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Abstract. We describe a new method for surface reconstruction based on unorganized point clouds without
normals. We also present a new algorithm for refining the initial triangulation. The output of the method is a
refined triangular mesh with points on the moving least squares surface of the original point cloud.
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point cloud reduction triangulation refinement

1 Introduction by finding an initial edgeq in the triangulated reconstruc-

tion; he then computes a tangent plane around the edge,
We consider the problem of surface reconstruction and projects thek-nearest neighbors of both vertices onto this
refinement from scattered data points without normals. plane, and determines the pointhat maximizes the an-
Several algorithms are known for this important problem gle Z p7 g (where the bar represents projected points on the
[4-13], including a number of recent algorithms with theo- tangent plane). This point determines a surface triangle
retical guarantees [4—7]. Those algorithms use a 3D Delau-prq. The process is repeated for each border edge, result-
nay triangulation of the original point cloud to compute a ing in a triangulated surface. Boyer [13] proposes an incre-
triangular surface mesh. Computing the Delaunay triangu- mental algorithm over the 3D Delaunay triangulation of the
lation can be slow and susceptible to numerical errors. samples, and relies on regular interpolants.

Gopi, Krishnan, and Silva [12] proposed an algorithm Our algorithm uses a different approach: it computes a
based on Differential Geometry that projects the neighbor- set of representative points near of the original point cloud
hood of each sample point on a tangent plane, computes th@nd triangulates these representative points using a hew in-
2D Delaunay triangulation of this projected neighborhood, cremental algorithm based danearest neighbors. This
and lifts it to 3D. is somewhat similar to what is done in other greedy al-

Hoppe et al. [10] estimate a tangent plane at each sam-gorithms [8, 9, 13]: For each border edge, the algorithm
ple point using its-nearest neighbors and use the distance uses angle criteria to select a point to make a triangle with
to the plane of the nearest sample as an estimative of thehe edge. The initial triangulation is refined using a new
signed distance function to the surface. The zero set of thismethod based on moving least squares operators [1-3]. Our
distance function is extracted using the marching cubes al-algorithm does not need Delaunay triangulations and it can
gorithm. handle surfaces with borders.

Other algorithms [8,9, 13] use a greedy approach. The Section 2 describes in detail the four steps of our
ball pivoting algorithm [9] rolls a ball over the sample method: clustering, reduction, triangulation, and refine-
points; it requires the normal to the surface at each sam-ment. These steps are illustrated above. Section 3 discusses
ple point, but it can create artifacts. Boissonnat [8] starts several examples of the method in action.



Figure 1: Point clouds Figure 2: Clusters

2 Our Method The eigenvectors, and vs define the directions of
highest variation and define a regression plahéor P.
The eigenvectow, is normal toll and its eigenvalug\;
measures the variation of the pointsirwith respect to the
planell. So, small values ok; mean that all points iP
are approximately ofil. Hence, the ratio

Starting from a point cloud C R? that samples an un-
known C* surfaceS, our method produces a mesh with
points near the moving least squares surfac@dfl-3].
The method has four steps:

1. Clustering Split the point cloud into a set of clusters. \
1

2. Reduction Compute a representative point of each o= —"—
P . P AL+ A2+ Ag

cluster on the moving least squares surface of its
k-nearest neighbors. is a good measure of the flatness of the poin#sand can
3. Triangulation Build a triangulated surface over the b€ used as an estimate for the curvaturs afoundP. _
set of representative points. We use this flatness measure to define subdivision cri-
teria for the BSP tree. A node is divided in two when both

4. RefinementRefine the initial mesh into a finer mesh conditions below are satisfied:

that is adapted to the geometry of the unknown sur-
faceS. 1. The ratio o is larger than a user-defined toler-

. . . ancec .z
We shall now describe each of these steps in detail. max

2. The numbem of points inP is larger than a user-

2.1 Clustering defined value, .

The goal of this first step is to partition the original set of The nodes are divided by classifying the pointshfvith

pointsQ into a finite set of clusters, such that the curvature respect to the regression plaiie The points ofP that are

of the original surfaces varies a little within each cluster.  in the same side ofl will form a new node. The leaves

