

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

A service based estimation method for MPSoC performance modelling

Tranberg-Hansen, Anders Sejer; Madsen, Jan; Jensen, Bjørn Sand

Published in:
2008 International Symposium on Industrial Embedded Systems

Link to article, DOI:
10.1109/SIES.2008.4577679

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Tranberg-Hansen, A. S., Madsen, J., & Jensen, B. S. (2008). A service based estimation method for MPSoC
performance modelling. In 2008 International Symposium on Industrial Embedded Systems (pp. 43-50). IEEE.
https://doi.org/10.1109/SIES.2008.4577679

https://doi.org/10.1109/SIES.2008.4577679
https://orbit.dtu.dk/en/publications/0b801f72-b65f-4c54-9240-820c98e0285c
https://doi.org/10.1109/SIES.2008.4577679

A Service Based Estimation Method for MPSoC
Performance Modelling

Anders Sejer Tranberg-Hansen and Jan Madsen
Technical University of Denmark

DK-2800 Kgs. Lyngby, Denmark
e-mail: {asth,jan}@imm.dtu.dk

Bjørn Sand Jensen
Bang & Olufsen ICEpower a/s

DK-2800 Kgs. Lyngby, Denmark
http://www.icepower.bang-olufsen.com/

Abstract— This paper presents an abstract service based
estimation method for MPSoC performance modelling which
allows fast, cycle accurate design space exploration of complex
architectures including multi processor configurations at a very
early stage in the design phase. The modelling method uses a
service oriented model of computation based on Hierarchical
Colored Petri Nets and allows the modelling of both software
and hardware in one unified model.

To illustrate the potential of the method, a small MPSoC sys-
tem, developed at Bang & Olufsen ICEpower a/s, is modelled and
performance estimates are produced for various configurations of
the system in order to explore the best possible implementation.

I. INTRODUCTION

In order to address the challenges associated with the
increasing architectural design complexity seen in modern
VLSI systems, methods for early and accurate design space
exploration are needed, allowing evaluation and selection of
the best possible configuration of a given system without
compromising the overall time-to-market of the system.

This paper presents an abstract hardware/software modelling
and performance estimation method for performing design
space exploration of MPSoC systems. The method allows
MPSoC designers to model and analyze hardware and software
components of a system and their interaction, using a unified
service-based modelling approach at a very early stage in the
design phase. The method, outlined in figure 1, is simulation-
based and uses a service oriented model of computation which
is based on a modified version of Hierarchical Colored Petri
Nets (HCPN) [1].

Performance estimation is done at system level using system
models. A system model of an MPSoC system is constructed
by mapping the contents of one or more application mod-
els onto the processing elements of a platform model. The
platform model of the target architecture is composed of
one or more component models, each modelling a hardware
component of the target architecture e.g. a processing element,
a memory element, a functional unit, an inter-connection
structure, etc. Component models are implemented as service
models [2], modelling the behaviour of the actual hardware
component through the availability of a set of services. An
application model, thus, represents the behaviour of an ap-
plication by requesting a sequence of the services offered by

Application
Analysis

Architecture
design

Application

Platform
 Model

System
Model

Application
Model

Component
 Models

Component Library

To implementation &
synthesis

Mapping

System
Evaluation

Results

System Level
Simulator

Fig. 1. Overview of the proposed modelling and performance estimation
method.

the service model of the processing element onto which the
application is mapped.

The simulation of a system model makes it possible to
produce detailed information regarding the runtime properties
of the applications and of the specified platform, e.g. execution
profiles, resource utilization, stalls and their causes, memory
usage, communication channels, etc. and so can direct the
designer to the elements of the system which ought to receive
special attention.

The advantages of the modelling method presented in this
paper are the flexibility, the refinement possibilities of models,
and the high level of accuracy which is obtainable. Service
models have well defined interfaces and together with the
hierarchical composition properties inherited from HCPNs it
is possible to combine models described at different levels of
abstraction into one model, allowing a gradual refinement of
the details of a model, or interchanging models, in order to
investigate different implementations.

978-1-4244-1995-1/08/$25.00 ©2008 IEEE. 43

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10, 2009 at 03:14 from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Several MPSoC modelling and performance estimation
methods and frameworks for performing design space explo-
ration exist e.g. [3], [4], [5], [6], [7].

