver.) We say that the code has error expo-
nent k if P(dg(xy, %) > £) < exp(—rl) Vi, 0. We
say that the code is time-efficient if the encoding and
expected decoding times are (logt)9™M). It is time-
and-space-efficient if the space required for encoding,
and the expected space required for decoding, are also
(log t)°M),

We show the existence of asymptotically optimal
error-correcting codes for every state graph G. Our
main result is the construction of a code for communi-
cation in finite-dimensional grid graphs that has pos-
itive rate, positive error exponent, and is time-and-
space-efficient. The method extends to other graphs
with polynomial growth which are fine discretizations
of finite-dimensional manifolds. These graphs are ex-
actly the graphs that capture control applications and
therefore our results are widely applicable for this en-
tire class of problems.
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Previous work. Existing error-correcting codes and
error-correction for protocols do not provide a satis-
factory answer for automatic control applications as
we elaborate below.

Existing error-correcting codes fall mainly into two
classes: block codes and convolutional codes. In a
block code (with block-length, say, k), a time-stream
of data is broken into segments of length k; after an
entire segment arrives at the encoder, it is transformed
into a (somewhat longer) sequence of bits, which are
then sent across the channel.

With block codes it is possible to achieve very low
probabilities of error (exponentially small in k) with
modest computational load (near-linear in k); how-
ever, there is a built-in delay of £ time units. This
violates the real-time performance requirement of an
automatic control application.

Convolutional codes [17, 9, 3] avoid the delay draw-
back of block codes by performing “on-line” encod-
ing, in which each bit of the input stream immediately
starts influencing the encoded message bits, and con-
tinues to do so until the end of a time interval of length
k, called the constraint length of the code; this interval,
which in existing implementations is finite, is analo-
gous to the block length of a block code. The decoder
can make an informed guess about a message bit very
shortly after its arrival at the encoder, and this guess
can continue to be updated during the entire constraint
length, with error probability decreasing ultimately to
a value exponentially small in k. Although this is the
kind of code we would like to use for control, the rea-
son that existing convolutional codes cannot be used
is that no efficient constructions are known for con-
volutional codes with large constraint lengths (unlike
the situation for block codes). Indeed, while convo-
lutional codes are heavily used in practice (e.g., for
cell phones), those codes have been intensively op-
timized thanks to their very short constraint lengths.
The not-very-low probability of error that is a corol-
lary of short constraint length is sufficient for an ap-
plication in which short bursts of noise are tolerated.
However, it is not adequate for control applications in
which system stability and performance depends upon
preventing accumulation of errors over extended time
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periods.

Convolutional codes with long, and even infinite,
constraint lengths do exist; however, not in a form that
we can use. The very first papers on convolutional
codes show that randomized families of convolutional
codes have attractive properties; however, such a fam-
ily cannot be used without the crutch of a supply of
shared random bits at encoder and decoder. More re-
cently, a class of explicit "tree codes” was introduced,
which eliminates the need for public coins [11, 12].
however, the existence proof for these codes has not
yet been matched by an effective construction, and for
that reason, these codes too are not yet available for
use. (A similar situation reigned for block codes af-
ter Shannon’s existence proof for asymptotically-good
block codes [13] until explicit constructions were pro-
vided [6, 4].)

There has recently been substantial progress in
information-theoretic and rate-distortion bounds for
control applications [16, 2, 14, 15, 7]; these works
solve different problems than the one considered here.
There does not appear to be a prior code for our prob-
lem that is efficient in both computation and commu-
nication.

Our work, therefore, should be understood as intro-
ducing a new family of convolutional codes with infi-
nite constraint length, suitable specifically to control
applications but not to general-purpose communica-
tion, and which manages to thereby avoid the technical
difficulties that have prevented effective construction
of general-purpose convolutional codes with infinite
(or even long) constraint length.

