
Managing assumptions during agile development*

Ireo Ostacchini1 and Michel Wermelinger2
1 Ramboll Whitbybird Ltd, UK

2Computing Department and Centre for Research in Computing, The Open University, UK

* This work was carried out by the first author for his part-time MSc project, supervised by the second author.

Abstract

The assumptions that underlie software
development often go unrecorded and form part of the
implicit rationale on which design and implementation
decisions are based. These assumptions can fail at any
time, with serious consequences. This paper presents a
lightweight approach to assumption management (AM)
designed to suit agile development.

Assumptions were monitored for three months
within a small agile team. Two key indicators were
proposed for measuring AM success but only one was
detected in the research results. A number of strong
correlations were found between properties of
assumptions. Data collection largely depended on the
subjective judgements of the first author, but they were
validated with some success by his colleagues.

In some ways, assumption management was found
to complement agile development. However, AM was
not fully integrated into the team’s development
process, due to difficulty in adopting an ‘assumption-
aware’ way of thinking. Suggestions are offered on
how this transition may be eased, and on how others
might wish to build on this research.

1. Introduction

When software is designed, assumptions are made
about the environment in which it will operate. Often,
these assumptions are not explicitly recorded, but are
“built into the system” [9]. Such assumptions are
unlimited in number, and can fail at any time, causing
the software to fail to fulfil its purpose.

In a world increasingly dependent on software, the
consequences of assumption failure can be very
serious. Lehman [9, 10] and others have proposed that
assumptions should be monitored throughout the
useful life of a piece of software, with action taken to
ease the consequences of their failure.

Most research into assumption management has
focused on formal, systematic methods. This contrasts

with recent trends in software development, which
have shown a rise in popularity of more lightweight,
‘agile’ methodologies [2].

One might expect assumption management to fit
naturally within agile development: AM is an
essentially simple approach, concerned with
responding quickly to change, so it should suit the
short release cycles of agile development. Assumptions
can be documented briefly in plain English [12],
keeping documentation to a minimum and facilitating
good communication between developer and client.

This research introduces a simple form of
assumption management to a small, agile software
development team. It attempts to measure whether AM
improves the team’s development process, and may
therefore be of use to other developers.

2. Related work

Assumption management can be traced back to the

late 1980s, when US military researchers devised
Assumption-Based Planning [4]. Boehm advocated a
similar approach for software development, suggesting
that assumption analysis be used to help identify risks
at each stage of a project [3].

Lehman first observed that software must evolve to
remain useful in a changing world. He proposed that
the assumptions on which a piece of software depends
should be made explicit and monitored for change,
with action taken when they fail [9, 10].

A number of researchers have sought to define
properties and categories of assumptions: among these
are vulnerability (likelihood of failure) and importance
(negative consequences of failure) [4], explicitness [9]
and the categorizations of Lago and van Vliet [8] and
Lewis et al. [12]. As shown in the next section, we
have adopted all these properties in our work.

The military AM process of Dewar et al. consists of
five basic tasks [4]; the software development variation
of Lewis et al. involves just three – identifying
assumptions, monitoring them, and acting to lessen the

impact of their failure [12]. Roeller devised a
“recovery” technique to retrieve assumptions from past
documentation [15]. A simplified and partial version of
Roeller’s technique was adopted for our work. The
first author looked through documentation and was
prepared to interview people, although the latter turned
out to not be necessary.

Most research into assumption management has
focused on more formal, systematic approaches to the
subject. Haley et al. deal with trust assumptions in the
context of security requirements engineering with
Problem Frames [7]. Lehman and Ramil suggest that
developers’ “(long-term) goal should be to express
specifications formally” [11], while Miranskyy [13]
and Lago and van Vliet [8] offer formal models for
documenting how assumptions relate to requirements
and features respectively. Some have presented
assumptions as structured, machine-readable data [5,
16].

Others have opted for a less formal approach to
assumption management: Lewis et al. design their
“non-disruptive” method for developers who typically
dislike maintaining program documentation [12], while
Page et al. offer agile developers a “lightweight”
method for managing security assumptions [14].