Sinces is not known, its curvature must be estimated from Of the BSP tree will be the clusters. Figure 2 shows the

the sample pointg. clusters computed for the point clouds shown in Figure 1.
We use a hierarchical clustering method based on a

BSP tree [3]. Each node in this tree contains a subset2.2 Reduction

P = {p1,...,pn} Of the original point cloudd. We use

the covariance matriK’ of P to decide whether or not to

subdivide the node:

We find a representative point for each cluster using a new
method based on the moving least squares theory [1-3].
The moving least squares surface of a set of paihtear

p—p T p1—D the surfaceS is the set of fixed points of a projection oper-
Py — P Py —p R atorU (R, -) defined in [1-3]:
C= ) . y D==)> Dpi 3
: : n MLS(R) ={y € R’ : ¥(R,y) = y}.
Pn — ﬁ Pn — ﬁ

Given a point point € R3, we approximatel (Q, r)
SinceC' is a symmetric positive semi-definitex 3 ma- by U(K,r), whereK is the set ofk-nearest neighbors of
trix, its three eigenvalues are real and we can order them:in Q (see [3] for details).
A1 < X2 < A3. These eigenvalues measure the variation of To determine a representative point for each cluster,
the points inP along the directions of their corresponding we start with the centroid of the set of points in the clus-
eigenvectors, vs, vs. ter. This pointc is not necessarily nead and so we move



Figure 3: Representatives

it towardS and obtain the point = ¢ + t,,,;nn¢, Wheren,
andt,,,;, are explained below. The poinis then projected
onto the moving least squares surface NIQ3 of the ini-
tial point cloud and we obtain the poing,,; = ¥(Q, ),

which is selected to represent the cluster. Figure 3 shows

the representatives for the clusters shown in Figure 2.
The vectom,. used to define is the eigenvector asso-

ciated to the smallest eigenvalue of a weighted covariance

matrix M over the sef{ of k-nearest neighbors efin Q.
More preciselyM is the3 x 3 matrix whose entries are

—llp —cl®

mij; = Z (pi — Ci)(pj - Cj) exp( h2

pEK

),

wherep = (p1,p2,p3), ¢ = (1, c2,c3), andh is a parame-
ter reflecting the spacing between neighboring point@in
(see [1, 2] for details). We usk equal to three times the
distance ot to its near neighbor ii®.

Using the directiom, as above, we compute

tonin = argmtin Z lp — ¢ — tn||?.
peEK

We interpret this as finding the point= ¢ + ¢,,;,n. ON
the line througke in the direction ofn,. that is closest to the
original surface.

2.3 Triangulation

The next step is to build a triangulated surface over the set

of representative points. We do this using an incremental
algorithm that introduces new features in the basic frame-
work of previous incremental algorithms [8, 9, 13].

The main idea behind the algorithm is to determine in-

crementally the restricted Delaunay triangles, because these

triangles form a piecewise linear manifold homeomorphic
to the original surface [4].

The algorithm computes a sequence of triangulated
surfaces with border. At each step, it chooses a border edge,

of half-edges that represents the current boundary. Here is
a summary of the main steps:

Build a 3d-tree on the set of representatives.
Get an initial triangle and initializ& and L with it.
repeat

Remove a half edgev from L.

usv « the triangle adjacent tov in H.

P — set ofk-nearest neighbors af.

q < GET_POINT@sv, u, P).

Insertugv into H and its border edges into.
until L is empty.

The initial surface contains a single triangle. This tri-
angle is inserted inté/ and all its edges are inserted into
To find the initial triangle, we select a poipte Q and de-
termine its nearest neighbgre Q. These two points define
the first border edgepq. Among thek-nearest neighbors
of p, we determine the point that maximizes the angle
Zprq. The initial triangleprq is in the Delaunay triangu-
lation of thek-nearest neighbors gf(see [14], Lemma 3).