2. Trajectory codes

Throughout, G is a graph with vertex set V, initial
vertex xg € V, and edge set £ C V x V. A tra-
jectory « of length |y| = ¢ and which begins at time
to is a mapping from {tg, ..., ¢y + t} to V for which
all (v(i),v(i + 1)) € E. If two trajectories -y,~' are
of equal length, start at the same time ¢y, and share
the same start vertex (i.e., v(tg) = 7/(to)), we write
~ ~ 7. The distance T between trajectories v ~ 7/
of length ¢ is 7(v,v") = [{to < i < to+ 1t : v(i) #
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A trajectory code is a mapping ¥ V x
{1,2,...} — S, extended to a mapping from trajec-
tories to S* by concatenation: x(y) = (x(y(to +

1)),...,x(y(to + t))). Hamming distance between
equal-length words in S* is denoted h. The rel-
ative distance of the code is defined to be § =
inf o {h(x(v),x(?'))/7(7,7')}. A finite-time tra-
jectory code is defined similarly by a mapping x :
vV x{1,2,...,T} — S.

We say that the code is asymptotically good if it has
both positive rate p and positive relative distance 6.

Lemma 1. [f the t’th character of an asymptotically
good code with alphabet S can be computed in time
and space (logt)°W) then the code can be converted
into another asymptotically good code that has posi-
tive error exponent and is time-and-space-efficient.

Proof. The conversion is by simple repetition (the al-
phabet of the new code is S* for constant k), and
For
sufficiently high error exponent, decoding by max-
likelihood matching is exponentially unlikely to need
to examine trajectories far away from that decoded in
the previous round. Hence the expected time and space
of the computation is (log t)°(%). O

serves only to improve the error exponent.

Our task therefore is to construct an asymptotically
good trajectory code. The first problem is to show that
such codes exist (Section 3). Interestingly, the only
proof we know is non-constructive; however, with the
aid of this proof we provide a constructive and time-
and-space-efficient finite-time code for grids. (Sec-
tion 4).

Comparison with tree-codes It is instructive to
compare the present work with that on tree codes. In
the terminology of the present paper, [11, 12] used the
protocol tree of a given noiseless communication pro-
tocol in the role of our graph G; the tree code used in
that work for a noisy-communication protocol is what
we call the trajectory code on V' x {1,2,...}. The ex-
istence proof provided in that work relies on the tree
structure of the graph, and does not apply to the more

general case considered here. However, the purpose
of the generalization is not just handling more difficult
communication problems; the case that GG is a tree is,
in fact, the most difficult one. (Using tree codes en-
ables eventual reconstruction of the entire history of
the transmitter, not only reconstruction of a good esti-
mate of the current state.) Instead, the purpose in our
paper is to obtain a computationally effective solution
using the special assumption that G' has polynomial
growth. This assumption is motivated by control ap-
plications, with GG being a discretization of the finite-
dimensional parameter space of the system. Thus, we
circumvent the need to construct an explicit tree code
and show that a different code which that works for the
entire class of polynomial-growth graphs is sufficient.

3. Existence of asymptotically good trajectory
codes

Theorem 2. Every graph G possesses an asymptoti-
cally good trajectory code. Furthermore, every § < 1
is feasible as the relative distance of an asymptotically
good code.

Proof. To achieve positive rate we must label V' x
{1,2,...} with an alphabet S of size A°(). Consider
choosing each label independently and uniformly. A
code obtained in this way is almost-surely not asymp-
totically good. Nonetheless this probability space can
be used for an existence proof.

Consider at first the finite-graph, finite-time re-
striction of the problem to B(xo,T) x {1,2,...,T}.
Fix any desired relative distance bound 4. If
v = (y1,72) consists of two trajectories such
that 47 ~ <o and which share only their com-
[71]), then
we refer to v as a pair of “twins” and write
Pl = Il and hx(y) = h(x(n).x(2).

Note that infy, ~, (h(x(71), x(12))/7(71,72)) =
infwins ~(hXx(7)/|7]). For a pair of twins + let A, be

the event that hx(y)/|y| < ¢. There is a positive ¢ for
which P(A,) < |S|~<N.

