
Mesh Collapse Compression
by

Martin Isenburg

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
October 1999

© Martin Isenburg, 1999

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. 1 further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of CG^^^T Scj(^C^

The University of British Columbia
Vancouver, Canada

Date OcOcW 1 ^ (^ 3

DE-6 (2/88)

Abstract

Efficiently encoding the topology of triangular meshes has recently been the

subject of intense study and many representations have been proposed. The

sudden interest in this area is fueled by the emerging demand for transmitting

3D data sets over the Internet (e.g. VRML). Since transmission bandwidth is

a scarce resource, compact encodings for 3D models are of great advantage.

In this work we present novel algorithms for encoding the topology of trian­

gular and quadrilateral meshes. Our encoding algorithms are based on the

edge contract operation, which has been used extensively in the area of mesh

simplification, but not for efficient mesh topology compression. Furthermore

we present a simpler decoding algorithm for Edgebreaker encoded triangle

meshes.

n

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgements x

Dedication xi

1 Introduction 1

1.1 Triangle Meshes 2

1.2 Previous work 4

2 Mesh Collapse Compression 10

2.1 Mesh Collapse Compression 11

2.1.1 The mc-contract operation 13

2.1.2 The mc-divide operation 14

iii

2.1.3 Encoding : • • 14

2.1.4 The mc-expand operation 16

2.1.5 The mc-join operation 17

2.1.6 Mesh Collapse Trees 17

2.1.7 Decoding 19

2.1.8 Proving correctness 20

2.2 Results 23

2.3 Boundaries, Holes, and Handles 24

2.3.1 Meshes with a boundary or holes 24

2.3.2 Meshes with handles 25

2.4 Summary 26

3 Quadrilateral Mesh Collapse Compression 27

3.1 Quadrilateral Mesh Collapse Compression 28

3.1.1 Encoding 29

3.1.2 The qmc-deloop operation 32

3.1.3 The qmc-contract operation 34

3.1.4 The qmc-divide operation 34

3.1.5 Decoding 34

3.1.6 The qmc-enloop operation 36

3.1.7 The qmc-expand operation 37

3.1.8 The qmc-join operation 38

3.2 Results 38

3.3 Boundaries, Holes, and Handles 38

iv

3.3.1 Meshes with a boundary or holes 39

3.3.2 Meshes with handles 40

3.4 Summary 42

4 Spirale Reversi 43

4.1 Edgebreaker encoding 45

4.2 Edgebreaker decoding 50

4.3 Wrap&zip decoding • 52

4.4 Spirale Reversi decoding 55

4.5 Handling boundaries 59

4.6 Handling holes 60

4.7 Handling handles 61

4.8 Summary 63

Bibliography 68

v

List of Tables

2.1 Example results of mc-compressing various triangle meshes of

sphere topology 23

3.1 Example results of qmc-compressing various quadrilateral meshes

of sphere topology 39

vi

List of Figures

2.1 Cutting and opening the mc-edge turns the mesh into a digon. 11

2.2 Two simple, one trivial, and one complex digon 12

2.3 An illustration of the mc-contract operation 13

2.4 An illustration of the mc-divide operation 14

2.5 An illustration of the mc-expand operation 16

2.6 A small mesh is mc-compressed with seven mc-contract and one

mc-divide operations 18

2.7 The mc-tree and its embedding in the mesh 19

2.8 Patching a boundary with an additional edge 24

2.9 Patching a hole with a dummy vertex 25

2.10 Encoding handles in the mesh 26

3.1 Cutting and opening the mc-edge turns the mesh into a diquad. 29

3.2 One trivial, one looped, three simple and one complex diquad. 29

3.3 An illustration of the qmc-encode operations: (a) the qmc-

deloop operation, (b) the qmc-contract operation, and (c) the

qmc-divide operation 33

vii

3.4 An illustration of the qmc-decode operations: (a) the qmc-

enloop operation, (b) the qmc-expand operation, and (c) the

qmc-join operation 37

3.5 Patching a boundary with an additional edge 39

3.6 Patching a hole with a dummy vertex 40

3.7 Encoding handles in the mesh 41

4.1 The Edgebreaker encoding operations C, L, E, R, and S. . . . 44

4.2 Computing the offsets of the S operation for the Edgebreaker

decoding 47

4.3 Using the offset of the S operation during the Edgebreaker de­

coding 50

4.4 The Wrap&zip decoding operations C, L, E, R, and S 53

4.5 Single zipping after an L operation (top) and recursive zipping

after an E operation (bottom) 54

4.6 The Spirale Reversi decoding operations C, L, E, R, and S. . . 56

4.7 The Edgebreaker encoding operation M 60

4.8 The Spirale Reversi decoding operation M 61

4.9 The Edgebreaker encoding operation M ' 62

4.10 The Spirale Reversi decoding operation M ' 62

4.11 An example of the final twelve operations of Edgebreaker encod­

ing a mesh 64

4.12 An example of the final twelve operations of Edgebreaker decod­

ing a mesh 65

vni

4.13 An example of the final twelve operations of Wrap&zip decoding

a mesh 66

4.14 An example of the first twelve operations of Spirale Reversi

decoding a mesh 67

I X

Acknowledgements

I thank my supervisor Jack Snoeyink for a list of things that too long to fit

here. I thank the International Computer Science Institute (ICSI) at Berkeley

for the research opportunity during the summer of 1998. I thank Cafe Strada

for their great Latte. I thank Gene Lee for his RASP tools and his support

during the making of the mc-video. I thank Davis King for providing several

quadrilateral meshes and for explaining the details of Edgebreaker during our

pool session at SCG 99, Miami Beach. I thank Jarek Rossignac for suggesting

the name Spirale Reversi. I thank Sir Henry for letting me stay in his beautiful

home. I thank UBC Food Services for their yummy cinnamon bun (and only

for that).

And I thank everybody who made me stay in Canada.

M A R T I N I S E N B U R G

The University of British Columbia

October 1999

x

fur Omi

X I

Chapter 1

Introduction

Efficiently encoding the topology of triangular meshes has recently been the

subject of intense study [16, 25, 24, 26, 21, 3, 10] and many representations

have been proposed. The sudden interest in this area is fueled by the emerging

demand for transmitting 3D data sets over the Internet (e.g. VRML). Since

transmission bandwidth is a scarce resource, compact encodings for 3D models

are of great advantage.

This work makes three contributions. First we introduce Mesh Collapse

Compression (mc-compression), a new algorithm for encoding the topology

of triangular meshes. Second we present Quadrilateral Mesh Collapse Com­

pression (qmc-compression), a new algorithm for encoding the topology of

quadrilateral meshes. The compression scheme shares conceptual ideas with

mc-compression, but differs greatly in the details. And third we introduce

Spirale Reversi, a decoding algorithm that improves on work by Rossignac et

al. [21, 22].

1

Our topology encoding algorithms, mc-compression and qmc-compression,

are based on the edge contract operation, which has received attention in the

computer graphics community. Hoppe [9, 8] made extensive use of the edge

contract operation (unfortunately calling it "edge collapse" [5]) for topology

preserving mesh simplification and others followed his approach [2, 6, 20]. But

we are not aware of any encoding technique that uses the edge contract op­

eration for efficient mesh topology compression. For compressing meshes that

are not composed of triangles little work has been reported.

In the next section we will define what triangle meshes are, as their

efficient encoding is the meat of this thesis. And in Section 2 we give a com­

parative survey of previous work in this area.

1.1 Triangle Meshes

Triangle meshes are commonly used to represent surfaces in computer graphics

and computer-aided design and manufacturing (CAD/CAM). In this thesis,

a triangle mesh consists of a collection of triangles that must fit together

properly: at most two triangles may share a common edge and triangles and

edges must have a cyclic order around every vertex.

Triangle meshes can be considered as graphs that have been embedded

in a surface. Thus, the neighbourhood of each vertex can be continuously

mapped to a plane or to a half-plane. In the language of topology, a triangle

mesh is embedded in an orientable 2-manifold with borders.

Common representations for triangle meshes (for example the wavefront

2

OBJ file format) use two lists: a list of vertices and a list of triangles. The list

of vertices contains coordinates that specify a physical location for each mesh

vertex. This is referred to as the geometry of the triangle mesh. The list of

triangles contains triplets of indices into the vertex list that specify the three

vertices of each triangle. This is referred to as the topology of the triangle

mesh. We are less concerned with the geometry of a triangle mesh than with

its topology.

Notice that a mesh representation such as the above has two drawbacks:

• For triangle meshes with v vertices, the triangle list uses at least 31og2 v

bits for each triangle. Euler's relation implies that there are approxi­

mately twice as many triangles as vertices, giving a total of 61og2 v bits

per vertex. We will see that a constant number of bits per vertex is

possible.

• It is difficult to determine the neighbourhood of a triangle. Adjacency

information such as the ordering of triangles and edges around each ver­

tex must be reconstructed, which requires sorting [19]. This information

is needed my many applications, so it is best if a mesh representation

provides the adjacency relations among the mesh triangles.

Tutte's [28] enumeration of topological triangulations implies that at

least 3.24 bits per vertex are needed to be able to encode all planar triangular

meshes.

The next section surveys a variety of mesh representations that have

been proposed to deal with the above drawbacks.

