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Abstract. We describe a new method for surface reconstruction based on unorganized point clouds without
normals. We also present a new algorithm for refining the initial triangulation. The output of the method is a
refined triangular mesh with points on the moving least squares surface of the original point cloud.
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1 Introduction

We consider the problem of surface reconstruction and
refinement from scattered data points without normals.
Several algorithms are known for this important problem
[4–13], including a number of recent algorithms with theo-
retical guarantees [4–7]. Those algorithms use a 3D Delau-
nay triangulation of the original point cloud to compute a
triangular surface mesh. Computing the Delaunay triangu-
lation can be slow and susceptible to numerical errors.

Gopi, Krishnan, and Silva [12] proposed an algorithm
based on Differential Geometry that projects the neighbor-
hood of each sample point on a tangent plane, computes the
2D Delaunay triangulation of this projected neighborhood,
and lifts it to 3D.

Hoppe et al. [10] estimate a tangent plane at each sam-
ple point using itsk-nearest neighbors and use the distance
to the plane of the nearest sample as an estimative of the
signed distance function to the surface. The zero set of this
distance function is extracted using the marching cubes al-
gorithm.

Other algorithms [8,9,13] use a greedy approach. The
ball pivoting algorithm [9] rolls a ball over the sample
points; it requires the normal to the surface at each sam-
ple point, but it can create artifacts. Boissonnat [8] starts

by finding an initial edgepq in the triangulated reconstruc-
tion; he then computes a tangent plane around the edge,
projects thek-nearest neighbors of both vertices onto this
plane, and determines the pointr that maximizes the an-
gle∠ p̄ r̄ q̄ (where the bar represents projected points on the
tangent plane). This pointr determines a surface triangle
prq. The process is repeated for each border edge, result-
ing in a triangulated surface. Boyer [13] proposes an incre-
mental algorithm over the 3D Delaunay triangulation of the
samples, and relies on regular interpolants.

Our algorithm uses a different approach: it computes a
set of representative points near of the original point cloud
and triangulates these representative points using a new in-
cremental algorithm based onk-nearest neighbors. This
is somewhat similar to what is done in other greedy al-
gorithms [8, 9, 13]: For each border edge, the algorithm
uses angle criteria to select a point to make a triangle with
the edge. The initial triangulation is refined using a new
method based on moving least squares operators [1–3]. Our
algorithm does not need Delaunay triangulations and it can
handle surfaces with borders.

Section 2 describes in detail the four steps of our
method: clustering, reduction, triangulation, and refine-
ment. These steps are illustrated above. Section 3 discusses
several examples of the method in action.



Figure 1: Point clouds

2 Our Method

Starting from a point cloudQ ⊆ R3 that samples an un-
known C1 surfaceS, our method produces a mesh with
points near the moving least squares surface ofQ [1–3].
The method has four steps:

1. Clustering: Split the point cloud into a set of clusters.

2. Reduction: Compute a representative point of each
cluster on the moving least squares surface of its
k-nearest neighbors.

3. Triangulation: Build a triangulated surface over the
set of representative points.

4. Refinement: Refine the initial mesh into a finer mesh
that is adapted to the geometry of the unknown sur-
faceS.

We shall now describe each of these steps in detail.

2.1 Clustering

The goal of this first step is to partition the original set of
pointsQ into a finite set of clusters, such that the curvature
of the original surfaceS varies a little within each cluster.
SinceS is not known, its curvature must be estimated from
the sample pointsQ.

We use a hierarchical clustering method based on a
BSP tree [3]. Each node in this tree contains a subset
P = {p1, . . . , pn} of the original point cloudQ. We use
the covariance matrixC of P to decide whether or not to
subdivide the node:

C =


p1 − p̄
p2 − p̄

...
pn − p̄


T 

p1 − p̄
p2 − p̄

...
pn − p̄

 , p̄ =
1
n

n∑
i=1

pi.

SinceC is a symmetric positive semi-definite3 × 3 ma-
trix, its three eigenvalues are real and we can order them:
λ1 ≤ λ2 ≤ λ3. These eigenvalues measure the variation of
the points inP along the directions of their corresponding
eigenvectorsv1, v2, v3.