However, we are not aware of previous research
seeking to combine assumption management and agile
development in an industrial setting. Page et al. do not
conduct a case study [14] while Lewis et al. present
only brief qualitative results for their research [12].

3. Research Method

A lightweight assumption management process was
devised. Over a period of three months (April – June
2008), the process was implemented in the software
development team managed by the first author – a
small, agile team carrying out in-house development
for a large engineering consultancy. Data was collected
in a simple Microsoft Access database.

Drawing on the existing literature, four key AM
tasks were identified:
• recording new assumptions [12]
• monitoring assumptions on a regular basis, i.e.

checking for failure, but also checking for the
increased likelihood of an assumption failing, and
taking action to lessen the negative consequences
of assumption failure [4, 12]

• searching for assumptions [12]
• recovering past assumptions (and assumption

failures) by looking through documentation, and
conducting interviews where necessary [15]

These tasks were performed on a weekly basis over
the three month period. Recovery was used to identify
new, changing and failing assumptions; these were all
recorded in the database.

Assumption failures were also recovered for the
preceding three months (January – March 2008),
allowing a comparison between assumption failure
data before and during the AM implementation.

Two key indicators were devised to try to gauge
whether managing assumptions had improved the
software development process (Table 1).

Table 1: Key indicators

 Key indicator Explanation

1 no. of failures
of high-impact
assumptions

AM aims to lessen the impact of
assumptions before they fail – so this
measure should decrease as more
assumptions are ‘caught in time’.

2 no. of failures
of previously
unidentified
assumptions

AM attempts to identify assumptions
before they fail – so a decrease in
failing assumptions that had not been
previously identified would be a sign
of AM’s success.

Data collection involved making subjective

judgements about a number of assumption properties.
In our data model, each assumption has a description
and a category. We used the categorizations of Lago
and van Vliet [8]: organizational, managerial and
technical. Furthermore, each assumption goes through
one or more states, each state being characterised by
the following properties:
• Description – the new state of the assumption,

described in natural language.
• Stability – rated against a list of six options: top,

high, medium, low, very low and none. Low
stability would mean an assumption was likely to
fail, while a ‘none’ rating meant that the
assumption had failed. Stability is hence the
inverse of vulnerability [4], with an added value to
mark the actual failure of the assumption.

• Impact – the negative consequences for the
organization of the assumption’s failure, rated
using the same list of options as stability. If the
stability is ‘none’, i.e. the assumption has failed,
then the impact is the actual one, otherwise it is
the potential impact of failure.

• Source – the cause or symptom of a change in
assumption state or, for the assumption’s initial
state, the source of the assumption. Sources were
selected from the following possibilities: bug fix,

change request, design decision, management
decision, specification.

• Explicitness – a Boolean attribute stating whether
the assumption is explicitly stated, e.g. in some
specification or management document.

• Action – a description of the action to be taken in
response to the change of state.

• Task ID – a numeric field with the ID of a relevant
record in the project task database.

• Code Revision ID – a numeric field containing the
ID of a relevant code commitment in the source
code repository.

To sum up: the assumption state data entity captures
the (usually external) cause for an assumption to
change state, the new stability value, the action to be
taken, and the new impact value due to the action.

The task and revision ID fields enable traceability
between assumptions, tasks and code. Code
commitment records contain details of all source code
changes, and also contain references to project task
records. Hence, it was possible to navigate from an
assumption change record to a related task record, on
to a list of source code changes, and then drill down
into individual code changes.

The six options used to rate stability and impact
were treated as an interval scale – a ‘top’ rating would
be worth 5, ‘high’ would equal 4, down to ‘none’
equalling zero. This allowed the mean average of the
impact and stability of a group of assumptions to be
calculated (as used in Table 6).