For twins v = (y1,72) let N, = {twins § =
(ﬁl,ﬁg) de1, 69 € {1,2},j1,j2 > 0 such that
Ve (J1) = Bez (52) }-

mon start vertex (i.e., 7(y1,7%) =
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Observe that A, is independent of the random vari-
able (Ag)s¢n, -

The Lovész local lemma [1] ensures that () A #
provided that there exist nonnegative reals 0 < z, < 1
for which

wy [1 (=20 > P(A,),

BEN,

Observe that [{3 : 8 € N,,|8] = £} < 4]y[eA%.
For ¢ to be determined set ., = A~ 7], Now,

vy [ (1 —2p) > A=D1 — A=etythiea™,
/=1

BEN,

A sufficiently large ¢’ ensures that for A > 2, 1 —
A=l > =287 g

o0
/
L AT e e
/=1

/
— A8l 5, €At

A sufficiently large ¢’ ensures that for A > 2,
SO0 A= <2 50

—c _
> A Il g=16lv]

Since P(A,) < |S|~¢Nl, the hypotheses of the local
lemma are met with an alphabet of size ACM),

To extend the proof to the general case we apply
a standard compactness argument (see [1]). For any
T, the trajectory codes on B(zo,T) x {1,2,...,T}
ensured by the above argument form a finite non-
empty set. Let Cr denote the set of codes on
V x{1,2,...} which restrict to one of the trajectory
codes on B(xo,T) x {1,2,...,T}. Cr is a non-
empty set that is closed in the product topology on
SV>{1.2.-}  Note that C; C Cyp_q; the intersection
of the sets C'r for any finite number of indices 7" is
therefore nonempty. The set (),cy Cr is the desired
set of trajectory codes with relative distance §. By Ty-
chonoff’s Theorem, SV *11:2-} is compact. Therefore

Mien O # 0. O

4. Construction of trajectory codes for grids

We now construct an asymptotically good and time-
and-space-efficient finite-time trajectory code, of any
desired relative distance J < 1, for a grid graph of
arbitrary finite dimension d.

Let P, denote the path of length n, with vertices la-
beled {—n/2 + 1,...,n/2}. Let G be the graph on
vertex set V,, g = {—n/2+1,...,n/2}¢ with an edge
from (uy,...,uq) to (v1,...,vq) if |u; — v;| < 1 for
all 2. For simplicity we describe the construction for a
time bound of n/2. So our task is to construct a tra-
jectory code x : Vj, 4 x {1,...,n/2} — S of relative
distance 0.

The idea is to combine recursion with use of an ex-
plicit block code. Set n; € ©(logn). (n1 needs only
to be large enough to accommodate codewords of the
block code described below.) Let k be the least even
integer greater or equal to % + 4. For simplicity as-
sume that knq divides n.

4.1. Recursive construction

The block code: Letn : V,, 4 — R (for a finite
alphabet ;) be an asymptotically good block code of
relative distance (1 + 0)/2, in which encoding and de-
coding can be performed in time n?
mapping 11 : Vy, g X {1,...,n1/2} — Ry, so that for
x € Vo, (@) = (m(z,1),...,m(x,n1/2)).

The recursive code: Let xi Vini,da X
{1,...,kny/2} — S; (for a finite alphabet S1) be a
trajectory code of relative distance (1 + §)/2.

The basic idea is to cover V,, 4 x {1,...,n/2} by
overlapping “shingles”. Each shingle is “placed” at
a specified € V,, ¢4 x {0,...,n/2 — 1}, and is the
following mapping:

. Rewrite n as a

d
O : (H{mi—kn1/2—|—1,...,x,~+kn1/2}> X

i=1

X(Tay1 + 1, 2q401 +kni/2) — 51 x Ry

ox(y) =

YF]',F.
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= a(y—=),m(z1,..., 24, (Yit1 —T4+1 mod ny)))

The cover of V,, 4 x {1,...,n/2} by overlapping
shingles will be described by a union of several cov-
ers, each of which is a tiling (a cover by nonoverlap-
ping shingles). Each tiling is associated with a vector
(at,...,aq41) € {—k/24+1,...,k/2}¥x{0,... k-
1}. (Strictly speaking each tiling may fail to be a cover
but only due to edge effects which we gloss over.)
The collection of shingles associated with the label

(a1, ...,aqy1) consists of those placed at x of the form
x=ny(kz1 4+ a1,...,kzq11 + aqi1),

forall (z1,...,2441) of the form

(21, .., 2a41) € {—n/(2kn1)+1,...,n/(2kn1)}%x

x{1,...,n/(2kny)}

The tiling labeled (a4, ..
a mapping

.,agq41) therefore defines

Voa x{1l,...,n/2} = S1 x Ry

Xal,---7ad+1

by restriction (except possibly near the boundaries due
to fencepost errors).