Once the initial surface has been found, we continue
by removing edges fronl. until it is empty. For each
edgeuwv, we select a poin among thek-nearest neigh-
bors ofu to create a new trianglegv, which is added td{
and L. (We use a 3d-tree built at the start of the algorithm
to identify k-nearest neighbors.)

The number of edges afqv inserted inL varies: it
is zero when the triangleqv fills a hole in H; it is one
whenug or vg are consecutive edges ab in the border
of the current surface; otherwise, it is two. Wheis al-
ready inH, we have to join two connected components of
the border or to split one component in two new connected
components. We determine the pojniising the following
algorithm;

GET_POINT (usv, u, P):
d,, < distance fromu to its nearest neighbor.
d, « distance fromv to its nearest neighbor.
dpmin — min{d,, d,}.
repeat
Cy « set of pointg such that:
(i) the dihedral angle between the triangles) and
utvisin[r — 0,7 + 0];
(i) Triangle utv does not violate the topology @f;
(i) max{d(u,t),d(v,t)} ‘e

if Cp £ 0 then
Determine the sef, of pointsq € Cy with maxi-
mum angleZ u q v.
else

in

0 «— 0+ eo.

finds a new triangle associated to this edge, and updates the until C) # 0 orf > % + &,

current surface. The algorithm maintains a half-edge data

structureH that represents the current surface and aflist

Here,0, 1, ande, are user-defined tolerances.



Condition (i) in this algorithm is based on the theorem
below, which we prove in [14]:

Theorem 1 Let F' be ag, r-samplingof a surfaceS with
r < 1/4. Then the angle between two adjacent restricted
Delaunay triangles sharing an edge is at least 2( 13’; +

arcsin( I/_g: ).

This theorem show that the dihedral angle between
two adjacent restricted Delaunay triangles converges to
as the sampling density increases (that isy as 0). We
start with an initial regiofm — 6,7 + 6] with small ¢ to
determine the set of poirdty in this region that satisfy cri-
teria (ii) and (iii). If Cy is not empty, we find the point
q € Cy with maximum angleZ v g v; otherwise, we in-
creasd by ¢, and repeat the process until we find a pgint
or § gets too large.

Condition (ii) is used to eliminate the pointshat are
interior to H and the points on the boundary &f that
would violate the topology if they were selected. When
the pointt is on the boundary off, we first fit a plandl Figure 4: Triangulations
to the set of points adjacent toin H (the star of ¢t) and
project this start ontdl, resulting in a set of 2d triangl&s.

If these triangles do not form a triangulation, that is, is two Figure 4 shows the triangulated surfaces over the set
edges intersect, then we have a topology violation. of representatives shown in Figure 3.

Condition (iii) is used to determine border edges, and

is based on the following theorem, which we prove in [14]: 2 4 Refinement

Theorem 2 Let F' be a3, r-samplingof a surfaceS with The goal of this step is to refine the initial coarse triangu-

r < 1/3. LetT) = wvt and Ty = uvq be restricted De-  lation into a finer triangulation adapted to the geometry of
launay triangles sharing the edgev. Then, the length  the unknown surface from which the point cloud? was

of the longest edge df; is at most;22-d, whered = sampled.

min{d,, d,} andd, (respectively,) is the distance of, We propose the following method to refine an edge
(respectivelyy) to its nearest neighbor. We compute the middle point of the edge. If this point is

too far from the original point clou@, it is projected onto

This theorem shows that there is little variation be- the moving least squares surface and a new edge is added to
tween the length of the edges of two triangles adjacent toeach adjacent triangle of the edge, dividing each trian-

a interior edge. We observed that the length of edges of thegle into two new triangles. We repeat this process for each
adjacent triangles to a boundary edge are very different.  edge in the original triangulation. The details are discussed

In practice, we have no way to estimateandr, and below.
so we use a predefined valag as the constar®2— and More precisely, for each edge’ we compute its mid-

a pointt is eliminated ifw > . If Cyis pointm = “* and its normal
empty, the edgew is a candidate border edge. @i is
empty for allf testeduwv is a border edge.