MPSoC simulation methods supporting mixed abstraction
level co-simulations and a step-by-step refinement of models,
such as the method presented in this paper, have been seen
recently, e.g. Metropolis [3] which aims to provide a frame-
work in which models can be described at multiple levels of
abstraction and gradually refined. It allows multiple models
of computations to co-exist within the framework by defining
common communication semantics which allow the different
models to communicate.

Trace driven simulation methods, in which applications are
modelled by the generation of event traces, is found, e.g., in
the Artemis [6] sub-project Sesame [8]. Each event represents
some kind of behaviour found in the application, and the
resources required to execute the behaviour is modelled when
the event is evaluated by an architecture model. The method
presented in this paper represents applications by a sequence
of service requests very similar to event traces and thus, to
some extent, the method can be categorized as a trace driven
method.

HCPNs, which are used as the model of computation in the
current method, are extremely powerful, flexible and mathe-
matically well defined. Thus, they are used in a number of
applications [1]. However, the use of HCPNs for detailed co-
simulation is rather limited in both the academic and industrial
worlds. This is due to the complexity required of capturing the
detailed behaviour of e.g. a processor pipeline in HCPNs.

[9] presents an approach for performance estimation of
pipelined processors and cycle accurate instruction set simu-
lator generation. However, their goal is to develop fast instruc-
tion set simulators and they focus on pipelined processors only.

Service models are presented as part of a modelling and
performance estimation framework in [2]. The basic idea of
service models is very intuitive from a hardware designer’s
point of view and it is a very appealing method of modelling
hardware/software co-design problems. However, service mod-
els are only intended for modelling a single top level hardware
component and, thus, cannot be used for modelling MPSoC
systems. This issue is addressed in the method presented in
this paper and the basic service model approach is extended,
making service models usable in the current context.

III. SYSTEM MODELLING AND PERFORMANCE
ESTIMATION

This section will introduce the elements of which the
method is composed and explain how performance estimation
is carried out allowing MPSoC designers to perform early and
accurate design space exploration.

A. Service models

A Service model is an abstract model of a hardware
component modelling the behaviour of the component by a
set of services. Depending on the level of abstraction used to

describe the service model, a service can represent anything
from the execution of a task or a function to arithmetic oper-
ations or actual instructions. The service model defines which
services are provided, how their behaviour is implemented and
how long time a service needs to execute.

Service models are composed of a service model interface
and a service model implementation. The service model in-
terface provides a uniform interface which all service models
must implement. The unified interface simplifies the control of
the service model during simulation. The detailed behaviour
and function of the hardware component being modelled is
implemented by the service model implementation.

Before conceptually introducing service models, it should
be noted that service models are implemented as a special
type of HCPNs. Without going into the details of HCPNs, the
major difference is that in order to model hardware, a special
type of execution semantics is needed.

In the current implementation only synchronous hardware
consisting of a single clock domain can be modelled. However,
the type of hardware that can be modelled is determined by
the execution semantics employed. Support for multiple clock
domains, as well as asynchronous components, can be added
simply by changing the execution semantics.

In order to model the occurrence of a global clock event
in HCPN terminology, the maximum step is always chosen to
occur. The maximum step corresponds to the largest obtainable
step size, i.e. the maximum possible number of enabled
transitions is contained in the step.

+- -

g1

yHP(n)

+

g2

Z-1

yBP(n)

yLP(n)

Z-1

x(n)

Fig. 2. Structure of a SVF filter. yHP (n),yBP (n) and yLP (n) denotes
high pass, band pass and low pass outputs respectively.

The basic concepts of service models will be introduced by
considering a small application-specific processor developed
at Bang & Olufsen ICEpower a/s, referred to as the SVF
processor. The SVF processor is a synchronous fixed point
processor having an instruction set designed to be optimized
for running applications composed of state variable filter
structures (SVF) [10]. SVF filter structures, illustrated in
figure 2, are ideal for systems where simple relations between
filter coefficients and pole placement are desired, such as in
embedded parameterized systems.