3

1.2 Previous work

All efficient compression schemes that have been recently proposed for encod­

ing triangle mesh connectivity [27, 16, 25, 26, 7, 21, 3, 10] follow the same

pattern. They encode the mesh through a compact and often interwoven rep-,

resentation of the vertex spanning tree and the triangle spanning tree. Neither

the triangle nor the vertex tree are by themself sufficient to capture the topol­

ogy (Rossignac gives a nice example [21]). Usually the schemes start at an

arbitrary edge and traverse both the vertices and the triangles of the mesh us­

ing a deterministic search strategy (e.g. such as breadth or depth first search).

Vertices are encountered along the same spiraling vertex spanning tree by the

majority of these schemes [25, 26, 7, 21, 10]. Mesh Collapse Compression

follows this pattern.

A different approach to topology encoding was presented by Snoeyink

and van Kreveld for Delaunay triangulations [23]. Their scheme uses results

by Kirkpatrick [18] and encodes all topology information through a permuta­

tion of the vertices. The reconstruction algorithm receives batches of vertices

and decodes the triangulations in linear time. Denny and Sohler's work [4]

extended this scheme to arbitrary planar triangulations. Although the cost of

storing the topology is zero, the unstructured order in which the verticed are

received and the absence of adjacency information during their decompression

prohibits predictive geometry encoding. This makes these scheme overall more

expensive.

In the following we will briefly describe all of the compression schemes

4.

referenced above that are based on spanning trees. However, we limit this

description to the simple mesh case. For the details on how these schemes

encode meshes with boundary, with holes, or with handles, we refer the reader

to the original reference.

Turan [27] was one of the first to observe that the fact that planar

graphs could be decomposed into two spanning trees implied that they could

be encoded in a constant number of bits per vertex. He gave an encoding that

used 12 bits per vertex.

Keeler and Westbrook improved Turan's scheme for encoding planar

graphs. They specialize their encoding of planar graphs and maps [16] to

achieve a guaranteed 4.6 bits per vertex (bpv) encoding for simple triangle

meshes. They build a triangle-spanning tree by traversing all mesh edges

of the dual graph in a counter-clockwise depth-first order starting from an

arbitrary initial edge. At its leaves they append all edges of that are not part

of the spanning tree. A pre-order listing of all non-leaf nodes that describes

the type of their first and second child (only five combinations can occur) is

sufficient to reconstruct this tree and its corresponding triangulation.

Taubin and Rossignac have the only scheme that explicitly encodes the

vertex spanning tree and the triangle spanning tree of a mesh. Their Topolog­

ical Surgery method [25] cuts a mesh along a set of edges that corresponds to

a spanning tree of vertices. This produces a simple mesh without internal ver­

tices that can be represented by a triangle spanning tree. A rather complicated

decoding algorithm can reconstruct the mesh from these two trees. Run-length

5

encoding both trees results in practice in bitrates of around 4 bpv. Rossignac

proposed a variaton that increases the observed bitrate, but guarantees an

upper bound of 6 bpv.

Touma and Gotsman's Triangle Mesh Compression [26] encodes the

degree of each vertex along a spiraling vertex tree with an "add <degree>"

code. For each branch in the tree they need an additional "split <offset>" code

that specifies the start and the length of the branch. This technique implicitely

encodes the triangle spanning tree. They compress the resulting sequence of

"add" and "split" commands using a combination of run-length and entropy

encoding. This achieves bitrates as low as 0.2 bvp for very regular meshes and

around 2 to 3 bpv otherwise. However, the unpredictable offset value of the

split commands can lead to non-linear complexity in both encoding/decoding

time and bitrate.

Gumhold and Strasser [7] introduce a compressed representation for

triangle meshes that is closely related to the Edgebreaker method [21]. Starting

with the three edges of an arbitrary triangle as what they call the initial "cut-

border", they traverse the triangles of the mesh and include them into this

cut-border using four different operations (note: the paper talks about six

operations, but for simple meshes only four of them are used). One of these four

operations splits the cut-border in two pieces, which is why they called it "split

cut-border <offset>". This operation corresponds to the "split <offset>"

command of the Touma and Gotsman scheme [26]. The required offset value

leads to the same non-linear behaviour, since log2 v bits are required to encode

6

it. The other three operations are called "new vertex", "connect forward",

and "connect backward" and distinguish the three different ways to include a

triangle into the cut-border. The reported compression rates vary from 3.5 to

5 bpv, but no upper bound is given.

Rossignac's Edgebreaker [21] is a simpler and more elegant version of

Gumhold and Strasser's scheme [7] that was independently developed. Since

the original paper many improvements have been reported [17, 22, 14], with

the most recent being presented in Chapter 4. The compression scheme uses

the five operations C, R, L, S, and E to include triangle after triangle into an

active boundary, which is intially defined around an arbitrary triangle. The

two operations S and E replace the "split cut-border <offset>" operation of

Gumhold and Strasser's scheme, thereby eliminating the need for explicitly

encoding the offset value. Instead the decoding algorithm computes all offset

values in a preprocessing step. The operations C, R, and L are identical to

the "new vertex", "connect forward", and "connect backward" operations of

Gumhold and Strasser [7].

Improving on the original Edgebreaker decoding scheme [21], which has

non-linear time complexity, Rossignac and Szymczak introduced the Wrap&zip

decoding [22] that decodes simple meshes in provably linear time. However, for

meshes with handles the Wrap&zip scheme needs to perform multiple traver­

sal of all mesh triangles. In Chapter 4 we give an in-depth review of Edge-

breaker and Wrap&zip and present the Spirale Reversi decoding scheme, which

decodes Edgebreaker encoded meshes in a single pass.

7

The work by King and Rossignac [17] provides a guaranteed 3.67 bpv

encoding for the Edgebreaker scheme. This is currently the lowest worst case

bound and lies within 13% of the theoretical lower limit by Tutte [28].

De Floriani et al. [3] presented a scheme similar to Rossignac's and

Gumhold and Strasser's work. It avoids the "split cut-border" or the S and

E operations altogether by using a "SKIP" command that moves the focus to

the next triangle whenever the inclusion of the current triangle would mean

a split of the active boundary. Their "VERTEX", "RIGHT", and "LEFT"

operation correspond to the C, R, and L operation of Edgebreaker [21] or

the "new vertex", "connect forward", and "connect backward" operations of

Gumhold and Strasser's scheme [7].

This algorithm works only for extendably shellable triangle meshes [1],

which includes all simple meshes. For those a bitrate of 6 bpv is guaranteed

and experimental bitrates of 4.1 to 4.5 bpv are reported. Triangle meshes with

holes and handles are compressed by partitioning them into shellable patches.

This leaves us without upper bound and increases the observed bitrate to 5 bpv

and higher. Furthermore it requires the replication of all vertices shared by

more than one patch (up to 30%), which is expensive and highly undesireable.

We can classify the Touma and Gotsman scheme [26] as vertex based,

Gumhold and Strasser [7], Edgebreaker [21], De Floriani et al. [3] as triangle

based and Topologycal Surgery [25] as vertex and triangle based. Isenburg

will soon present Triangle Fixer [10], a truly edge-based algorithm.

Triangle Fixer has a 6 bpv guaranteed and a 3.9 to 4.2 bpv expected

8

encoding. It has relatively simple extensions towards triangle strip compres­

sion [11] and polygon mesh compression [15], which make it interesting.

In the next chapter we introduce Mesh Collapse Compression, a new

compression scheme that falls into the vertex-based category. This method is

most closely related to that of Touma and Gotsman [26]. We also record a

degree for each vertex along a spiraling vertex tree. However, this degree is

not necessarily the original degree of the vertex, but rather the degree of the

vertex in the moment it is encountered. The algorithm performs a sequence of

edge contract operations in the course of the encoding process, which modifies

the degree of nearby vertices. Therefore our code words have a slightly higher

spread, which affects the efficiency of subsequent entropy encoding. The ad­

vantage of Mesh Collapse Compression over Touma and Gotsman's scheme is

that we do not have to deal with unpredictably large offset values. Instead of

the "split <offset>" code we use a start symbol S and an end symbol E to

encode branches in the vertex spanning tree. Applying simple entropy encod­

ing (e.g. Huffman encoding) to our code sequences results in a bitrate of 1 to

4 bpv. A combination of run-length and entropy encoding as it was done by

Touma and Gotsman promises even higher compression.

9

Chapter 2

Mesh Collapse Compression

In this chapter we present a new algorithm for encoding the topology of tri­

angular meshes. Our scheme performs a sequence of edge contract and edge

divide operations that collapse the entire mesh into a single vertex. With each

edge contraction we store a vertex degree and with each edge division we store

a start and an end symbol. This uniquely determines all inverse operations.

For meshes that are homeomorphic to a sphere, the algorithm is especially

simple. However, the algorithm also encodes surfaces of higher genus at the

expense of a few extra bits per handle. A video demonstrating an earlier

version of Mesh Collapse Compression can be found in [13].

In the first section we introduce the Mesh Collapse Compression algo­

rithm and prove its correctness. In Section 2.2 we present the results of mc-

compressing various example meshes. Some restrictions on the mesh topology

that were imposed for the sake of simplicity are lifted in Section 2.3 and in

Section 2.4 we summarize our contributions.

