

A Sketch-Based Collaborative Design System

ZHE FAN
1 MA CHI

1
 MANUEL M. OLIVEIRA

2

1SUNY at Stony Brook – Department of Computer Science, Stony Brook, NY, 11794-4400, USA

{fzhe, mchi}@cs.sunysb.edu
2UFRGS – Instituto de Informática, Caixa Postal 15064, 91501-970, Porto Alegre, RS, Brasil

oliveira@inf.ufrgs.br

Abstract. We present a system for collaborative conceptual design that allows users potentially located in
geographically distant areas to cooperate by sketching, exploring and modifying their ideas interactively, with
immediate visual feedback. The system supports several modeling primitives and can be easily extended with
user-defined objects. In this context, we introduce the notions of animated and sketchy billboards. Applications
of this system include early stages of urban and landscape design, rapid prototype of virtual environments,
animation, education and recreational use.

1. Introduction

 Sketching is often used during the early stages of
conceptual design when ideas are still unfinished. At this
point, the lack of precision implied by the strokes seems to
increase the tolerance of the initial estimate of shape [12].
As such, sketches are a powerful tool for communicating
ideas among designers and between designers and their
customers. While sketching is traditionally performed
using pencil and paper, the ability to interactively explore
and refine the original thoughts in a collaborative
environment can provide a sense of shared design space,
allowing the easy creation of different versions of the
project and also serving as a valuable teaching tool.
Unfortunately, these benefits cannot be fully exploited
with the use of pencil and paper. CAD systems, on the
other hand, provide considerable editing support, but
usually require accurate descriptions of the models,
making them less attractive for brainstorming. Although
computers can be used to assist in the sketching process
[12, 9, 3], creating 3D models directly from a series of 2D
strokes is not a well-defined problem, usually lending to
undesirable results. As such, just a few applications have
been created that try to mimic the process of sketching 3D
objects and only do so under some constrained conditions
[9, 12].

In some cases, the design task may include
distributed teams and remote clients or consultants. In
these situations, it would be desirable to allow project
members and clients to remotely engage into collaborative
design sessions. In practice, however, distributed design
often degenerates into co-located design, requiring
participants to physically meet in order to overcome the

expressive limitations of traditional communication media,
such as phone, fax, e-mail and videoconferencing [16].

We have designed and implemented a conceptual
design system that supports collaborative work among
groups of users over a network. No artistic skills are
required to effectively use the system, which is
accomplished by providing a graphical interface, a number
of primitives and tools, and a simple mechanism for
extending the set of available primitives. In order to avoid
the difficulties of creating 3D models directly from 2D
strokes, we constrain the use of free-hand sketches to the
creation of 2.5D objects. True 3D objects are built from
3D primitives or imported as polygonal meshes and
rendered using non-photorealistic (NPR) techniques.
Applications of this system include early stages of urban
and landscape design, rapid prototyping of virtual
environments, animation, and educational and recreational
use.

Figure 1. Collaborative design: views of the same scene.
The user on the left sketches the word Hotel on the building
façade (see pointer) and the drawing is immediately
reflected on the view to the right.

We demonstrate the effectiveness of our system by
having users with no specific artistic skills create pleasing
3D environments in just a few minutes. Figure 1 illustrates
this for the case of an urban design. The two images
correspond to the views of two designers, who
independently explore the space but whose modeling
actions become immediately visible to all participants. The
image on the left shows the result of one user handwriting
the word Hotel on the building façade (note the pointer).
On the right, the other designer observes the same building
from a different viewpoint with the letters being projected
with correct perspective.

The remaining of the paper is structured as follows:
Section 2 discusses some related work. Section 3 presents
the architectural details of our system. Section 4 comments
some of the results obtained with the implementation of
the proposed architecture. Section 5 concludes the paper
with a summary and directions for future exploration.

2. Related Work

Computer Supported Cooperative Work (CSCW)
corresponds to the use of computers to support and
enhance the work activities of groups [2, 4]. The technical
aspects involving the design of collaborative systems and
their associated infrastructures are particularly
challenging, especially because most CSCW applications
can potentially support a large number of users. Our
system, on the other hand, is intended for conceptual
design, a creative task involving a relative small number of
concurrent users, which significantly simplifies its design.