The instruction set of the processor consists of eighteen
instructions only and has a very shallow pipeline as illustrated
in figure 3. All instructions are executed during three clock
cycles, except for the dedicated SVF instruction which is im-
plemented using four clock cycles due to the complexity of the
instruction. The SVF processor also implements a simple CSP-
like protocol used for inter-processor communication [11].
In this protocol, send and received commands are used to

44

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10, 2009 at 03:14 from IEEE Xplore. Restrictions apply.

IF ID/OF

EX /
WB

SVF1
SVF2 /

WB

Fig. 3. Block diagram of the SVF-processor pipeline. IF = Instruction fetch
stage, ID/OF = Instruction decode / Operand fetch stage, EX/WB = Execute
and write back stage, SVF1 = First half of state variable filter calculation and
finally SVF2/WB = Second half of state variable filter calculation and write
back of results.

exchange data between processors. Receive commands are
blocking i.e. the pipeline stalls until data from the specified
source has been received. Send commands are non-blocking
as long as the transmit buffer of the interface is not full.

T

1

Service Requests

Services

(S)

(S, A, R)

(S, A, R)

(S)

Service Done

S = Service

A = ArgumentList

R = RequestNumber

NOP, ADD, SUB, MUL, SVF, ADDI,
SUBI, SLL, SRL, BEQ, BNE, JMP,
SEND, RECV, WSMP, RSMP, LW, SW

Fig. 4. Service model interface of the SVF processor. Note the service tokens
representing the instruction set of the processor which are initially placed in
the Services place.

1) Service model interface of the SVF processor: The
service model interface, implemented by all service models,
defines three places: Service Requests, Services and Service
Done, a single transition T1 as well as the four connections
i.e. arcs shown in figure 4.

The instructions of the SVF processor is represented by a
number of services and initially, one token for each service
provided is put in the place Services, e.g. one token represent-
ing addition ADD, another token representing multiplication
MUL and so on. The services are essentially the only elements
of the service model interface which differs between the
service model interface of different service models.

During the simulation of a service model, a service is
requested by placing a service request token in the place
Service Requests. A service request specifies the requested
service, an optional empty list of arguments and a unique
request number used to identify the service request used by
the simulation engine e.g. to annotate the execution time of
the service request. The argument list can be used to provide
input arguments to the implementation of a service or to allow
the modelling of data operand dependencies by letting the
arguments specify one or more data operands that must be
present before the service can be executed.

If the requested service is available in the Services place,
the transition T1 becomes enabled and is allowed to fire in the
next simulation cycle: i.e. the transition is enabled. During a
simulation cycle, all concurrently enabled transitions are fired
corresponding to the modelling of a global clock event.

When the transition T1 fires, the service request token from
the Service Requests place and the corresponding service
token from the Services place is consumed. The firing of
the transition produces a new service token - of the type
that was just consumed - in the Services place indicating
that the model is ready for executing the same service again
in the next simulation cycle. Furthermore, a service request
token is produced in the Service Done place, having the same
arguments as the service requests consumed including the
unique request number which identifies the service request.
The arrival of the service request in the Service Done place
indicates the completion of the service request.

Thus, at this level of abstraction, all instructions complete
in one cycle which does not resemble the behaviour of the
actual SVF processor pipeline. It is therefore necessary to
refine the model by substituting the transition of the service
model interface with the service model implementation of the
SVF processor described in the following section.

2) Service model implementation: In order to model the
behaviour, i.e. the function and the correct execution time,
of the instructions of the SVF processor, the pipeline of
the processor is modelled by a number of places, arcs and
transitions as shown in figure 5. The places containing I, O
or I/O marks, represent input, output or input/outputs of the
service model implementation. The figure also illustrates how
conditional arc expressions are used to route the tokens to the
correct places of the model, such that e.g. the SVF instructions
are modelled as completing in four clock cycles as opposed to
the remaining instructions which complete in three cycles. The
implementation of the function of the instructions modelled is
done by associating actions with the transitions of the service
model implementation. The actions are executed when the
transitions are allowed to fire. These, however, are not shown
in the figure.