10

2.1 Mesh Collapse Compression

Before we describe the compression scheme, we want to define what properties

we expect the input mesh to have:

1. The mesh is a surface composed of topological triangles (e.g. every face

is bound by three edges).

2. The mesh has no boundary and no holes (e.g. every edge is bound by

two faces).

3. The mesh has no handles (e.g. the mesh is topologically equivalent to a

sphere).

Later we will explain how to mc-compress meshes that have a boundary, have

holes, or have handles.

movertex

Figure 2.1: Cutting and opening the mc-edge turns the mesh into a digon.

Given a mesh with these properties, the compression scheme initially

declares an arbitrary vertex to be the mc-vertex and an arbitrary directed

edge leaving the mc-vertex to be the mc-edge. Then the mesh is cut and

11

simple sinpte trivial complex

Figure 2.2: Two simple, one trivial, and one complex digon.

opened along the mc-edge, which creates a new face that is bounded by only

two edges. For easier illustration we arrange this face to be the outer face as

shown in Figure 2.1. The resulting configuration is called a digon. This is a

triangulation with the exception of the outer face, which is bounded by only

two edges.

We distinguish between trivial digons, simple digons, and complex digons:

A digon is trivial when it has only three vertices. A digon is simple when only

the two bounding edges connect the two vertices of the outer face. A digon

is complex when there are more than two edges. Each additional edge is a

dividing edge. A complex digon with d dividing edges can be divided into d+ 1

simple digons along its dividing edges. This is illustrated in Figure 2.2.

Subsequently the mc-compression algorithm performs a sequence of

edge contract and edge divide operations that decomposes the initial digon

into one or more trivial digons. We call these two operations mc-contract and

mc-divide.

L2

2.1.1 The mc-contract operation

The mc-contract operation takes a simple digon as input and returns a vertex,

a vertex degree, and a digon with one fewer vertex, three fewer edges, and

two fewer faces. The resulting digon can be either simple or complex. This

operation first contracts the current mc-edge, then removes the resulting loop,

and finally selects the next edge counterclockwise around the mc-vertex to be

the new mc-edge as illustrated in Figure 2.3.

mc-vertex

Figure 2.3: An illustration of the mc-contract operation.

The inverse operation is uniquely defined by the removed vertex (e.g.

the vertex that collapses into the mc-vertex) and its degree. Contracting the

mc-edge moves the edges connected to this vertex over to the mc-vertex. The

inverse operation will have to move these edges back. Because the order of the

edges is preserved, only their number is important.

The minimal number of edges connected to a vertex is three. The

maximal number is theoretically limited only by the total number n of mesh

vertices (e.g. degenerated pyramid-shaped meshes can result in a vertex degree

as high as n — 1). In practice, however, vertex degrees are spread around six.

13

2.1.2 The mc-divide operation

The mc-divide operation takes a complex digon with d dividing edges as input

and returns two digons that have together d — 1 dividing edges. One of the

two resulting digons will always be simple. The other digon will usually be

simple too, since complex digons have generally only one dividing edge (d = 1).

However, in case the complex input digon had more than one dividing edge

(d > 1), then one of the output digon will be complex too, but with one fewer

dividing edge. In Figure 2.4 is an illustration of the mc-divide operation.

mc-vertex

Figure 2.4: An illustration of the mc-divide operation.

2.1.3 Encoding

Starting with the initial digon, an empty digon stack, an empty code stack,

and an empty vertex stack we first push the mc-vertex on the vertex stack.

Then we repeatedly apply the mc-contract operation until either a complex

or a trivial digon is encountered. For each mc-contract operation we push the

removed vertex on the vertex stack and its degree on the code stack. When

we encounter a complex digon we apply the mc-divide operation. We push a

start symbol S on the code stack, push one of the resulting digons on the digon
14

stack and continue the compression process on the other. When we encounter

a trivial digon we push two of its three vertices (e.g. not the mc-vertex) on

the vertex stack and an end symbol E on the code stack. If the digon stack is

empty we terminate. Otherwise we pop a digon from this stack and continue.

The recorded information is sufficient to invert each operation. Here is this

algorithm in java-like pseudo-code:

Codec mc_encode(Mesh mesh) {
Codec codec = new CodecO;
Digon digon = digonify(mesh);
codec.pushDigon(digon);
codec.pushVertex(digon.vO);
while (codec.hasMoreDigons()) {

digon = codec.popDigon();
while (not d i g o n . t r i v i a l O) {

i f (digon.complex()) {
Digon subdigon = mc_divide(digon);
codec.pushDigon(subdigon);
codec.pushCode('S');

}
else {

Vertex vertex = mc_contract(digon);
codec.pushVertex(vertex);
codec.pushCode(vertex.degree);

}
}
codec.pushVertex(digon.vl);
codec.pushVertex(digon.v2);
codec.pushCode('E');

}
return codec;

}

Note: The vertex that sits at the top of a digon is duplicated by an mc-divide

operation. Thus, it seems to be pushed multiple times onto the vertex stack.

15

However, the actual implementation of the encoding algorithm avoids this by

using a simple convention: The vertex that sits at the top of the resulting

digon that is processed first is treated as usual (e.g. the next mc-contract

operation will pushed onto the vertex step). The duplicate vertex that sits at

the top of the other digon is marked and will not be pushed onto the vertex

stack. During decoding this situation is detected and dealt with based on the

code words in the code stack.

2.1.4 The mc-expand operation

The mc-expand operation is the inverse of the mc-contract operation. It takes

a digon, a vertex and a vertex degree as input and returns a simple digon with

one more vertex, three more edges, and two more faces. It connects the new

vertex twice to the mc-vertex and moves the mc-edge and the next degree —3

edges in counterclockwise order around the mc-vertex over to the new vertex.

The last edge is duplicated as illustrated in Figure 2.5. Finally the operation

updates the mc-edge.

Figure 2.5: An illustration of the mc-expand operation.

16

2.1.5 The mc-join operation

The mc-join operation is the inverse of the mc-divide operation. It takes two

digons as input and returns a complex digon. Usually both input digons are

simple and the output digon has one dividing edge. In case the two input

digons have already d dividing edges, the output digon will have d + 1 dividing

edges. For an illustration of the mc-join operation read Figure 2.4 from right

to left.

2.1.6 Mesh Collapse Trees

Mesh collapse compression performs a sequence of edge contract and edge

divide operations that collapses the entire mesh into a single vertex. This

implicitly creates a tree with weighted edges. The weights are vertex degrees

and capture the topology of the unlabeled mesh. The nodes are vertices and

capture the labeling of the mesh. We call this weighted-edge tree an mc-tree.

Any encoding of the mc-tree constitutes an encoding for the corresponding

mesh.

The structure of an mc-tree is reflected in the permutation of vertices

and code words in the respective stacks. The start and end symbols S and

E on the code stack capture its branching structure, the permutation of ver­

tex degrees on the code stack capture the edge weights along each branch,

and the permutation of vertices on the vertex stack capture the node assign­

ment. A complete example is shown in Figure 2.6 using digons (left) and using

triangulations (right).

17

Figure 2.6: A small mesh is mc-compressed with seven mc-contract and one
mc-divide operations.

18

The set of contracted edges is a spanning tree of the vertices and so is

the mc-tree if we add the mc-vertex at the root as illustrated in Figure 2.7.

Figure 2.7: The mc-tree and its embedding in the mesh.

2.1.7 Decoding

Starting with an empty digon stack, a non-empty code stack, and a non-empty

vertex stack we process the code words in reverse order by popping them from

the code stack. If the code word is an end symbol E we push the current digon

on the digon stack and create a new trivial digon with the next two vertices

from the vertex stack (the mc-vertex is not assigned yet). If the code word

is a start symbol S we pop a digon from the digon stack and join it with the

current digon using the mc-join operation. Otherwise the code word is a vertex

degree and we perform an mc-expand operation to insert the next vertex from

the vertex stack into the current digon. We repeat this until all code words

are processed. Finally we assign the last vertex left of the vertex stack as the

mc-vertex and convert the digon to a mesh. Here is this algorithm in java-like

pseudo-code:

19

Mesh mc_decode(Codec codec) {
Digon digon = n u l l ;
while (codec.hasMoreCodesO) {

int code = codec.popCode();
i f (code == 'E ') {

codec.pushDigon(digon);
Vertex v l = codec. popVertexO ;
Vertex v2 = codec .popVertexO ;
digon = new Digon(null, v l , v2);

}
else i f (code == 'S ') {

Digon subdigon = codec.popDigon();
mc_join(digon, subdigon);

}
else {

Vertex v = codec.popVertexO ;
mc_expand(digon, v, code);

}
}
digon. vO = codec .popVertexO ;
return undigonify(digon);

}

2.1.8 Proving correctness

In this section we prove that Mesh Collapse Compression encodes a digon of v

vertices with exactly v — 3 mc-operations and that each operation is invertible.

Let us quickly recall the definitions. We start with a digon of v vertices.

This is a triangulation with the exception of the outer face, which is bounded

by only two edges. A digon is trivial when it has only three vertices. A digon

is simple when only the two bounding edges join the two vertices of the outer

face. A digon is complex when there are more than two edges. Each additional

edge is a dividing edge along which a complex digon can be divided into simple

20

digons.Every step of mc-compression deals with a digon.