Figure 2: Clusters

The eigenvectorsv2 and v3 define the directions of
highest variation and define a regression planeΠ for P.
The eigenvectorv1 is normal toΠ and its eigenvalueλ1

measures the variation of the points inP with respect to the
planeΠ. So, small values ofλ1 mean that all points inP
are approximately onΠ. Hence, the ratio

σ =
λ1

λ1 + λ2 + λ3

is a good measure of the flatness of the point setP and can
be used as an estimate for the curvature ofS aroundP.

We use this flatness measure to define subdivision cri-
teria for the BSP tree. A node is divided in two when both
conditions below are satisfied:

1. The ratio σ is larger than a user-defined toler-
anceσmax;

2. The numbern of points inP is larger than a user-
defined valuenmin.

The nodes are divided by classifying the points ofP with
respect to the regression planeΠ. The points ofP that are
in the same side ofΠ will form a new node. The leaves
of the BSP tree will be the clusters. Figure 2 shows the
clusters computed for the point clouds shown in Figure 1.

2.2 Reduction

We find a representative point for each cluster using a new
method based on the moving least squares theory [1–3].
The moving least squares surface of a set of pointsR near
the surfaceS is the set of fixed points of a projection oper-
atorΨ(R, ·) defined in [1–3]:

MLS(R) = {y ∈ R3 : Ψ(R, y) = y}.

Given a point pointr ∈ R3, we approximateΨ(Q, r)
by Ψ(K, r), whereK is the set ofk-nearest neighbors ofr
in Q (see [3] for details).

To determine a representative point for each cluster,
we start with the centroidc of the set of points in the clus-
ter. This pointc is not necessarily nearS and so we move



Figure 3: Representatives

it towardS and obtain the pointr = c + tminnc, wherenc

andtmin are explained below. The pointr is then projected
onto the moving least squares surface MLS(Q) of the ini-
tial point cloud and we obtain the pointrproj = Ψ(Q, r),
which is selected to represent the cluster. Figure 3 shows
the representatives for the clusters shown in Figure 2.

The vectornc used to definer is the eigenvector asso-
ciated to the smallest eigenvalue of a weighted covariance
matrix M over the setK of k-nearest neighbors ofc in Q.
More precisely,M is the3× 3 matrix whose entries are

mij =
∑
p∈K

(pi − ci)(pj − cj) exp(
−‖p− c‖2

h2
),

wherep = (p1, p2, p3), c = (c1, c2, c3), andh is a parame-
ter reflecting the spacing between neighboring points inQ
(see [1, 2] for details). We useh equal to three times the
distance ofc to its near neighbor inQ.

Using the directionnc as above, we compute

tmin = arg min
t

∑
p∈K

‖p− c− tnc‖2.

We interpret this as finding the pointr = c + tminnc on
the line throughc in the direction ofnc that is closest to the
original surface.

2.3 Triangulation

The next step is to build a triangulated surface over the set
of representative points. We do this using an incremental
algorithm that introduces new features in the basic frame-
work of previous incremental algorithms [8,9,13].

The main idea behind the algorithm is to determine in-
crementally the restricted Delaunay triangles, because these
triangles form a piecewise linear manifold homeomorphic
to the original surface [4].

The algorithm computes a sequence of triangulated
surfaces with border. At each step, it chooses a border edge,
finds a new triangle associated to this edge, and updates the
current surface. The algorithm maintains a half-edge data
structureH that represents the current surface and a listL

of half-edges that represents the current boundary. Here is
a summary of the main steps:

Build a3d-tree on the set of representatives.
Get an initial triangle and initializeH andL with it.
repeat

Remove a half edgeuv from L.
usv ← the triangle adjacent touv in H.
P ← set ofk-nearest neighbors ofu.
q ← GET POINT(usv, u, P ).
Insertuqv into H and its border edges intoL.

until L is empty.

The initial surface contains a single triangle. This tri-
angle is inserted intoH and all its edges are inserted intoL.
To find the initial triangle, we select a pointp ∈ Q and de-
termine its nearest neighborq ∈ Q. These two points define
the first border edge:pq. Among thek-nearest neighbors
of p, we determine the pointr that maximizes the angle
∠ p r q. The initial triangleprq is in the Delaunay triangu-
lation of thek-nearest neighbors ofp (see [14], Lemma 3).

Once the initial surface has been found, we continue
by removing edges fromL until it is empty. For each
edgeuv, we select a pointq among thek-nearest neigh-
bors ofu to create a new triangleuqv, which is added toH
andL. (We use a 3d-tree built at the start of the algorithm
to identifyk-nearest neighbors.)