The trajectory code x is the concatenation of the
codes associated with each of the tilings:

XW) = (Xar,aas (%))

Observe that the number of labels concatenated at
each vertex is k%11,

aly..,ad+1

Lemma 3. x achieves relative distance 0.

Proof. Consider any twins (y,7'). Let t = |y| and let
to be the starting time of the pair of trajectories.

If t < (k—4)nq/2 then the pair (v, ~') is contained
entirely within a shingle. This implies relative distance
at least (1 +9)/2.

Otherwise, partition the time period [tg,to + {]
into consecutive blocks of the following lengths:
61, mi, 527 ma, ..., 01, mr_1, £y, (for L to be deter-
mined), by the following rule. (Define t; = ty +
=1l +my).)

Suppose ¢4, m1,...,¥¢;_1,m;_1 have already been
defined. Set ¢; = min{t + to — t;—1, (k — 4)n1/2}.

Ifl; +ti_1 = t+ tg, set L = 4 and halt. (It may
happen that ¢; = 0 but only if L = i.) Otherwise
set m; to be t + tg — ¢; — t;_1 if the following set is
nonempty, and otherwise to be its least element: {m >
0:da(v(tim1 + 4 +m),y (tic1 + £ +m)) < 21}
(It may happen that m; = 0.)

Since t > (k — 4)n1/2, L > 2. Observe that for
each i, {; = (k — 4)n1/2, except that ¢ may be
smaller.

We show that within each of the blocks, the Ham-
ming distance between the v and ' codewords is at
least —n1 + (1 +6)¢; /2 or —nq + (1 +0)m; /2, as the
case may be.

We begin with the “m; type” blocks. For the dura-
tion of such a block, the trajectories are separated by
graph distance at least 2n;. In each time segment of
length ni, aligned with the shingles of the construc-
tion, the two trajectories pass through distinct code-
words of 7, and experience relative distance (14 6)/2.
The first and last time segments can be incomplete and
therefore less efficient, but the total number of shared
characters due to these two time segments is bounded
by (1 — 0)n1, which we upper bound by n;.

Next we treat the “; type” blocks, with the follow-
ing “virtual trajectory” argument. Choose a vertex y =
(Y1,---,Yd) € Vi,q such that both dg(y, v(ti—1)) <
ny and dg(y,’y/(ti_l)) < ny. Define y € Vn,d X
{1,...,n/2} by 5 = (y1,--.,¥Yd,ti—1 — n1). Con-
struct a trajectory  with start time ¢;_; —n; and length
¢; + nq by having it start at (¢;—1 — ny) = ¥, reach
F(ti—1) = v(t;—1), and thereafter be identical to y un-
til time ¢;_1 + ¢;. Similarly construct a disjoint trajec-
tory 4/ with start time #;_1 — n and length ¢; + n,
which starts at 4'(t; 1 — n1) = ¢, reaches ¥/ (t;_1) =
~(t;—1)’, and thereafter is identical to ' until time
t;_1 + £;. Observe that 4 and 4 are twins of length at
most (k—2)nq /2, so there is a shingle entirely contain-
ing them. Hence the Hamming distance between their
words is at least (¢; + n1)(1 + J)/2, and therefore the
Hamming distance between the segments of y and 7/ is
atleast —ni+(4;+n1)(146)/2 > —ni+£4;(149)/2.