We now prove by induction that mc-compression for a digon of v vertices

terminates after c(v) = a + b = v — 3 mc-operations with a being the number

of mc-contract and b being the number of mc-divide operations.

Termination case (v = 3): The digon is trivial. The three vertices are

pushed on the vertex stack. The digon can be reconstructed from the order of

its vertices on the stack.

Iteration case (v > 3): There are two cases depending on whether a digon

is simple or complex.

In case A the digon is simple. This digon of v vertices is input to an mc-

contract operation, which outputs a digon of v — 1 vertices. The corresponding

vertex degree is pushed on the code stack. The corresponding vertex is pushed

on the vertex stack. The digon of v vertices can be reconstructed from the

digon of v—1 vertices using the vertex degree and the vertex from the respective

stacks. The mc-compression process continues with a digon of v — 1 vertices.

In case B the digon is complex. This digon of v vertices is input to an

mc-divide operation, which outputs two digons of together Vi + v2 = v + 2

vertices with Vi > 3 and v2 > 3. The digon of v vertices can be reconstructed

from the two digons of vi and v2 vertices. One mc-compression process contin­

ues on the digon with v\ vertices. Another mc-compressions process continues

on the digon with v2 vertices. Markers for seperating the code words produced

of the two processes are pushed on the code stack.

21

Analysis: The axioms that define the number c(v) of mc-operations neces­

sary to mc-compress a digon of v vertices are easily derived from the three

cases above:

1. c(3) = 0

2. c(v) = 1 + c(v - 1)

3. c(v) = 1 + c(w) + c{v — w + 2) 3 < w < v — 1

Using these axioms we now prove by induction that c(v) = v — 3. For

axiom 1 this is trivial. For axiom 2 and for axiom 3 we use the substitution

rule:

Induction Base: c(3) = 0

Induction Assumption: c(k) = k — 3 for 3 < k < v

Proof with axiom 2: c(v) = 1 + c(v — 1) for v > 3

= l + (u - l) - 3

= v — 3 q.e.d.

Proof with axiom 3: c(v) = 1 + c(w) + c(v — w + 2) for v > 3

=l+w-3+v-w+2-3

= v — 3 q.e.d.

Axiom 2 counts the number a of mc-contract operations and axiom 3

counts the number b of mc-divide operations operations. Hence, the total

count c(v) = v — 3 is the sum a + b of the two.

During mc-compression a sequence of code words and a sequence of

vertices are pushed onto a stack that (a) make every operations invertible and

22

(b) specify the order in which the operations occured. This constitutes an

encoding of the topology of the original digon.

2.2 Results

The results of mc-compressing various example meshes are summarized in

Table 2.1. We have two entries for each mesh which were obtained by picking

arbitrary initial mc-edges. The code word histograms suggest that we can

easily achieve bit-rates of 1 to 4 bits per vertex using a simple entropy encoding

(e.g. Huffman encoding). A combination of entropy and run-length encoding

as it was done in [26] for similar code sequences promises even more compact

encodings.

mesh characteristics code word histogram bits p.

name vrtx/trngl S E 3 4 5 6 7 8 9 10 11 vertex

bishop 250/496 1 1 7 35 158 46 0 0 0 0 0 1.572

bishop 250/496 0 0 0 36 182 29 0 0 0 0 0 1.248

bunny 1524/3044 20 20 183 357 446 327 143 34 11 0 0 2.743

bunny 1524/3044 33 33 158 375 448 319 139 41 8 0 0 2.813

shape 2562/5120 0 0 14 147 2228 169 1 0 0 0 0 1.197

shape 2562/5120 0 0 19 143 2221 175 1 0 0 0 0 1.203

triceratops 2832/5660 50 50 248 682 923 657 218 32 12 6 1 2.621

triceratops 2832/5660 57 57 228 708 905 664 216 35 10 6 0 2.638

Table 2.1: Example results of mc-compressing various triangle meshes of sphere
topology.

/

23

2.3 Boundaries, Holes, and Handles

In this section we lift the restrictions on the mesh topology that were imposed

earlier. We allow the input mesh to have a boundary, holes, and/or handles.

2.3.1 Meshes with a boundary or holes

Triangle meshes that have a single boundary or multiple holes are subject to

a simple preprocessing step. This preprocessing modifies the mesh and turns

it into a triangulation.

Figure 2.8: Patching a boundary with an additional edge.

A single boundary is patched with additional edges that connect the mc-

vertex to other boundary vertices. The mc-edge has to be one of the boundary

edges as depicted in Figure 2.8. The number of additional edges is recorded

so that they can be removed after decoding in a corresponding postprocessing

step.

Multiple holes are patched with one dummy vertex per hole which con­

nects to all vertices around this hole as illustrated in Figure 2.8. These dummy

vertices are marked and can be removed in a corresponding postprocessing

step.

24

Figure 2.9: Patching a hole with a dummy vertex.

2.3.2 Meshes with handles

The presence of handles in a mesh requires some extra attention. The same

algorithm as before is used. But whenever a complex digon is encountered

additional cases are possible. By dividing edges separated components of a

complex digon can still be connected along a handle. We say such a digon is

connected complex and is divided into connected digons. Dividing a connected

complex digon breaks the handle. This configuration is detected, as processing

one of the connected digons works its way along the handle and also encodes

the other.

Unlike a complex digon, a connected complex digon does not cause a

branch but a loop in the mc-tree. This loop is closed when the mc-edge of

the other connected digon is encountered. This encounter can happen during

an mc-contract operation, during an mc-divide operation, or inside a trivial

digon. In either case we record an M symbol followed by two small integers.

The first integer specifies the position of the mc-edge (or rather its

corresponding digon) in the stack. This is necessary since multiple handles

may not be closed in the order they were broken. Then the corresponding

25

digon is removed from the stack.

The second integer specifies the mc-edge among the edges under consid­

eration. After an mc-contract operation these are the six directed edges (e.g.

three undirected edges) that have been removed. After an mc-divide operation

these are the two directed edges (e.g. one undirected edge) that are candidates

to be pushed onto the stack. Inside a trivial digon these are the eight directed

edges (e.g. four undirected edges) that span a trivial digon. This is illustrated

in Figure 2.10.

digon in stack

mc-vertex

Figure 2.10: Encoding handles in the mesh.

2.4 Summary

We presented a novel encoding scheme for mesh topology. Our algorithm is

simpler than approaches by [21, 26, 3] and produces a code sequence similar

to [26]. Subsequent run-length and/or entropy encoding results into compact

bitstreams of 1 to 4 bits per vertex. This is competitive with the highest

compression ratios currently known.

26

Chapter 3

Quadrilateral Mesh Collapse

Compression

In this chapter we present a new algorithm for encoding the topology of quadri­

lateral meshes. This compression method is related to Mesh Collapse Compres­

sion [12], the topology encoding scheme for triangular meshes we introduced

in the previous chapter. Little work has been reported on the compression

of meshes that are not entirely composed of triangles. Quadrilateral meshes

are not as commonly used as triangular meshes, but play an important role in

finite element theory and engineering applications.

The algorithm performs a sequence of operations that collapse the entire

mesh into a single vertex. With each operation we store a small number that

uniquely determines the inverse operation. For meshes that are homeomorphic

to a sphere, the algorithm is especially simple. However, the algorithm also

encodes surfaces of higher genus at the expense of a few extra bits per handle.

27

In the first section we introduce the Quadrilateral Mesh Collapse Com­

pression algorithm. In Section 3.2 we present the results of qmc-compressing

various example meshes. Some restrictions on the mesh topology that were

imposed for the sake of simplicity are lifted in Section 3.3. In Section 3.4 we

summarize our contributions.

3.1 Quadrilateral Mesh Collapse Compression

As before we want to define what properties the input mesh is expected to

have:

1. The mesh is a surface composed of topological quadrilaterals (e.g. every

face is bound by four edges).

2. The mesh has no boundary and no holes (e.g. every edge is bound by

two faces).

3. The mesh has no handles (e.g. the mesh is topologically equivalent to a

sphere).

Later we will explain how to qmc-compress meshes that have a bound­

ary, holes, or handles. For meshes with a boundary or holes this will be a

preprocessing step that modifies the input mesh. For meshes with handles

this will be a simple generalization of the qmc-compression scheme.

28

Figure 3.1: Cutting and opening the mc-edge turns the mesh into a diquad.

trivial looped simple simple simple complex

Figure 3.2: One trivial, one looped, three simple and one complex diquad.

3.1.1 Encoding

The algorithm starts off by declaring an arbitrary directed edge to be the

mc-edge, or mesh collapse edge and the vertex it originates from to be the

mc-vertex, or mesh collapse vertex. Every edge in the quadrilateralization

adds two possible candidates with opposite direction. Then we cut and open

the mesh along the mc-edge. This creates a new face which is bounded by

the two copies of the opened mc-edge. Finally we declare the new face to be

the outer face and rewrite the mesh respectively. From the two copies of the

(directed) mc-edge we declare the one with the outer face on its right to be

the new mc-edge. The result is a diquad as illustrated in Figure 3.1. This is

a quadrilateralization with exception of the outer face, which is bounded by

29

only two edges.

We distinguish between trivial diquads, looped diquads, simple diquads,

and complex diquads: A diquad is trivial when it has only three vertices.