If Cy is not empty, we compute the subsef of
pointsg with maximum angle u gv. We justify this cri-
terion as follows: INR?, given a Delaunay trianglevs, its wheren,, andn, are the normals oft andv respectively,
adjacent Delaunay trianglevq is the one with maximum  computed using the local triangulation (star) of each vertex.
angleZ u g v. Although this is a criterion foR?2, we use it Using the set of k-nearest neighbors of. in the
for surfaces because the surface normal varies little in theoriginal points cloud, we minimize the following functional
surface neighborhood of a poiatcontaining the vertex of ~ with respect ta :
the restricted Delaunay triangulation (see [4-6]); in other .
words, we can consider this neighborhood as flat. a = min Z lp—m —t-nn|*= - Z (p—m)-nm,

peEK peEK

Ny+Ny
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Model Clustering | Triangulation| Ref. 1 Ref. 2
Bunny 3.68s 22.48s 2.33s 79s
35933 p 4457 p 8895t 31623t | 107363t
Club 136s 53s 1.11s 3.86s
16864 p 2103 p 4121t 15037t | 51775t
Cactus 0.21s 158s 0.2s 0.68s
3337p 404 p 782t 2776t 9614 t
Cat 0.77 s 6.02s 0.61s 2.06s
10000 p 1244 p 2453t 29257t | 8535t
Dragon 62.43 s 297.8s 27.22s | 58.98s
437645 p| 55694 p 109889 t 361455t| 810367 t

Horse 4.67 s 30.83s 3.17s 10.76 s
48482 p 6164 p 12046 t 42860t | 144828t

Table 1: Results on a 1.8Ghz Pentium 4 with 512Mb of
RAM running Linux (s=seconds, gpoints, t=triangles)

also in the previous figures). Table 1 shows the times (in
seconds) taken in each step of the algorithm and the sizes

(points and triangles) of the result models.
In the clustering step, the typical values for the user-
Figure 5: Refinement defined parameters wetg, .. = 0.005 andn,,;, = 32.
In the triangulation algorithm, we obtain very good results
usinge; = 2.8 for identifying boundary edge8,= 60° for
As in the reduction step, this is interpreted as finding the the initial angle, and, = 15° for the angle step. We also
point on the line throughn in the direction ofn,, that is observed that the ratiﬁw is frequently larger
closest to the original surfac® than3 in the border of the surface.

We usea as a measure of the need of refinement. If The pictures in this paper are available in full size and
« is smaller than some predefined valyave do not refine  color athttp://www.impa.br/ boris/sib2003.html.
the edge; otherwise, we project the paintt- « - n,,, onto
the moving least squares surface, producing the new pointy  conclusion
m = V(Q,m + a - n,) and replace the triangles:v and
buv adjacent touv with the new trianglesima, vima and
umb, vimb, respectively. If the ratio between the length o
the minimum edge and the maximum edge of the triangles
auwv or buw is too small, we do not divide the triangles.

This procedure is applied to all the old edges while
the scalat is larger thare. In the resulting mesh, we flip
the diagonals of each quadrilateral formed by the pairs o
adjacent triangles if the length of one diagonal (the common
edge) is larger than the length of the other diagonal (the
segment joining the opposite vertex).

The final result is a triangulated surface whose vertices
are on the moving least squares approximation surface of<"0Wn surface.
the original points cloud. Figure 5 shows two refinement of AcknowledgmentsThe authors are partially supported by CNPq
the initial triangulations shown in Figure 4. research grants. The authors are members of Visgraf, the com-
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Figure 7: Cactus
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Figure 8: Cat



N
;5"/5?";’!“:',"4".’-‘7

-, N
PSS S e IV
= WA

IR
' el,gﬁyg?gs_v i

e
A

Figure 9: Horse