Combining the contribution of all time segments,
we find that the Hamming distance between the two
words is at least —(2L — 1)n; + (1 + J§)t/2. Note that
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t > (L—1)(k—4)n1/2. Recalling that ny < 2t/(k —
4), this implies that (2L — 1)ny < 6t/(k — 4). Hence
146 _ _6

the Hamming distance is greater than (-5 — 2>7) >

té. O
4.2. The code

What is left unstated by the above construction, is
how the code x; on the shingles is constructed. The
two extreme options are to pursue the whole con-
struction recursively, or to construct y; by exhaustive
search. The former option is unsatisfactory because
of the alphabet blow-up at each level of recursion.
The latter option requires a one-time 7.°(!)-time com-
putation. Once 1 has been constructed, local look-
up can be performed in time logo(l) n, hence achiev-
ing time-efficiency. In order to also achieve space-
efficiency, we implement just one more level of recur-
sion, constructing 1 out of a code 2 for shingles of
size log log n, which is itself constructed by exhaus-
tive search in time logO(l) n. Recall that by time-and-
space efficient construction we mean that for any ver-
tex in the state-space graph, we can compute  in time
and space polynomial in the length of the vertex label.
Thus, we have:

Theorem 4. The above construction of x using X2
is time-and-space efficient, and achieves any required
relative distance § < 1.

Proof. The relative distance guarantee follows from
section 4.1; the construction efficiency follows by
combining the construction of section 4.1 with the
double-recursion of section 4.2. O

5. Trajectory codes have an efficient verifica-
tion procedure

In this section we show how to explicitly verify the
distance property of any trajectory code using dynamic
programming. This is in sharp contrast to tree codes,
for which no such efficient verification procedure is
known. Existence of an efficient verification procedure
is important because our construction in the previous
section has large constants. Using branch-and-bound
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methods along with the verification procedure might
lead in practice to codes with better constants than are
proven by our analysis.

Let G = (V, E) be a graph with polynomial growth
rate p. We show an algorithm that verifies that a finite
time trajectory code x : V' x {1,2,...,T} — S has
relative distance at least 6. The running time of the
algorithm is polynomial in 7.

The algorithm is a simple dynamic program. The
dynamic programming table D is indexed by quin-
tuples. Valid quintuples (z,y, z,to,t) are those for
which z,y,z € V, tg +t < T, and there exists a
pair of twin trajectories (,+') which begin at time
top at x, and such that at time g + ¢, v ends at y
= t,
= z,

while +/ ends at z. (In other words: |y| = |7/|
Y(to) = 7'(to) =z, y(to +t) =y, 7' (to + 1)
and for every @ > tg, y(i) # 7/(7).) We compute

D(z,y,2,t0,t) = min h(x(7),x(?))-

twins 7,7y’

Notice that the size of D can be loosely upper bounded
by (p(T))3T? which is polynomial in T". Clearly, upon
completion of the computation of D, the relative dis-
tance of the code can be verified by checking if

D(mayvzvt(]vt) Z 5t7

for all valid quintuples (z, vy, z, to, t).

The table D is computed by induction over ¢. For
t =
that tg < T and there is a length ¢ trajectory start-
ing at g and ending at x. For such valid quintu-
ples we set D(z,x,x,ty,0) = 0. For ¢ > 0, sup-
pose we already computed all the valid entries of the
form (x,y, z,tp,t — 1). For every t9 < T — ¢ and

0 the valid quintuples are (x,z,z,tp,0) such

for every three distinct nodes z,y,z € B(xo,T) we
compute the following. Let ¢ € {0,1} be the indi-
cator of x(y,to +t) # x(z,to + t). Consider all
pairs of nodes ¢/, 2’ such that (y/,y), (2/,2) € F and
(x,y', 2, to,t — 1) is a valid quintuple. If no such pair
exists, then (x,y, 2, to, t) is not a valid quintuple. Oth-
erwise, put

D(z,y, 2, to,t) = € + min{D(x,y', 7', to,t — 1)}
y/7z/
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This completes the description of the dynamic pro-
gram.

Theorem 5. The dynamic program takes poly(T) time
to execute, and it correctly computes D(x,y, z, to, t)
for all valid quintuples (x,y, z,tg, t).

Proof. The number of quintuples (x,y, z, tg,t) (valid
or not) that are checked is at most |B(xq, T)|?T? <
(p(T))3T?. The number of pairs 3/, 2’ that need to
be examined in order to compute D(x,y, z, to,t) is at
most twice the maximum in-degree in the subgraph in-
duced by B(zg,T). The proof of correctness is a triv-
ial induction on . |
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