A diquad is looped when the destination vertex of the mc-edge has degree

two. A diquad is simple when it is neither looped, nor complex. A diquad

is complex when there are more than two edges connecting the two vertices

of the outer face. Each additional edge is a dividing edge. A complex diquad

with d dividing edges can be divided into d + 1 non-complex diquads. Various

diquads are shown in Figure 3.2.

Subsequently the algorithm uses three invertible operations that decom­

pose the initial diquad into one or more trivial diquads:

• The qmc-deloop operation takes a looped diquad as input and removes

one vertex and one quadrilateral. The resulting diquad can be either

trivial, looped, simple, or complex. The operation returns the removed

vertex. This information is sufficient to invert the operation.

• The qmc-contract operation takes a simple diquad as input and removes

one vertex and one quadrilateral. The resulting diquad can be either

trivial, looped, simple, or complex. The operation returns the removed

vertex and the degree of the removed vertex. Both are needed for in­

verting this operation.

• The qmc-divide operation takes a complex diquad as input and divides it

along a dividing edge into two diquads. One of the resulting diquads is

30

guaranteed not to be complex, the other can be either. No information

is needed in order to invert the operation.

Starting with the initial diquad the algorithm repeatedly applies the

qmc-contract operation on simple digons and the qmc-deloop operation on

looped digons until either a trivial or a complex diquad is encountered. For

each qmc-contract operation it records the returned vertex and the returned

vertex degree. For each qmc-deloop operation it records the returned vertex

and the symbol L. When the algorithm encounters a complex diquad the qmc-

divide operation is applied. One of the two resulting diquads is pushed onto

a stack and the algorithm continues on the other. The symbol S is recorded.

When the algorithm encounters a trivial diquad it records two of its vertices

(e.g. not the mc-vertex) and the symbol E. If the stack is empty the mc-vertex

is recorded and the encoding process terminates. Otherwise the algorithm con­

tinues on the diquad popped from the stack.

Here is this algorithm in java-like pseudo-code:

31

Codec qmc_encode(Mesh mesh)
{

Codec codec = new Codec();
Diquad diquad = diquadify(mesh);
codec.pushDiquad(diquad);
codec.pushVertex(diquad.vO);
while (codec.hasMoreDiquads()) {

diquad = codec.popDiquad();
while (not diquad.trivial()) {

i f (diquad. loopedO) {
Vertex vertex = qmc_deloop(diquad);
codec.pushVertex(vertex);
codec.pushCode('L');

}
else i f (diquad. complexO)
{

Diquad subdiquad = qmc_divide(diquad);
stack.pushDiquad(subdiquad);
codec.pushCode('S');

}
else
{

Vertex vertex = qmc_contract(diquad);
codec.pushVertex(vertex);
codec.pushCode(vertex.degree);

}
}
codec.pushVertex(diquad.vl);
codec.pushVertex(diquad.v2);
codec.pushCode('E');

}
return codec;

}

3.1.2 The qmc-deloop operation

The qmc-deloop operation takes a looped diquad as input and removes one

vertex, two edges, and one quadrilateral. The removed vertex has degree two

32

and is the destination vertex of the mc-edge. The two removed edges connect

the removed vertex to the mc-vertex. Since one of these edges is the mc-edge,

a new mc-edge needs to be selected. This is the next edge counterclockwise

around the mc-vertex as illustrated in Figure 3.3a. The resulting diquad is

either trivial, looped, simple, or complex. The removed vertex is returned.

Figure 3.3: An illustration of the qmc-encode operations: (a) the qmc-deloop
operation, (b) the qmc-contract operation, and (c) the qmc-divide operation

33

3.1.3 The qmc-contract operation

The qmc-contract operation takes a simple diquad as input and and removes

one vertex, two edges, and one quadrilateral. The removed vertex is at the

other end of a diagonal across the quadrilateral left of the mc-edge that leaves-

the mc-vertex. The two removed edges are both adjacent to the removed

vertex. Since the mc-edge is not removed, there is no need to select a new

mc-edge. See Figure 3.3b for an illustration. The resulting diquad is either

trivial, looped, simple, or complex. The removed vertex and its degree are

returned.

3.1.4 The qmc-divide operation

The qmc-divide operation takes a complex diquad with d dividing edges as

input and returns one diquad with 0 dividing edges and one with d—1 dividing

edges. The first will obviously be simple. It is split from the input diquad along

a dividing edge. The other will usually be simple too, since the input diquad

has generally only one dividing edge (d = 1). However, in case the input

diquad had more than one dividing edge (d > 1), the other diquad will be

complex. In Figure 3.3c is an illustration of the qmc-divide operation.

3.1.5 Decoding

We start with an empty stack and process the code words in reverse order. If

the code word is an end symbol E we push the current diquad on the stack and

create a new trivial diquad with two vertices (the mc-vertex is not assigned

34

yet). If the code word is a start symbol S we pop a diquad from the stack

and join it with the current diquad using the qmc-join operation. If the code

word is a loop symbol L we apply a qmc-enloop operation to inserts the next

vertex into the current diquad. Otherwise the code word is a vertex degree

and we perform a qmc-expand operation to insert the next vertex into the

current diquad. We repeat this until all code words are processed. Finally we

assign the mc-vertex and convert the diquad to a mesh. Here is this algorithm

in java-like pseudo-code:

35

Mesh qmc_decode(Codec codec)

{
Diquad diquad = n u l l ;
whi le (codec.hasMoreCodes()) {

i n t code = codec .popCodeO ;
i f (code == ' E ') {

codec .pushDiquad(diquad);
Vertex v l = codec .popVertex () ;
Vertex v2 = codec .popVertex () ;
diquad = new D i q u a d (n u l l , v l , v2);

}
e l s e i f (code == ' S ') {

Digon subdiquad = codec .popDiquad() ;
qmc_join(diquad, subdiquad);

}
e l s e i f (code == ' L ') {

Vertex v = codec .popVertex () ;
qmc_enloop(diquad, v) ;

}
e l s e {

Vertex v = codec .popVertex () ;
qmc_expand(diquad, v , code);

}
}
diquad.vO = codec .popVertex() ;
r e t u r n und iquad i fy (d iquad) ;

}

3.1.6 The qmc-enloop operation

The qmc-enloop operation is the inverse of the qmc-deloop operation. It takes

a diquad and a vertex as input and returns a looped diquad with one more

vertex, two more edges, and one more quadrilateral. See Figure 3.4a for an

illustration.

36

Figure 3.4: An illustration of the qmc-decode operations: (a) the qmc-enloop
operation, (b) the qmc-expand operation, and (c) the qmc-join operation

3.1.7 The qmc-expand operation

The qmc-expand operation is the inverse of the qmc-contract operation. It

takes a diquad, a vertex and a vertex degree as input and returns a simple

diquad with one more vertex, two more edges, and one more quadrilateral.

See Figure 3.4b for an illustration.

37

3.1.8 The qmc-join operation

The qmc-join operation is the inverse of the qmc-divide operation. It that

takes two diquads as input and returns a complex diquad. Usually both input

diquads are non-complex and the output diquad has one dividing edge. In

case the two input diquads have already d dividing edges, the output diquad

will have d -f 1 dividing edges. For an illustration of the qmc-join operation

see Figure 3.4c.

3.2 Results

The result of qmc-compressing various example meshes are summarized in

Table 3.1. These meshes are randomly generated and approximate the surface

of a sphere. The code word histograms suggest that we can easily achieve bit-

rates of 1 to 3 bits per vertex using a simple entropy encoding (e.g. Huffman

encoding). A combination of entropy and run-length encoding as it was done

in [26] for similar code sequences promises even more compact encodings.

3.3 Boundaries, Holes, and Handles

In this section we lift the restrictions on the mesh topology that were imposed

earlier. We allow the input mesh to have a boundary, holes, and/or handles.

38

mesh characteristics code word histogram bits p.

name vrtx/qdrltrl L S E 2 3 4 5 6 7 8 9 10 vertex

davisl 590/588 275 17 17 0 198 12 31 27 14 7 4 2 2.34

davis2 1230/1228 481 41 41 0 466 41 65 60 46 14 9 4 2.61

davis3 3120/3118 1477 77 77 0 1132 46 125 137 83 17 18 5 2.19

davis4 4670/4668 2254 114 114 0 1575 80 201 215 140 56 26 6 2.25

davis5 5990/5988 2834 158 158 0 2009 106 263 296 184 99 29 9 2.32

Table 3.1: Example results of qmc-compressing various quadrilateral meshes
of sphere topology.

3.3.1 Meshes with a boundary or holes

Quadrilateral meshes that have a boundary or holes are subject to a simple

preprocessing step. This preprocessing modifies the mesh and turns it into

a quadrilaterization. There is however one limitation: Only holes with an

even number of vertices along the opening are admissable. The compression

scheme, as presented here, is not capable of handling holes with an odd number

of vertices. More recent work of the authors [15] deals with such meshes.

Figure 3.5: Patching a boundary with an additional edge.

For meshes with a boundary we pick an edge on the boundary as the

39

inital mc-edge. Then we add additional edges that connect the mc-vertex to

every other boundary vertex in clockwise direction as illustrated in Figure 3.5.