The CSP-like inter-processor communication interface im-
plemented by the SVF processor, is modelled by the two places
RX and TX respectively. The firing of transition T2 only
produces a service request token in the TX when executing a
SEND service request due to the conditional arc expression,
modelling that data are being placed in the transmit queue.
The argument list of the SEND service request specifies the
data being transferred as well as the sender’s source address
and the receiver’s destination address.

Similarly, the firing of T3 is only affected when a RECV
service request is being executed. T3 then requires that a
service request token is available in the RX place having the
source address specified by the argument list of the RECV
service request as well as the correct destination address. If
this is not the case, the transition will not become enabled
until this condition becomes true, modelling a blocking read
causing the pipeline to stall.

In order to model finite transmit and receive buffers, of the
inter-processor communication interface, additional conditions
can be specified associated with the transition T2 and T3 and
the places TX and RX, preventing the transitions from being
enabled if the transmit or receive buffers respectively, are full.

45

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10, 2009 at 03:14 from IEEE Xplore. Restrictions apply.

T
2

T
3

T
4

(S, A, R) (S, A, R) (S, A, R) (S, A, R)

(S, A, R)(S, A, R)

IF(S=SVF){ (S, A, R) }

IF(S!=SVF){ (S, A, R) }

Service Done

IF(S=SEND){ (S, A, R) }
ELSE{ EMPTY }

IF(S=RECV){ (S, A, R) }
ELSE{ EMPTY }

RX

TX

O

I

O

T

1

Service Requests

Services

(S)

(S, A, R)

(S)

S = Service

A = ArgumentList
R = RequestNumber

NOP, ADD, SUB, MUL, SVF, ADDI,
SUBI, SLL, SRL, BEQ, BNE, JMP,
SEND, RECV, WSMP, RSMP, LW, SW

I

I/O

Fig. 5. Service Model implementation of the SVF-processor.

The service model implementation substitutes the T1 tran-
sition of the service model interface and the places Service
request, Services and Service done are connected to the
corresponding places of the service model interface. Thereby,
a refinement of the original model is obtained in which the
instructions are carried out in the correct number of clock cy-
cles, making the model cycle accurate. The places RX and TX
are the input and output of the inter-processor communication
interface being modelled, and allow the service model of the
SVF processor to be connected to other service models.

Thus, to summarize, the basic structure of the service model
implementation dictates the timing and concurrency properties
of the SVF processor model. However, the actual behaviour
of a service is implemented by associating actions with the
transitions of the model. If transition actions are combined
with the possibility of adding arguments to the service requests
using the argument list, the actual behaviour or operation of
the service can be implemented in the model allowing e.g.
the implementation of an actual addition of two values, or the
possibility of modelling data operand dependencies, etc. This
emphasizes the great potential of the method with respect to
flexibility and accuracy. It is actually possible to refine models
to a level where they can be used for e.g. cycle accurate
instruction set simulators if needed.

B. Platform Models
A major limitation of the service model approach presented

in [2] in the context of MPSoC modelling is that it only
focuses on the modelling of a single top component, e.g.
a single processor, and thus, it does not define any means
for modelling multi-processor architectures. In order to be
able to model multi-processor architectures, and the inter-
processor communication, it is necessary to define a new
type of model. This is done by introducing the concept of a
platform model. The platform model is used to model hardware
architectures and is composed of one or more component
models implemented as service models, each modelling a
hardware component of the target architecture e.g. a processor,
a functional unit, memory etc. Furthermore, the platform
model specifies how the component models are interconnected.
In this way the platform model can represent arbitrary target
architectures including multi-processor systems.

In order to allow two or more service models to be
connected to each other, the service model must define one

or more input, output or input/output places. An input and
an output place of two different service models can then be
connected to each other forming one logical place, enabling
the two service models to communicate by exchanging tokens.

There are no restrictions on how inter-component commu-
nication is modelled, thus, in principle, all types of inter-
component communication methods are supported. As an
example, the service model of the SVF processor, which
implements a model of a CSP-like interface for inter-processor
communication, is used. The model of the interface allows the
SVF service models to perform inter-component communica-
tion either using point-to-point connections or using some kind
of inter-connect structure such as a bus or network-on-chip.