Subjective estimates made by the first author were
later verified by two of his colleagues – a developer
within the team, and the IT department manager. Both
were given copies of the database stripped of data in
the category field of assumption records, and the
impact, stability and source field of assumption state
records. The data they entered in these fields was
compared with that entered by the author.

2.1 Examples

Two examples of assumptions recorded during the

research are presented at the end of the paper.
Example 1 (Table 8) shows how an implicit

technical assumption suddenly failed due to an
application being updated. The first assumption state
record is entered retrospectively on assumption failure
– it estimates the state of the assumption at the time it
was first made. Its ‘high’ stability rating is effectively
saying: ‘at the time the assumption was first made, it
would have been considered highly stable’.

In the second (failed) assumption state, the impact
rating refers to the actual impact of assumption failure,

after action was taken to deliver the images another
way. For the first (live) assumption state, no action
was taken; here, the impact rating indicates the
potential impact of the assumption’s failure.

Example 2 (Table 8) shows how a decision was
made to change the security subsystem used by an
application. The second assumption state record shows
that the assumption was not judged to have failed – i.e.
stability was ‘low’ rather than ‘none’. Arguably, this
assumption should also have been marked as failed; it
survived because the action (to swap subsystems) had
not been carried out, and in fact never has been – the
assumption lives to this day. On hindsight, the data
model should have included a Boolean field to record
whether the action had been carried out. Assumption
state records were entered when a change of state was
detected and an action was decided upon, assuming it
would always be executed – in a handful of cases this
turned out to be not true.

These examples are similar in that they both involve
parts of a system being replaced with minimal negative
impact. In Example 1 the functionality was only used
in one place in the application, and was therefore not
difficult to replace. In the second example, the
subsystem cut across the whole application, but as it
was originally implemented using the “facade” design
pattern [6] it would have been easy to substitute.

4. Results

A simple breakdown of the data recorded (Figure 1)
shows that during the three months in which
assumption management was performed:
• 14 previously unidentified assumptions, i.e.

assumptions made previously but only detected
during the AM period, failed;

• 8 previously unidentified assumptions changed
without failing, but 2 of them then went on to fail
before the end of the period and hence count as
failed for the quantitative analysis described later;

• 11 new assumptions, i.e. made for the first time
during the AM period, were recorded, one of
which changed by the end of the period.

At the end of this period, 17 assumptions remained
live. Further 17 failures were recovered from the three
months prior to the assumption management trial.
Overall, 50 assumptions were recorded.

Figure 1: Breakdown of assumption data

We made a month-by-month analysis of when

assumptions failed, and which was their impact and
explicitness. Only one of the proposed key indicators
of successful assumption management (Table 1) was
evident in the data collected, namely indicator 2 – a
decrease in failures of previously unidentified
assumptions.

Action taken on assumption failure was shown to
reduce the impact of failure. However, action taken
when assumptions changed state (but did not fail) did
not reduce impact. This may be due to differences in
perceiving the potential impact of a live assumption
and the actual impact of a failed assumption.

Among the 33 failed assumptions identified, a
number of frequently occurring combinations of
assumption properties were observed.

First, assumptions regarded as more stable tended to
have a higher impact when they failed (see Figure 2,
where the circle size is proportional to the number of
assumptions).

Second, managerial assumptions tended to fail due
to change requests, while technical assumptions most
often failed because of bug fixes (Table 5).

Third, failing assumptions that stemmed from
design or management decisions were considered
higher in impact, less likely to fail and were made
explicit less often than those originating in
specifications (Table 6).

Fourth, there were three particular combinations
between the source of a failed assumption (first
column of Table 6) and the ‘source’ (i.e. cause or
symptom) of their failure: 42% of all failed
assumptions originated in specifications and failed via
change requests, 80% of the assumptions that
originated with a management decision also failed via
management decision, and 66% of the assumptions
stemming from design decisions failed via bug fixes.