Networked virtual environments (net-VEs) are
distributed graphical applications that allow multiple users
to interact in real time, providing a shared sense of space,
presence and time, as well as a way to communicate [7,
11]. The fundamental difference between our system and
net-VEs is our emphasis on design. While most net-VE
systems are intended for long-term exploration, by a large
number of users, we emphasize the collaborative aspects
of design. In this case, small groups create environments
from scratch during interactive sessions.

SKETCH is an interface for creating and editing 3D
sketches of scenes [12]. It is based on the use of simplified
(2D) drawing commands, which are interpreted as
operations to be applied to objects within a 3D world. In
this case, all objects are 3D and rendered in orthographic
views. Like SKETCH [12], our system is oriented towards
rapid creation of approximate representation of
environments. Unlike SKETCH, however, our system is a
distributed application, uses perspective views for
sketching and environment exploration, supports 2D, 2.5D
and 3D objects, and can import and export 3D models

from and to other modelers. NetSketch [16] is an
application based on the SKETCH interface [12] that
supports distributed conceptual design. In spirit, this is the
closest to our work, but scene models are constrained to
the relatively simple shapes that can be created and
rendered using SKETCH. NetSketch uses a peer-to-peer
network topology and cannot always guarantee model
consistency among all users. Our system, on the other
hand, is based on a client-server model, enforcing a
consistent view among all participants. SketchUp [14] is a
conventional 3D modeling application that supports
sketchy-like renderings of the models. It mimics architect
drawings by rendering jittered lines, extended edges and
by using non-photorealistic techniques.

CALVIN [6] is a networked collaborative
environment for designing indoor architectural spaces.
Conceptualy, our system is somewhat similar to it, but
CALVIN was designed to run in a CAVE and requires the
use of VR equipment. Our system, on the other hand, is
based on comodity PCs, uses a much simpler interface
(CALVIN also uses verbal and video communication
channels) and exploits non-photorealistic rendering.

Alice [8] is a prototyping tool for virtual reality
applications that allows the programmer to focus on the
content of the application. Alice is a flexible and
extensible environment, but it requires its users to have
some programming skills. Akeo et al. [1] demonstrated an
interface for creating 3D models from idea sketches. Their
system was targeted towards industrial design and their
goal was to produce as good approximations as possible
from the final object. Teddy [5] is an interface for creating
3D plausible models from 2D sketches of silhouettes. The
resulting freeform models consist of texture-mapped 3D
meshes. Branco, Costa and Ferreira [3] combine 2D
sketches with extrusion and other CSG operations to
create 3D models of simple geometric objects. Tolba,
Dorsey and McMillan [15] showed how a 2D projective
drawing system could be used to mimic 3D-like
capabilities.

3. System Architecture

The number of concurrent users in a collaborative
design session is usually limited to just a few designers
and the rate at which the environment changes is relatively
low. Also, in this kind of application, changes in the
design need to be perceived by the users at interactive
rates, but not necessarily in real time (i.e., delays of up to a
couple of seconds can be tolerated).

The architecture of our system was based on these
observations and consists of a client-server application
over the Internet. Clients (user sessions) connect to a

server using BSD sockets and TCP/IP protocol [13]. The
use of TCP greatly simplified the system’s implementation
due to its reliable communication and ordering semantics.
These benefits more than compensate for the small delay
imposed by its ordering semantics itself. The server is
responsible for maintaining a consistent state of the design
and for forwarding the updates to all clients in the session.
The small number of clients justifies the use of a single
server. In the event of a server failure, clients can keep
exploring their cached copies, save changes to local
databases and later send the updates to the server.

As a user creates a new object, this information is
immediately sent to the server who stores it in a database,
records the object’s ownership, and forwards the update to
all other clients sharing the session. An equivalent
sequence of messages is exchanged when an object is
deleted or modified.

From a user’s viewpoint, the most important part of
the system is its graphical user interface, which is used for
sketching, management and exploration of the resulting
3D environments. The user interface is discussed next.

3.1 User Interface

The system’s interface is logically organized in six
modules, called managers, as shown in Figure 2. Each of
these modules is explained next.

Floor and Viewer Managers: The Floor Manager
provides a top view of the whole environment, allowing
users to immediate locate, select, group, move, delete, add
or re-scale any object in the scene. It consists of a square
(scrollable) grid showing 2D representations of the camera
(position and orientation) and of all objects in the scene
(Figure 3 right). The Viewer Manager provides a
perspective view of the environment from the camera’s
viewpoint, allowing interactive exploration of the scene
(Figure 3 left).