The number of edges ofuqv inserted inL varies: it
is zero when the triangleuqv fills a hole inH; it is one
whenuq or vq are consecutive edges ofuv in the border
of the current surface; otherwise, it is two. Whenq is al-
ready inH, we have to join two connected components of
the border or to split one component in two new connected
components. We determine the pointq using the following
algorithm:

GET POINT (usv, u, P ):

du ← distance fromu to its nearest neighbor.
dv ← distance fromv to its nearest neighbor.
dmin ← min{du, dv}.
repeat

Cθ ← set of pointst such that:
(i) the dihedral angle between the trianglesusv and

utv is in [π − θ, π + θ];
(ii) Triangleutv does not violate the topology ofH;

(iii)
max{d(u, t), d(v, t)}

dmin
< ε1.

if Cθ 6= ∅ then
Determine the setC ′

θ of pointsq ∈ Cθ with maxi-
mum angle∠ u q v.

else
θ ← θ + ε2.

until C ′
θ 6= ∅ or θ > π

2 + ε2

Here,θ, ε1, andε2 are user-defined tolerances.



Condition (i) in this algorithm is based on the theorem
below, which we prove in [14]:

Theorem 1 Let F be aβ, r-samplingof a surfaceS with
r < 1/4. Then the angle between two adjacent restricted
Delaunay triangles sharing an edge is at leastπ−2( 2r

1−4r +

arcsin(
√

3r
1−r )).

This theorem show that the dihedral angle between
two adjacent restricted Delaunay triangles converges toπ
as the sampling density increases (that is, asr → 0). We
start with an initial region[π − θ, π + θ] with small θ to
determine the set of pointCθ in this region that satisfy cri-
teria (ii) and (iii). If Cθ is not empty, we find the point
q ∈ Cθ with maximum angle∠ u q v; otherwise, we in-
creaseθ by ε2 and repeat the process until we find a pointq
or θ gets too large.

Condition (ii) is used to eliminate the pointst that are
interior to H and the points on the boundary ofH that
would violate the topology if they were selected. When
the pointt is on the boundary ofH, we first fit a planeΠ
to the set of points adjacent tot in H (the star of t) and
project this start ontoΠ, resulting in a set of 2d trianglesT .
If these triangles do not form a triangulation, that is, is two
edges intersect, then we have a topology violation.

Condition (iii) is used to determine border edges, and
is based on the following theorem, which we prove in [14]:

Theorem 2 Let F be aβ, r-samplingof a surfaceS with
r < 1/3. Let T1 = uvt and T2 = uvq be restricted De-
launay triangles sharing the edgeuv. Then, the length
of the longest edge ofT2 is at most 2β

1−3r d, whered =
min{du, dv} anddu (respectively,dv) is the distance ofu
(respectively,v) to its nearest neighbor.

This theorem shows that there is little variation be-
tween the length of the edges of two triangles adjacent to
a interior edge. We observed that the length of edges of the
adjacent triangles to a boundary edge are very different.

In practice, we have no way to estimateβ andr, and
so we use a predefined valueε1 as the constant2β

1−3r and

a pointt is eliminated if max{d(u,t),d(v,t)}
dmin

> ε1. If Cθ is
empty, the edgeuv is a candidate border edge. IfCθ is
empty for allθ tested,uv is a border edge.

If Cθ is not empty, we compute the subsetC ′
θ of

pointsq with maximum angle∠ u q v. We justify this cri-
terion as follows: InR2, given a Delaunay triangleuvs, its
adjacent Delaunay triangleuvq is the one with maximum
angle∠ u q v. Although this is a criterion forR2, we use it
for surfaces because the surface normal varies little in the
surface neighborhood of a pointu containing the vertex of
the restricted Delaunay triangulation (see [4–6]); in other
words, we can consider this neighborhood as flat.

Figure 4: Triangulations

Figure 4 shows the triangulated surfaces over the set
of representatives shown in Figure 3.

2.4 Refinement

The goal of this step is to refine the initial coarse triangu-
lation into a finer triangulation adapted to the geometry of
the unknown surfaceS from which the point cloudQ was
sampled.