Figure 2: Stability vs impact after failure

As for the validation of the first author’s subjective

estimates of assumption properties, they were matched
with some success by his department manager and a
developer with whom he worked closely on a daily
basis. The developer’s ratings for stability, category
and source matched the author’s very closely, while
their impact ratings showed a moderate positive
correlation (Table 2). The department manager’s
ratings matched moderately well with those of the
author except for stability, for which there was almost
no correlation (Tables 2 and 3). The developer later
said he found the database “very easy” to use, while
the department manager said he had found it “quite
difficult” to use.

Table 2: Pearson correlation with colleagues’

ratings for stability and impact
 Stability Impact

Developer 0.95 0.44

Department manager -0.13 0.44

Table 3: Matches between first author’s and
colleagues’ ratings for category and source

 Category Source

Developer 96% 84%

Department manager 48% 51%

Our explanation for the discrepancy between the

colleagues’ responses is that the developer and the first
author worked closely together on the team’s software
projects, and were constantly in discussion about the
projects. The other developer would therefore have
had a good understanding of the issues that the
assumptions related to, whereas the department
manager was not involved at all in the day-to-day work
of the team.

The first author did not succeed in integrating
assumption management into his daily work – he
found it difficult to adjust to thinking in an
assumption-oriented way. This meant that, for
example, he was unable to spot a new implicit
assumption while in the middle of a requirements
meeting, or to steer a project client through an
assumption-oriented discussion of their change
requests. Instead, he resorted to performing assumption
recovery once a week.

Gradually, however, an ‘assumption awareness’ did
develop; the first author became more adept at spotting
assumptions, and took less time to perform the weekly
assumption recovery, from over three hours at the
beginning of the AM period to under two hours by the
end of the three months.

This increased assumption awareness also began to
influence the first author’s work more generally – he
would find himself instinctively exposing implicit
assumptions during project meetings, and searching for
them in specification documents.

4.1 Lessons learnt

A number of lessons were learnt during the

assumption management process. These are outlined
below, along with suggestions for practitioners and
researchers wishing to improve the AM approach
described in section 3.

The assumption data model was found to have a
number of inadequacies:
1. The impact and stability properties did not allow

the effects of actions on assumption state to be
captured precisely.

2. It was not clear whether actions took place as a
direct result of assumption management activity,
or whether they would have been carried out
anyway.

3. Some actions were not actually carried out – the
data model does not make this clear.

One way of solving problem no.1 would be to have
two impact and two stability properties per assumption
state, indicating the properties’ values before and after
action was taken. For items 2 and 3, the addition of a
Boolean property to assumption state data would solve
the problem in each case.

Over half the assumptions recorded belonged to the
organizational or managerial categories (Table 4).
Also, around 15% of failed assumptions originated in
management decisions – these tended to be implicit
and high-impact (i.e. dangerous and hidden). This
shows that software developers do not operate in a
vacuum – they need to take account of assumptions
made outside their own working environment.

Table 4: Assumptions - by category

Category No. of assumptions

Managerial 22

Organizational 8

Technical 20

Based on this, a case could be made for extending

assumption management into the organization beyond
the software development function, or at least ensuring
that managers have an input into the AM process.

The difficulties that the first author experienced in
developing ‘assumption-awareness’ suggest that this
may be a key factor in the successful introduction of
assumption management. This process may be eased in
the following ways:
• Starting with a checklist of typical assumptions.†
• Making AM a scheduled, team-based activity.
• Defining assumption properties clearly, in

particular stability and impact.
• Publishing policies for identifying assumptions

and their changes / failures.
From a research perspective, future work may seek

to evaluate AM over a longer time frame in order to
get sufficient quantitative data; this point is highlighted
by the low number of assumptions recorded (50) and
the fact that only one of the 11 new assumptions
identified had changed by the end of the three months.

Also, researchers may wish to implement the data
model improvements suggested above; this may help
them to capture the subtle interdependencies between
socio-technical artefacts (from bug fixes to
management decisions) and assumption properties (e.g.
impact).