2D Manager: Sketching is performed directly on the
perspective view. As the user sketches on the screen, the
drawing is buffered as a set of 2D line segments, which are
later projected into the 3D environment. First, the
bottommost vertex is projected onto the ground plane,

defining a root point (Figure 4) (a similar technique is
used in [12] to decide where to position an object in 3D).
The coordinates of the new 3D vertices are obtained by
projecting the buffered 2D vertices onto the plane α
passing through the root point and parallel to the camera’s
plane (Figure 4). Finally, the sketch is stored and rendered
as a series of line segments in 3D. As the user walks
through the scene, the sketch is rotated so that it always
faces the viewer. We refer to this kind of objects as
sketchy billboards, which were used to create the trees and
grass shown in Figures 1, 6, 7 and 8.

Support is also provided for sketching directly on 3D
objects. This feature is illustrated in Figures 1 and 3,
where the words Hotel and Block were handwritten on the
building façade and on one side of the box, respectively.
The process is similar to the one just described, but, in this
case, the planes onto which the sketches are projected on
are found by casting rays through the vertices of the
strokes into the scene. The new sketches then become
attributes of the closest intersected faces.

3D Manager: The construction of 3D environments can
be greatly simplified if some 3D primitives are on hand
and if one can take advantage of the arsenal of 3D models
available as polygonal meshes. Our system supports
geometric primitives and polygonal meshes, which are
rendered using NPR techniques. This flexibility allows the
system to both import and export 3D models to other
modelers.

Examples of geometric primitives include boxes,
pyramids, wedges, cylinders, polygons, etc. In order to

 Figure 2. The six modules of the graphical user interface.

Image
Manager

3D
Manager

2D
Manager

Floor
Manager

Interface

Library
Manager

Viewer
Manager

Figure 3. 3D view of the scene (left). Floor manager
(right): The camera is represented as a v-shaped icon.

Figure 4. Mapping 2D sketches into the 3D

give these primitives a sketch-like appearance, we assign
artificial edges to each primitive by subdividing its
original edges into a certain number of segments (this
number is a function of the length of the edge itself) and
applying a random offsets to the internal vertices of the
segments. These artificial edges are then stored with the
original primitives. The rendering consists of drawing the
original primitives without outlines followed by the
rendering of the artificial edges. The rendering of the
original primitives greatly simplifies texture mapping.
This is essentially what is used to render polygonal objects
in SKETCH [12]. Figure 5 shows a side-by-side
comparison of the renderings of some 3D primitives using
conventional OpenGL rendering (left) and the sketchy
rendering procedure described (right). The buildings
shown in Figures 1, 8 and 9 and the farmhouse shown in
Figure 6 were created by texture mapping 3D geometric
primitives. Imported polygonal meshes are rendered using
silhouette and importance edges [10].

Image Manager: It provides a number of important
features, which include animated billboards, user-defined
textures, impostors and background images. A billboard is
a texture-mapped polygon that always faces the viewer,
replacing some amount of 3D geometry. Animated
billboards extend the traditional notion of a billboard by
allowing its associated texture to change over time and are
especially effective for representing amorphous elements,
such as clouds, fire and water, traditionally represented
using particle systems and procedural modeling. In
animated billboards, the individual frames of the
associated animation are cyclically mapped onto the
corresponding polygon. Despite its simplicity, this
technique is quite effective and was used to animate the
water fountain shown in Figure 8 (see the accompanying
video showing the town exploration).

Although any 2D texture can be imported into our
system, it provides some painting features to let users
create and edit their own textures. Such a feature was used
to create the windows of the buildings in town (Figures 1
and 8) as well as the door and window textures used in the
farmhouse (Figure 6). A special color is reserved to
represent transparency, allowing textures to have arbitrary

shapes. Far away geometry can be represented as planar
impostors [17]. This is illustrated in Figure 8 for the case
of the buildings in the back. The system also supports the
use of bitmaps as background images for the
environments. This provides an easy and efficient way to
visually enrich a scene. It also provides a way to represent
and switch between, for example, various times of the day
and different weather conditions. Examples of
backgrounds can be seen in the sky representations used in
images Figures 6 and 8.