Recording the number of these additional edges is sufficient to remove them

after decoding in a corresponding postprocessing step.

Figure 3.6: Patching a hole with a dummy vertex.

For meshes with holes we use dummy vertices that close each hole. This

is illustrated in Figure 3.6. These vertices are marked and can be removed after

decoding. Topologically a mesh boundary is just another hole and could also

be encoded this way.

3.3.2 Meshes with handles

The presence of handles in a mesh requires some extra attention. The same

algorithm as before is used. But whenever a complex diquad is encountered

additional cases are possible. By dividing edges seperated components of a

complex diquad can still be connected along a handle. We say such a diquad

is connected complex and is divided into connected diquads. Dividing a con­

nected complex diquad breaks the handle. This configuration is detected, as

processing one of the connected diquads works its way along the handle and

40

also encodes the other.

Unlike a complex diquad, a connected complex diquad does not cause

a branch but a loop in the mc-tree. This loop is closed when the mc-edge of

the corresponding other connected diquad is encountered. This encounter can

happen during an mc-contract operation, during an mc-divide operation, or

inside a trivial diquad. In either case we record an M symbol followed by two

small integers.

The first integer specifies the position of the mc-edge (or rather its

corresponding diquad) in the stack. This is necessary since multiple handles

may not be closed in the order they were broken. Then the corresponding

diquad is removed from the stack.

Figure 3.7: Encoding handles in the mesh.

The second integer specifies the mc-edge among the edges under con­

sideration. After a qmc-contract operation these are the six directed edges

(e.g. three undirected edges) that have been removed. After a qmc-divide

operation these are the two directed edges (e.g. one undirected edge) that are

candidates to be pushed onto the stack. Inside a trivial diquad these are the

eight directed edges (e.g. four undirected edges) that span this diquad. This

is illustrated in Figure 3.7.

41

3.4 Summary

We presented a novel encoding scheme for encoding the topology of quadri­

lateral meshes. Our algorithm is simple and produces a sequence of small

numbers. Subsequent run-length and/or entropy encoding results into very

compact bitstreams of 1 to 3 bits per vertex. This is very competative and

rivals with the highest compression ratios currently known.

42

Chapter 4

Spirale Reversi

In this chapter we present a simple linear time algorithm for decoding Edge-

breaker encoded triangle meshes in a single traversal. The Edgebreaker com­

pression technique, introduced in [21], encodes the topology of meshes homeo-

morphic to a sphere with a guaranteed 2 bits per triangle or less. The encoding

algorithm visits every triangle of the mesh in a depth-first order. The original

decoding algorithm [21] recreates the triangles in the same order they have

been visited by the encoding algorithm and exhibits a worst case time com­

plexity of 0(n2). More recent work [22] uses the same traversal order and

improves the worst case to 0(n). However, for meshes with handles multiple

traversals are needed during both encoding and decoding. We introduce here a

simpler decompression technique that performs a single traversal and recreates

the triangles in reverse order.

In the next section we briefly summarize the Edgebreaker encoding

scheme. A detailed description of the algorithm can be found in [21]. The

43

Edgebreaker decoding scheme is covered in Section 4.2 and the Wrap&zip de­

coding scheme is covered in Section 4.3. We introduce our Spirale Reversi

decoding scheme in Section 4.4. In these sections we assume that the input

mesh has no boundary, no holes, and no handles. Later we explain how en­

coding and decoding generalizes to meshes with boundary in Section 4.5, with

holes in Section 4.6 and with handles in Section 4.7.

a) A ^ i M t b)

case C

active triangle

case R

AS'1W"
;tive triangle

& UP
case L

outsr"

case S

case E
active gate

Figure 4.1: The Edgebreaker encoding operations C, L, E, R, and S.

44

4.1 Edgebreaker encoding

Before we describe the Edgebreaker encoding scheme, we want to define what

properties the input mesh is expected to have:

1. The mesh is a surface composed of topological triangles (e.g. every face

is bound by three edges).

2. The mesh has no boundary and no holes (e.g. every edge is bound by

two faces).

3. The mesh has no handles (e.g. the mesh is topologically equivalent to a

sphere).

Later we will describe how the Edgebreaker encoding scheme deals with meshes

that have a boundary, have holes, or have handles.

The Edgebreaker encoding process starts with a triangulated mesh and

produces a CLERS string. It visits every triangle of the mesh by including it

into an active boundary. Initially the active boundary is an arbitrary triangle

of the mesh. The encoding uses five different operations called C, L, E, R, and

S to include a triangle into the active boundary. Which operation is chosen

depends on how the respective triangle is attached to the active, boundary.

This expands (operation C), shrinks (operation R and L), splits (operation

S), or terminates (operation E) the active boundary. The sequence of C, L,

E, R, and S operations describes the traversal of the triangles of the mesh.

The corresponding CLERS string is a compact encoding of the topology of

the mesh. Now the details:

45

The encoding process starts off with defining an arbitrary triangle in the

mesh to be initial active boundary. The three vertices of the triangle become

boundary vertices and the three edges of the triangle become boundary edges.

The boundary edges are directed clockwise around the triangle. The triangle

itself is declared to be inside of the boundary; the remaining mesh is declared

to be outside of the boundary. Initially this boundary is the only element in

a stack of boundaries. The active boundary is always the top element of this

stack.

One of the three initial boundary edges is defined to be the gate of

the boundary. The gate is directed in the same way as the boundary edges.

The adjacent triangle right of the gate is inside, the adjacent triangle left of

the gate is outside of the boundary. The active gate is the gate of the active

boundary. The active triangle is the adjacent triangle left of the active gate.

The essential element of the Edgebreaker encoding scheme is: With ev­

ery operation the active triangle moves from outside to inside of the active

boundary. The invariant of the Edgebreaker encoding scheme is: A triangle

that lies outside of some boundary is not yet encoded. A triangle that lies

inside of all boundaries is already encoded. The Edgebreaker encoding termi­

nates after exactly t — 1 operations, with t being the number of triangles of

the mesh. Every triangle is processed by one operation with exception of the

one that defines the initial active boundary.

The active triangle is included into the active boundary with one of the

five operations C, L, E, R, or S. Which operation is chosen depends on how

46

the active triangle is attached to the active boundary. If its third vertex is

not on the active boundary then operation C is used. If its third vertex is

the next boundary vertex on the active boundary then operation R is used.

(Remember that the boundary edges are directed clockwise around the inside.)

If its third vertex is the previous boundary vertex on the active boundary then

operation L is used. If its third vertex is some other boundary vertex on the

active boundary then operation S is used. If its third vertex is the previous

and the next boundary vertex on the active boundary then operation E is

used. This can only happen for an active boundary of length three. See also

the illustration in Figure 4.1a.

* s t a r t of o f f s e t computation

Figure 4.2: Computing the offsets of the S operation for the Edgebreaker
decoding.

Each operation requires an update of the active boundary, since the

active triangle moves from the outside to the inside of the boundary. The

active boundary is expanded (operation C), is shrunk (operation R and L),

is split (operation S), or is terminated (operation E). Each operation also

47

requires an update of the active gate, since it moves with the active triangle

to the inside of the boundary. Figure 4.1b illustrates the necessary updates.

They are as follows:

• The C operation inserts one new boundary vertex, inserts two new

boundary edges, and removes one boundary edge. The old gate is the

removed boundary edge, the new gate is one of the inserted boundary

edges. It is on the left as seen from the old gate.

• The R and L operation both remove one boundary vertex, remove

two boundary edges, and insert one new boundary edge. The new gate

is the inserted boundary edge, the old gate is one of the deleted boundary

edges. The two operations differ by whether the old gate is on the right

(R) or on the left (L) as seen from the new gate.

• The S operation splits the active boundary into two boundaries that

share one boundary vertex. It inserts two new boundary edges and re­

moves one boundary edge. The total count of boundary vertices increases

by one because the shared boundary vertex is counted twice. Both in­

serted boundary edges become a gate for the respective boundary. The

current top element of the boundary stack is popped and the two bound­

aries are pushed onto the stack. The new top element becomes the active

boundary.

• The E operation removes the last three boundary vertices and the last

three boundary edges. The current top element of the boundary stack

48

is popped. If the stack is empty the encoding ends. Otherwise the new

top element becomes the active boundary.

The Edgebreaker encoding scheme as presented so far captures the

topology of an unlabeled mesh. Together with the right permutation of the

vertex data it captures the topology of a labeled mesh. The vertex data, such

as coordinates, texture information, or surface normal, are stored in the order

in which the vertices are encountered during the encoding process. Vertices

are encountered in the moment they are inserted into the active boundary. For

the first three vertices this happens at the start of the Edgebreaker encoding

when the initial boundary is defined. For all other vertices this happens during

a C operation.

For triangle meshes with v vertices and t triangles that are homeomor-

phic to a sphere t equals 2v — 4. The traversal of the mesh triangles reaches

new vertices only with the C operation. Since there are twice as many trian­

gles than vertices, half of all operations will be of type C. A straight-forward

encoding that encodes a C operation with one bit and the remaining four oper­

ations with three bits is guaranteed to use no more than 2t or 4v bits. A more

elaborate encoding of the CLERS sequence guarantees an even lower bound

of 3.67u bits [17].

The detailed example in Figure 4.11 leads step by step through the final

twelve operations of Edgebreaker encoding a mesh.