As for the first author and his development team,
they have not continued to practice assumption
management. One reason is the relative lack of clear,
conclusive evidence of the benefits of AM. This makes
it difficult to sell AM to a team that already enjoys a
successful development process, and that employs an
agile, “just barely good enough” approach to
documentation – for example, development artefacts
such as models and specifications are not updated as a
matter of course, only when there’s a pressing need to
do so [1].

† We have put together such a list of assumptions, by
generalising from the concrete 50 assumptions
observed, and present a subset in Table 7.

The first author does intend to reintroduce his team
to assumption management at some point in the future,
using an improved data model that will allow the
effects of AM to be better measured. In the meantime,
he encourages an ‘assumption awareness’ to permeate
all aspects of the team’s work.

5. Conclusions

Assumptions are often implicit. They are an
important kind of knowledge to be managed during the
whole software development life-cycle, because
assumption failure impacts organisational, architectural
and implementation decisions. This paper contributes
to assumption management (AM) as follows.

First, it proposes a rich AM model, based on states
with several properties, that includes several previous
proposals. Furthermore, the model allows traceability
to development tasks and source code.

Second, the proposed method remains simple and
lightweight enough to manage and share knowledge
about assumptions in a pragmatic way via a form-
based database interface.

Third, the paper presents, to our knowledge, the
first industrial case study of AM in an agile setting.
The weekly monitoring routine, using a simple
database that captures assumptions in short English
descriptions, was adequate for the agile approach and
its short release cycles.

Fourth, the quantitative analysis of the collected
assumptions and their properties supports one key
indicator for successful AM, and shows that many
failed assumptions tend to fit a limited number of
‘profiles’, i.e. combinations of properties. If confirmed
by subsequent research, this may help developers to
focus their AM efforts more narrowly and efficiently.

The results make us confident that it is possible to
develop an AM approach that allows the capture,
sharing and reuse of knowledge about assumptions and
their evolution in a pragmatic and lightweight way that
fits agile development practice. However, the AM
experience obtained during the 6 month period, and the
comparison with colleagues’ judgements, shows that
some improvements are still needed, and we distilled
them into lessons that practitioners and researchers
may wish to take on board.

6. References

[1] S. Ambler, “Best Practices for Agile/Lean

Documentation”,

http://www.agilemodeling.com/essays/agileDocumentati
onBestPractices.htm.

[2] S. Ambler, “Survey Says... Agile Has Crossed the
Chasm”, Dr. Dobb’s Journal 32(8), August 2007.

[3] B.W. Boehm, “Software Risk Management”, 2nd
European Software Eng. Conf., Springer-Verlag, 1989,
pp. 1-19.

[4] J.A. Dewar, H. Builder, M. Hix and H. Levin,
Assumption-based Planning: A Planning Tool for Very
Uncertain Times, RAND, Santa Monica, 1993.

[5] S. Fickas and M.S. Feather, “Requirements monitoring in
dynamic environments”, 2nd Int’l Symposium on
Requirements Eng., IEEE, 1995, p. 140.

[6] E. Gamma, R. Helm, R. Johnson, J.M. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1994, p. 185.

[7] C.B. Haley, R.C. Laney, J.D. Moffett, and B. Nuseibeh,
"Using Trust Assumptions with Security Requirements,"
Requirements Engineering Journal, vol. 11 no. 2, April
2006, pp. 138-151.

[8] P. Lago and H. van Vliet, “Explicit Assumptions Enrich
Architectural Models”, 27th Int’l Conf. on Software Eng.,
ACM, 2005, pp. 206-214.

[9] M.M. Lehman, “Uncertainty in computer application and
its control through the engineering of software”, Journal
of Software Maintenance: Research and Practice, John
Wiley & Sons, Ltd, 1989, pp. 3-27.

[10] M.M. Lehman, “Uncertainty in computer application is
certain-software engineering as a control”, Int’l Conf. on
Computer Systems and Software Eng., IEEE, 1990, pp.
468–474.