We propose the following method to refine an edgeuv:
We compute the middle point of the edge. If this point is
too far from the original point cloudQ, it is projected onto
the moving least squares surface and a new edge is added to
each adjacent triangle of the edgeuv, dividing each trian-
gle into two new triangles. We repeat this process for each
edge in the original triangulation. The details are discussed
below.

More precisely, for each edgeuv we compute its mid-
pointm = u+v

2 and its normal

nm =
nu+nv

2

‖nu+nv

2 ‖
,

wherenu andnv are the normals ofu andv respectively,
computed using the local triangulation (star) of each vertex.

Using the setK of k-nearest neighbors ofm in the
original points cloud, we minimize the following functional
with respect tot :

α = min
t

∑
p∈K

‖p−m− t · nm‖2 = −1
k

∑
p∈K

(p−m) ·nm



Figure 5: Refinement

As in the reduction step, this is interpreted as finding the
point on the line throughm in the direction ofnm that is
closest to the original surfaceS.

We useα as a measure of the need of refinement. If
α is smaller than some predefined valueε, we do not refine
the edge; otherwise, we project the pointm + α · nm onto
the moving least squares surface, producing the new point
m̄ = Ψ(Q,m + α · nm) and replace the trianglesauv and
buv adjacent touv with the new trianglesum̄a, vm̄a and
um̄b, vm̄b, respectively. If the ratio between the length of
the minimum edge and the maximum edge of the triangles
auv or buv is too small, we do not divide the triangles.

This procedure is applied to all the old edges while
the scalart is larger thanε. In the resulting mesh, we flip
the diagonals of each quadrilateral formed by the pairs of
adjacent triangles if the length of one diagonal (the common
edge) is larger than the length of the other diagonal (the
segment joining the opposite vertex).

The final result is a triangulated surface whose vertices
are on the moving least squares approximation surface of
the original points cloud. Figure 5 shows two refinement of
the initial triangulations shown in Figure 4.

3 Results

Our algorithm has been implemented using CGAL [15] for
computing the half edge data structure and the operations
in the refinement. The algorithm has been tested on sev-
eral data sets available on the internet [16, 17] using two
refinement steps. The results are shown in Figures 6–9 (and

Model Clustering Triangulation Ref. 1 Ref. 2
Bunny 3.68 s 22.48 s 2.33 s 7.9 s

35933 p 4457 p 8895 t 31623 t 107363 t
Club 1.36 s 5.3 s 1.11 s 3.86 s

16864 p 2103 p 4121 t 15037 t 51775 t
Cactus 0.21 s 1.58 s 0.2 s 0.68 s
3337 p 404 p 782 t 2776 t 9614 t

Cat 0.77 s 6.02 s 0.61 s 2.06 s
10000 p 1244 p 2453 t 29257 t 8535 t
Dragon 62.43 s 297.8 s 27.22 s 58.98 s

437645 p 55694 p 109889 t 361455 t 810367 t
Horse 4.67 s 30.83 s 3.17 s 10.76 s

48482 p 6164 p 12046 t 42860 t 144828 t

Table 1: Results on a 1.8Ghz Pentium 4 with 512Mb of
RAM running Linux (s=seconds, p=points, t=triangles)

also in the previous figures). Table 1 shows the times (in
seconds) taken in each step of the algorithm and the sizes
(points and triangles) of the result models.

In the clustering step, the typical values for the user-
defined parameters wereσmax = 0.005 andnmin = 32.
In the triangulation algorithm, we obtain very good results
usingε1 = 2.8 for identifying boundary edges,θ = 60◦ for
the initial angle, andε2 = 15◦ for the angle step. We also
observed that the ratiomax{d(u,t),d(v,t)}

dmin
is frequently larger

than3 in the border of the surface.
The pictures in this paper are available in full size and

color athttp://www.impa.br/~boris/sib2003.html.

4 Conclusion

We presented a new algorithm for reconstruction and re-
finement of surface, giving as output a refined triangular
mesh with points in the moving least squares surface of the
original points cloud.

The new method proposed for computing representa-
tives points produces a simplified sample on the moving
least squares surface. The new triangulation algorithm does
not need to compute 3D Delaunay triangulations, which in
the worst case requires quadratic time and is prone to nu-
merical errors. The new refinement method is fast and gives
a fine triangular mesh adapted to the geometry of the un-
known surface.
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Figure 7: Cactus

Figure 8: Cat



Figure 9: Horse