The Image Manager also provides other features such
as a simple painting system and tools for image
manipulation. These can be used in combination with
other tools to enhance the quality of the sketches. Figure 7
shows a scene with five instances of the same tree. To
create its leaves, a closed curve was outlined in 2D and
filled in green. Likewise, the trunk was outlined and filled
in brown. Finally, branches and light green lines were
added. The resulting tree model consists of two polygons
(leaves and trunk) and additional lines in 3D (branches
and light lines). Its rendering is performed in a similar way
as other sketch objects, always facing the camera. The tree
was saved in a library and used in the farm scene shown in
Figure 6. The ghost also shown in Figure 7 was created
using the sketching procedure.

Library Manager. The capabilities of the system can be
extended in an easy and flexible way by user-defined
libraries. A library is an arbitrary set of objects supported
by the system and provides a natural way for grouping
related entities and for sharing them with other users.

4. Results

We have implemented the described system
architecture in C++ and OpenGL and used it to create
several virtual environments in a collaborative fashion.

Figure 5. Rendering of 3D primitives. Conventional
rendering (left). Sketchy rendering (right).

Figure 6. Farm scene illustrating the use of several
features available in our system.

The system’s interface contains icons and menus,
simplifying the learning of the system. The support for
several types of objects (i.e., sketches, geometric
primitives, polygonal meshes, animated 3D objects,
conventional and animated billboards, impostors [17],
background images, etc.) provides great flexibility,
reduces the design time and allows users to explore
different possibilities in creative ways. The accompanying
videos were recorded in real-time using a Dell Inspiron
4100 laptop (Pentium III with 1.0GHz, 128 MB of
memory and an ATI Mobility Radeon with 16M of
memory).

Figure 8 shows a farm scene created in less than four
minutes with the support of a library. The construction
process is illustrated in the accompanying videos1. The
house was created using two geometric primitives (a box
and a wedge). The ground is a texture-mapped polygon.
The door and windows (user-defined textures), the cow

(polygonal mesh), the tree (sketchy billboard), the sky
(bitmap) and the fan of the windmill (animated object)
were imported from a library. The flowers are sketchy
objects created and replicated by the user. User-defined
textures provide a powerful mechanism for design
customization. For example, by changing the textures used
in the door and windows of the farmhouse, a completely
new design can be achieved.

Figures 8, 9 and 10 were obtained during a tour
through a town model sketched using our system. In this
case, all objects, with the exception of the water fountain
(animated billboard) and the statue (3D mesh available as
part of a library), were created from scratch. Two users
worked in remote collaboration finishing the project in
about four hours. Most of this time was spent on
experimenting with different design possibilities, such as
positions and sizes of the buildings, texture selection and
design of new textures. The brick textures used in the hotel
building and on the sidewalks, and the water texture used
in the pool were found on the web; the remaining textures
were hand-drawn. For a more experienced designer, with
an initial plan for the scene and with all textures available,
the modeling of the town could have taken approximately
twenty to thirty minutes.

Figure 1 illustrates the concurrent exploration of the
design space by different users. As one designer modifies
the scene (writes on the building façade), the effect is
immediately reflected in the other user’s view.
Alternatively, users can independently create different
parts of a project locally (using the client application
without connecting it to a server) and integrate them later
during a joint review. Figure 11 shows the concurrent
exploration of the farm scene by two users.

1 Available at http://www.inf.ufrgs.br/~oliveira/sketch_
videos.zip

Figure 8. View of Sketchy Town. The water fountain on
the right is an animated billboard. The buildings in the back
are impostors.

Figure 9. Urban design created with our system.

Figure 7. Sketch of a ghost mapped on a scene
containing five instances of the same tree.

Figure 12 shows an Egyptian scene illustrating the
versatility of our system. The pyramid on the right was
created by piling up seven texture-mapped blocks. The
two small pyramids are texture-mapped geometric
primitives (pyramids). The trees and the cactus are
sketched objects. The camel and the sphinx are impostors
(i.e., polygons mapped with textures containing
transparent texels). The ground and the background are
two separate textures. All these textures were obtained
from different sources on the web. The time to create this
environment was approximately twenty minutes, including
the downloading time.

5. Summary and Future Work

We have described the design and implementation of
a new collaborative system for conceptual design that
allows users potentially located in geographically distant
areas to cooperate by sketching, exploring and modifying
their ideas interactively, with immediate visual feedback.
The system can be potentially used for urban and
landscape design, rapid prototyping of virtual
environments, animation, education and recreational use.