[11] M.M. Lehman and J.F. Ramil, “Rules and Tools for
Software Evolution Planning and Management”, Annals
of Software Eng., 2001, pp.15-44

[12] G.A. Lewis, T. Mahatham, and L. Wrage, “Assumptions
Management in Software Development”, Technical Note
CMU/SEI-2004-TN-021, Carnegie Mellon University,
2004.

[13] A. Miranskyy, N. Madhavji, M. Davison and M. Reesor,
“Modelling assumptions and requirements in the context
of project risk”, Technical Report 645, Dep. of Computer
Science, Univ. of Western Ontario, 2005.

[14] V. Page, M. Dixon, and I. Choudhury, “Security Risk
Mitigation for Information Systems”, BT Technology
Journal, 2007, pp. 118-127.

[15] R. Roeller, P. Lago and H. van Vliet, “Recovering
architectural assumptions”, The Journal of Systems and
Software, Elsevier Science Inc., 2006, pp. 552-573.

[16] A. Tirumala, T. Crenshaw, L. Sha, G. Baliga, S.
Kowshik, C. Robinson and W. Witthawaskul,
“Prevention of failures due to assumptions made by
software components in real-time systems”, ACM
SIGBED Review, ACM, 2005, pp. 36-39.

Table 5: Assumption failures – category of assumption v source of assumption failure

 Source of assumption failure

 Bug
Fix

Change
Request

Design
Decision

Management
Decision

Spec.

Managerial - 12 - 3 1

Organizational 2 2 - 2 -

C
at

eg
or

y

Technical 8 2 - 1 -

Table 6: Assumption failures - grouped by source of assumption

Source of
assumption

No. of
Assumption

Failures

Average
Stability

before failure

Percentage of
assumptions explicit

before failure

Average
Impact

before failure

Average
Impact after

failure

Bug Fix - - - - -

Change Request 2 1.00 100 3.00 1.00

Design Decision 6 4.17 0 3.00 1.83

Management
Decision

5 4.60 20 3.40 3.00

Specification 20 3.60 50 1.85 1.45

Table 7: Generalized assumptions
Category Generalized assumption

Managerial A given use case will never occur - and should therefore not be built into the system.

 A task owned by a certain person will always be performed by that person

 All instances of a given piece of information fit a given format

Organizational A project / system will always be owned by a certain person

 A system is used in the same way throughout an organization

 People will never leave the organization

Technical A certain technology is appropriate for / accessible to all users

 Two systems do not affect each other in any way

 A technology will not suddenly become obsolete

Table 8: Examples of assumption data

 Example 1 Example 2

 Assumption Assumption

ID 56 39

Title Emailed zip files are an appropriate medium for
delivering images requested from the Image Library

JMS permissions are appropriate to use in the MMR system

Category Technical Managerial

Project Image Library MMR

 Assumption state 1 Assumption state 1

Date - -

Description The image library delivers requested images via emailed
zip files. This is an appropriate way to deliver smaller
image files to staff - larger files have to be processed
manually

Permissions from the Job Management System (JMS) should
be used for implementing security in the Monthly Management
Reports (MMR) system

Explicit No Yes

Stability High Top

Action - -

Action Authorized
by

 - -

Impact Low Low

Task Database ID - -

Code Revision ID - -

Source Specification Specification

 Assumption state 2 Assumption state 2

Date 19/06/2008 09/05/2008

Description A Microsoft Office update now blocks Windows from
opening zip file email attachments - and most staff do
not have an archive program to open the files for them.
Also, the new Image Library manager wants to deliver
larger image files automatically

These permissions are no longer appropriate - for example,
team secretaries need MMR rights that they should not have in
JMS

Explicit Yes Yes

Stability None Low

Action Deliver the images another way - by using appropriately
secured network folders

Amend the MMR system to use the permission settings used
by the HR system

Action Authorized
by

 Image Library manager Business analyst

Impact Very Low Low

Task Database ID 920 968

Code Revision ID - -

Source Change Request Change Request

	1. Introduction
	2. Related work
	3. Research Method
	2.1 Examples

	4. Results
	4.1 Lessons learnt

	5. Conclusions
	6. References