49

4.2 Edgebreaker decoding

The Edgebreaker decoding process starts with a CLERS string and produces

a triangulated mesh. Two traversals of the CLERS string are needed: A

preprocessing phase that computes an offset value for every S operation. A

generation phase that creates the triangles in the order in which they were

encoded by the Edgebreaker encoding process.

The preprocessing phase computes an offset value for every S operation.

The Edgebreaker encoding uses the S operation whenever the third vertex of

the active triangle is a vertex on the active boundary other than the previous

or the next. In this case, the active boundary is split into two boundaries with

this third vertex appearing in both. When the Edgebreaker decoding creates

this triangle, it needs to know which vertex on the active boundary to use

as the triangle's third vertex. The offset value that is computed during the

preprocessing phase is the distance between the active gate and this vertex

along the active boundary.

Figure 4.3: Using the offset of the S operation during the Edgebreaker decod­
ing.

The computation of these offset values is very simple. The resulting

change in boundary length is added up for all operations following an S oper-

50

ation until and including its corresponding E operation. Since pairs of S and

E operations are always nested, the offset values for all S operations can be

computed in a single traversal. See also the illustration in Figure 4.2. •

The generation phase starts with creating the initial triangle. The ac­

tive boundary and the gate are identified and the CLERS string is processed.

What follows is an almost exact replay of the encoding algorithm. With every

operation a new triangle is created and included into the active boundary.

The triangle is always attached to the left of the active gate. Which vertex

is used as the triangle's third vertex depends on the current operation. Only

for the C operation a new vertex is created. For all other operations a vertex

from the active boundary is used. For the R operation this is the next and

for the L operation this is the previous vertex on the active boundary. For

the S operation it is some other boundary vertex. The precomputed offset

value specifies its distance from the active gate along the boundary. When

the E operation occurs, the active boundary consists of only three boundary

vertices. This leaves no choice for the third vertex.

The five operations of the Edgebreaker decoding perform the same up­

dates on boundary and gate as those of the Edgebreaker encoding (see Fig­

ure 4.1). Only the S operation is more complex. It uses the precomputed

offset to locate the third vertex for the newly created triangle as illustrated in

Figure 4.3.

The Edgebreaker decoding scheme as presented so far reconstructs the

topology of the unlabeled mesh. Using the vertex permutation that is pro-

51

duced by the Edgebreaker encoding, the mesh labeling is reconstructed. The

vertex data is assigned to unlabeled vertices in the order in which they are

encountered. Vertices are encountered in the moment they are inserted into

the active boundary. For the first three vertices this happens at the start of

the Edgebreaker decoding when the initial boundary is defined. For all other

vertices this happens during a C operation.

Although in practice only a small fraction of operations are of type

S, they imply an asymptotic worst case time complexity of 0(n2) for the

Edgebreaker decoding, if the active boundary is maintained in a linear data

structure. Each S operation requires a linear search for the vertex specified

by the offset. This cost may be reduced to O(nlogn) if the active boundary

is maintained in a data structure with a logarithmic instead of a linear search

time. However, the more complex update operations of a data structure with

logarithmic search time (such as a balanced binary tree) would increase the

expected complexity from 0(n) to 0(n log n).

The detailed example in Figure 4.12 leads step by step through the final

twelve operations of Edgebreaker decoding a mesh.

4.3 Wrap&zip decoding

The Wrap&zip decoding process starts with a CLERS string and produces a

triangulated mesh. Only one traversal of the CLERS string is needed. It starts

with creating the initial triangle. The active boundary and the gate are iden­

tified and the CLERS string is processed. What follows is a modified replay

52

case L

case R

case C

case S

case E
active gate

Figure 4.4: The Wrap&zip decoding operations C, L, E, R, and S.

of the encoding algorithm. With every operation a new triangle is created.

The triangle is always attached to the left of the active gate. The decision

which vertex is the triangle's third vertex is postponed for all operations but

the C operation. Instead of some boundary vertex from the active boundary a

dummy vertex is used for operations of type L, E, R, and S. This is the wrap­

ping part of the Wrap&zip decoding. For the C operation nothing changes.

Like before a newly created vertex is used.

All boundary edges except for the gate have an additional direction

assigned that depends on the operation that created them. This zip direction

is used for the zipping part of the Wrap&zip decoding. Which operation

53

Figure 4.5: Single zipping after an L operation (top) and recursive zipping
after an E operation (bottom).

assigns which zip direction is shown in Figure 4.4.

Each time the zip directions of two adjacent boundary edges point to

a common vertex, they are zipped together by identifying their other ends.

This zipping continues recursively if the resulting vertex exhibits the same

property. Whether a zip is necessary needs only to be checked after L and E

operations. No immediate zipping is possible after C, R, and S operations. A

zip after an L operation never starts recursive zipping, whereas a zip after an

E operation always starts recursive zipping. A small example in Figure 4.5

illustrates single zipping after an L and recursive zipping after an E operation.

The Wrap&zip decoding scheme as presented so far reconstructs the

topology of the unlabeled mesh. The mesh labeling is reconstructed in the

same way as in the Edgebreaker decoding.

54

The wrapping and zipping technique of this decoding scheme improves

on the asymptotic worst case time complexity 0(n2) of the original Edge-

breaker decoding. It can be shown that the number of zip operations equals

the number of edges in the vertex-spanning tree. Therefore the decoding al­

gorithm has linear time complexity.

The detailed example in Figure 4.13 leads step by step through the final

twelve operations of Wrap&zip decoding a mesh.

4.4 Spirale Reversi decoding

The Spirale Reversi decoding process starts with a CLERS string and produces

a triangulated mesh. Only one reverse traversal of the CLERS string is

needed. This completely eliminates the overhead for the S and E operation

pairs that is necessary for the Edgebreaker and the Wrap&zip decoding. It

can be seen as a step by step reversal of the Edgebreaker encoding.

The Spirale Reversi decoding scheme uses the same boundary definitions

as the Edgebreaker encoding scheme. It starts with creating an unlabeled

triangle as the initial boundary. It is unlabeled in the sense that no physical

vertex is yet associated with the three boundary vertices. The triangle itself

is declared to be outside of the boundary. The boundary edges are directed

counterclockwise around this triangle.

One of the three boundary edges is defined as the initial active gate.

Inside of the boundary is right of the gate, outside of the boundary is left of

the gate. The Edgebreaker encoding was growing the inside until there was

55

case C

case R

case L

ease S

case E
^active gate

Figure 4.6: The Spirale Reversi decoding operations C, L, E, R, and S.

no triangle left outside. The Spirale Reversi decoding however is growing the

outside until there is no triangle left inside. This reflects the reverseness of

the Spirale Reversi decoding.

The essential element of the Spirale Reversi decoding scheme is: After

every operation the triangle left of the active gate has moved from inside to

outside of the active boundary. The invariant of the Spirale Reversi decoding

scheme is: A triangle that lies outside of some boundary is already decoded.

A triangle that lies inside of all boundaries is not yet: decoded. The CLERS

sequence is processed in the reverse order. Depending on the processed oper-

56

ation the active boundary is shrunk (operation C), is expanded (operation R

and L), is merged with the next boundary on the stack (operation S), or is

created new (operation E).

Reversing the encoding algorithm works as follows: With every oper­

ation a new triangle is created. This triangle is always attached to the right

of the active gate. Which vertex is the triangle's third vertex depends on the

type of the operation. For the C operation it is the previous boundary vertex

on the active boundary. For the R and the L operation a new but unlabeled

vertex is created. For the S operation it is a vertex from the boundary that is

in the boundary stack directly below the active boundary. More exactly it is

the vertex at the origin of this boundary's gate. The vertex at the destination

of this boundary's gate and the vertex at the origin of the active gate need

to be identified. For the E operation three new unlabeled vertices are created

that form a new active boundary in the same way as during initialization.

The required updates of the boundary and of the gate are as follows:

• The C operation removes one boundary vertex, removes two boundary

edges, and inserts one new boundary edge. The new gate is the inserted

boundary edge, the old gate is one of the removed boundary edges. It is

on the left as seen from the new gate.

• The R and L operation each insert one new boundary vertex, insert

two new boundary edges, and remove one boundary edge. The old gate is

the removed boundary edge, the new gate is one of the inserted boundary

edges. The two operations differ by whether the new gate is on the right

57

(R) or on the left (L) as seen from the old gate.

• The S operation merges the active boundary with the boundary that

is directly below in the boundary stack. Thereby one boundary vertex

from each boundary are identified into one boundary vertex. It removes

two boundary edges and inserts one boundary edge. The total count of

boundary vertices decreases by one because the two identified boundary

vertices are only one count. Both removed boundary edges are old gates

of the respective boundary. The new gate is the inserted boundary edge.

The two top elements of the boundary stack are popped and the merged

boundaries is pushed onto the stack.

• The E operation creates a new active boundary. It inserts three new

boundary vertices and three new boundary edges. The new gate is any

of the three boundary edges. The new active boundary is pushed on the

boundary stack.