Despite the fact that our system is built on top of
several known techniques, it is unique in combining them
to support collaborative design using a sketch-based
interface that provides perspective-correct views of the
scenes. Moreover, it demonstrates that scene design can be
performed in collaborative virtual environments.

At the current stage of the project, the users of our
system are not professional designers. As such, we still
need to address several important questions. For example,
can our system change the way designers collaborate?
How supportive will the system actually be without a
plan? Can it significantly reduce the need for co-located
design? We intend to carry out studies with real designers
(instructors and students of the architecture and urbanism
department at UFRGS) and evaluate their level of
satisfaction. Feedback from these real users will help us to

improve the system.

 Our current prototype has some limitations. For
instance, it provides no awareness of the presence of other
users in the environment if they are not performing any
noticeable actions. This, however, can be easily fixed by
notifying all participants every time somebody logs in or
logs out the server. Another aspect that deserves more
attention is how sudden events, such as deletion (move) of
an object are perceived by other participants. LaViola et
al. [16] present a discussion some ways for handling these
events.

Our system has been tested in a local area network.
While design teams are usually located in close proximity,
the full potential of our system can be realized over the
Internet by supporting true remote collaboration. Thus,
studies are also necessary to measure the possible impact
of network latency on the users’ ability to perform
collaborative work. Notice, however, that design, as
opposed to games, only requires interactive, not real-time,
update rates.

Informal experiments have shown that pre-school
children are attracted by the cartoon-like renditions of our
system. The control over the construction and exploration
of virtual environments seems to provide a powerful tool
for creative storytelling.

Figure 10. View of the town from the side of the
Hotel.

Figure 11. Concurrent exploration of the farm scene.

Figure 12. Egyptian Scene combining texture-mapped
objects, sketches and impostors.

References

[1] M. Akeo, et. al. Computer Graphics System for
Reproducing Three-Dimensional Shape from Idea
Sketch. Computer Graphics Forum 13(3):477-488,
1994.

[2] Trends in Software: Computer Supported Co-operative
Work. John Wiley & Sons, 1999.

[3] V. Branco, A. Costa and F. Ferreira. Sketching 3D
Models with 2D Interactive Devices. Computer
Graphics Forum 13(3): 489-502, 1994.

[4] J. Grudin. CSCW. Communications of the ACM, Vol.
34, No. 12, December 1991, pp. 30-34.

[5] T. Igarashi, S. Matsuoka and H. Tanaka. Teddy: A
Sketching Interface for 3D Freeform Design.
SIGGRAPH’99, pp. 409-416.

[6] J. Leigh, A. Johnson, C. Vasilakis, C., T. DeFanti.
Multi-Perspective Collaborative Design in Persistent
Networked Virtual Environments. IEEE VRAIS 1996,
pp 253-260, 271-272.

[7] M. Macedonia et al. NPSNET: A Network Software
Architecture for LargeScale Virtual Environment.
Presence 3 (4): 265-287, 1994.

[8] R. Pausch et al. Alice: A Rapid Prototyping System
from Virtual Reality. IEEE CG&A, 15(3): 8-11, May
1995.

[9] D. Pugh. Designing Solid Objects Using Interactive
Sketch Interpretation. Proceedings of I3D 1992, pp.
117-126.

[10] R. Raskar and M. Cohen. Image Precision Silhouette
Edges. Proceedings of I3D 1999, pp. 135-140.

[11] S. Singhal and M. Zyda. Networked Virtual
Environments: Design and Implementation. Addison-
Wesley, 1999.

[12] R. Zeleznik, K. Herndon and J. Hughes. SKETCH: An
Interface for Sketching 3D Scenes. ACM SIGGRAPH’96,
1996, pp. 163-170.

[13] W. Richard Stevens, TCP/IP Iluustrated. Vol. 1, The
Protocols. Reading, MA, Addison Wesley, 1994.

[14] SketchUp. www.sketchup.com.
[15] O. Tolba, J. Dorsey and L. McMillan. A Projective

Drawing System. Proceedings of I3D 2001, pp. 25-
34.

[16] J. LaViola et. al. Collaborative Conceptual Modeling
Using the SKETCH Framework. Proceedings of the
IASTED International Conference on Computer
Graphics and Imaging, 154-157, 1998.

[17] P. Maciel and P. Shirley. Visual Navigation of Large
Environments Using Textured Clusters. Proceedings
of the 1995 ACM Symposium on Interactive 3D
Graphics, pp. 95-102.