The Spirale Reversi decoding scheme as presented so far reconstructs

the topology of the unlabeled mesh. Using the reverse of the vertex permu­

tation that is produced by the Edgebreaker encoding, the mesh labeling is

reconstructed. The vertex data is assigned to unlabeled vertices in the order

in which they are abandoned. Vertices are abandoned in the moment they are

removed from the active boundary. For the last three vertices this happens at

the end of the Spirale Reversi decoding. For all other vertices this happens

during a C operation.

58

The detailed example in Figure 4.14 leads step by step through the first

twelve operations of Spirale Reversi decoding a mesh.

4.5 Handling boundaries

The Edgebreaker approach is capable of encoding the connectivity of any sim­

ple triangle mesh without holes. The scheme can easily be made capable of

handling a single hole. A triangle mesh with boundary is a triangle mesh with

a single hole.

Instead of selecting the loop of edges oriented clockwise around an arbi­

trary mesh triangle as the initial active boundary, we select the loop of edges

oriented clockwise around the hole. Like before, an arbitrary edge from this

boundary is declared to be the initial active gate. The vertex data of all

boundary vertices is stored in counterclockwise order around the hole starting

at the active gate. From there Edgebreaker encoding proceeds like before.

Both the Edgebreaker decoding and the Wrap&zip decoding need addi­

tional information to decode the boundary case. They need to know the length

of the initial boundary loop (e.g. the length of the hole). This can be precom-

puted during an initial traversal of the CLERS string. The Spirale Reversi

decoding needs no additional information. After decoding the last label of the

reversed CLERS string, the active boundary loops around the hole. Then the

boundary vertices are simply assigned their data in the opposite order as they

were stored during encoding.

59

4.6 Handling holes

For every additional hole the Edgebreaker encoding runs into a situation in

which the third vertex of the active triangle lies on the boundary of a hole. For

this scenario the M operation is introduced. The active boundary is merged

with the boundary of the hole by opening both at their common vertex and

reconnecting them as depicted in Figure 4.7. The vertex data of all boundary

vertices is stored in counterclockwise order around the hole starting at the

common vertex. In addition to the label M of the operation the following

information needs to be recorded:

• A length that specifies the number of vertices on the boundary of the

hole.

case

Figure 4.7: The Edgebreaker encoding operation M.

The decoding of a hole is straightforward for all three decoding algo­

rithms. When a label M is processed the associated length value is used to

update the boundary accordingly. This involves assigning the data to all ver­

tices around the hole. In Figure 4.7 the Spirale Reversi decoding of a hole is

illustrated.

60

case M

Figure 4.8: The Spirale Reversi decoding operation M .

4.7 Handling handles

For every handle the Edgebreaker encoding runs into a situation in which

the third vertex of the active triangle is not on the active boundary, but

on some other boundary in the stack. For this scenario the M ' operation is

introduced. This operation merges these two boundaries into one by opening

both at their common vertex and reconnecting them as depicted in Figure 4.9.

The respective boundary is then removed from the stack.

In addition to the label M ' of the operation three integers are recorded.

We modified the original Edgebreaker encoding by the last integer. This will

allow to decode a mesh with handles using just a single reverse traversal of

the CLERS string. The three integers are as follows:

• An index that specifies the respective boundary within the stack of

boundaries.

• An offset 1 that specifies the counterclockwise distance between the com­

mon vertex and the gate of the boundary from the stack.

61

• An offset2 that specifies the counterclockwise distance between the gate

of the boundary from the stack and the common vertex.

remove gate at position index from stack

Figure 4.10: The Spirale Reversi decoding operation M ' .

The original Edgebreaker decoding uses the three integers it associates

with the M ' operation to replay the situation encountered during the encoding.

The decoding cost per M ' operation is 0(n). However, the number of M

operations is bound by the genus of the mesh and generally small. Neither

Wrap&zip nor Spirale Reversi decoding aim at improving the worst case time

complexity for the M ' operation.

62

For the Wrap&zip decoding of meshes with handles the authors [22]

had to modify the Edgebreaker encoding. The modified approach is more

complicated and requires three instead of one traversal of the mesh triangles.

For details we refer to the original reference [22].

The Spirale Reversi decoding of the M ' operation follows the concept of

reversing the encoding process. The two offsets specify the split of the active

boundary and the position of the gate in the boundary that is inserted into

the stack. The index specifies the position at which this boundary is inserted

into the stack. This is illustrated in Figure 4.10

4.8 Summary

We presented a simple linear time algorithm for decoding Edgebreaker en­

coded triangle meshes. The concept of reversing the encoding process allows

to decode a mesh with a single traversal of the CLERS string. For meshes

without handles our scheme eliminates the need for the look-ahead procedure

used by the original Edgebreaker decoding [21] and the need for the zipping

procedure used by the Wrap&zip decoding [22]. Furthermore, for meshes with

handles, our scheme eliminates the need for multiple traversals of the CLERS

string and/or the mesh triangles during both encoding and decoding.

63

Figure 4.11: An example of the final twelve operations of Edgebreaker encoding
a mesh.

64

Figure 4.12: An example of the final twelve operations of Edgebreaker decoding
a mesh.

65

Figure 4.13: An example of the final twelve operations of Wrap&zip decoding
a mesh.

66

Figure 4.14: An example of the first twelve operations of Spirale Reversi de­
coding a mesh.

67

Bibliography

[1] H. Bruggesser and P. Mani. Shellable decompositions of cells and spheres.
Math. Scand., 29:197-205, 1971.

[2] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. P.
Brooks, and W. V. Wright. Simplification envelopes. In SIGGRAPH'96
Conference Proceedings, pages 119-128, 1996.

[3] L. de Floriani, P. Magillo, and E. Puppo. A simple and efficient sequential
encoding for triangle meshes. In Proceedings of 15th European Workshop
on Computational Geometry, pages 129-133, 1999.

[4] M . Denny and C. Sohler. Encoding a triangulation as a permutation of its
point set. In Proceedings of 9th Canadian Conference on Computational
Geometry, pages 39-43, 1997.

[5] H. Edelsbrunner. private communication.

[6] M . Garland and P. S. Heckbert. Surface simplification using quadric error
metrics. In SIGGRAPH'97 Conference Proceedings, pages 209-216, 1997.

[7] S. Gumhold and W. Strasser. Real time compression of triangle mesh
connectivity. In SIGGRAPH'98 Conference Proceedings, pages 133-140,
1998.

[8] H. Hoppe. Progressive meshes. In SIGGRAPH'96 Conference Proceedings,
pages 99-108, 1996.

[9] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh
optimization. In SIGGRAPH'93 Conference Proceedings, pages 19-26,
1993.

68

[10] M . Isenburg. Triangle fixer: Compressing triangle meshes. In preparation,
2000.

[11] M . Isenburg. Triangle strip compression. In preparation, 2000.

[12] M . Isenburg and J. Snoeyink. Mesh collapse compression. In Proceedings
of SIBGRAPI'99 - 12th Brazilian Symposium on Computer Graphics and
Image Processing, pages 27-28, 1999.

[13] M . Isenburg and J. Snoeyink. Mesh collapse compression video. In Pro­
ceedings of SCG'99 - 15th ACM Symposium on Computational Geometry,
pages 419-420, 1999.

[14] M . Isenburg and J. Snoeyink. Spirale reversi: Reverse decoding of the
edgebreaker encoding. In UBC Technical Report TR-99-08, 1999.

[15] M . Isenburg and J. Snoeyink. Face fixer: Compressing polygon meshes
with properties. In preparation, 2000.

[16] K. Keeler and J. Westbrook. Short encodings of planar graphs and maps.
In Discrete Applied Mathematics, pages 239-252, 1995.

[17] D. King and J. Rossignac. Guaranteed 3.67v bit encoding of planar trian­
gle graphs. In Proceedings of 11th Canadian Conference on Computational
Geometry, pages 146-149, 1999.

[18] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal
of Computing, 12(l):28-35, 1983.

[19] D. G. Kirkpatrick. Establishing order in planar subdivisions. Discrete
Computational Geometry, 3:267-280, 1988.

[20] L. Kobbelt, S. Campagne, and H. P. Seidel. A general framework for mesh
decimation. In GI'98 Conference Proceedings, pages 43-50, 1998.

[21] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes.
IEEE Transactions on Visualization and Computer Graphics, 5(1), 1999.

[22] J. Rossignac and A. Szymczak. Wrap&zip: Linear decoding of planar
triangle graphs. The Journal of Computational Geometry, Theory and
Applications, 1999.

69

[23] J. Snoeyink and M . van Kreveld. Linear-time reconstruction of Delaunay
triangulations with applications. In Proceedings of 5th European Sympo­
sium on Algorithms, pages 459-471, 1997.

[24] G. Taubin, A. Gueziec, W. Horn, and F. Lazarus. Progressive forest split
compression. In SIGGRAPH'98 Conference Proceedings, pages 123-132,
1998.

[25] G. Taubin and J. Rossignac. Geometric compression through topological
surgery. In ACM Transactions on Graphics, pages 17(2):84—115, 1998.

[26] C. Touma and C. Gotsman. Triangle mesh compression. In GI'98 Con­
ference Proceedings, pages 26-34, 1998.

[27] G. Turan. Succinct representations of graphs. Discrete Applied Mathe­
matics, 8:289-294, 1984.

[28] W.T. Tutte. A cencus of planar triangulations. Canadian Journal of Math­
ematics, 14:21-38, 1962.

70