To illustrate the use of platform models, a small MPSoC
system, developed at Bang & Olufsen ICEpower a/s, is consid-
ered which consists of four SVF processor models connected
via a shared bus, as illustrated in figure 6. Each processor is
assigned a unique address which identifies the processor on
the bus.

P1 P2 P3 P4

BUS

Fig. 6. Example of a simple MPSoC platform consisting of four SVF
processors connected using a bus-based interconnect structure.

The bus is a shared resource implying that only one of the
processors can access the bus at a time. In this simple example,
a simple priority scheme is modelled which gives priority to
the processor with address 0, then address 1 and so on. This
is done using transition actions. There are no upper limits on
the number of processors which can be connected to the bus.
In this example a bus transfer is modelled to be performed
during one simulation cycle, thus the service model of the
bus, consists of the service model interface, shown in figure
7, only.

The TX output place of each SVF processor service model
instance is connected to the Service Request place of the
bus service model. Similarly, the output Service Done of
the bus service model is connected to each of the RX input
places of the SVF processor service model instances. Thereby,

46

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10, 2009 at 03:14 from IEEE Xplore. Restrictions apply.

T
1

Service Requests

Services

BUS

(S)

(S, A, R)

(S, A, R)

(S)

Service Done

S = Service

A = ArgumentList

R = RequestNumber

Fig. 7. The service model interface of the bus service model.

the four SVF processor service model instances are able to
communicate with each other via the bus service model,
modelling the interconnect structure. By changing the bus
model to a model of e.g. a network-on-chip or using point-
to-point connections, various inter-processor communication
schemes can easily be investigated.

C. Applications

In order to perform useful design space exploration, it is
vital for the modelling method that it can capture the behaviour
of the applications running on the hardware architecture
being modelled. In the method presented, applications are
represented by an application model which is specified as a
list of service requests, each requesting a service offered by
the execution platform onto which the application has been
mapped.

Service requests can be implemented at various levels
of abstraction ranging from the most abstract case, as the
request of a function over arithmetic operations, to instructions
and actual machine code, if desired. This property gives
the modelling approach a high degree of flexibility and the
interpretation of the service requests is directly determined
by the implementation of the service model on which the
application runs. The use of service requests implies that there
are no constraints on the type of applications supported, as
long as an entity capable of translating the application into a
list of service requests exists and that the services requested
are provided by the platform which executes the application.

The method used does not infer any restrictions on the
process of converting an application into an application model
implemented as list of service requests. Thus, an application
can either be translated by a compiler, by a simple translator
capable of translating the output of an existing compiler into
a list of service requests or lastly by hand. Similarly, the
mapping of an application model to the processing elements
of a platform model can be done manually or by a compiler
depending on the implementation and the choice of the de-
signer. This implies that the method presented can also be used
for design space exploration within compiler technologies and
mapping policies.

In the context of the SVF processor in focus, applications
are specified at algorithm block level graphically, and mapped
manually to the processors of the platform model. A custom
developed compiler then compiles the application into a list
of ordered service requests for each SVF processor model of
the platform.

D. Performance Estimation

This section describes how performance estimation is car-
ried out using system models. A system model is composed
of an application mapping and a platform model.

Figure 8 shows an overview of the performance estimation
method.

Results

Man
ager

Man
ager

Man
ager

Active
Models

Passive
Models

Simulation Engine

System Level
Simulator

System
Model

Fig. 8. Performance estimation based on the simulation of System Models.

The overall control of the performance estimation method is
concentrated in the entity referred to as the Simulation Engine.
However, the task of the Simulation Engine is rather simple
and it basically controls the platform model by e.g. issuing
initialization and cycle increment commands corresponding to
the tick of a clock in a synchronous system.

The individual component models of which the platform
model is composed are divided into two groups. The first group
contains the models representing processing elements i.e.
models capable of executing applications. These are referred
to as active models and each have an associated manager
responsible for requesting the services specified by the ap-
plication mapped to the processing element being managed.
The task of the manager can thus be compared to a scheduler.
However, in most cases the task of the manager will be quite
trivial because the list of service requests to be requested
is generated during the compilation of the application prior
to runtime. Furthermore, the manager is also responsible of
extracting and annotating the execution time of each service
request of the application when it has been executed. The
second group of models are referred to as passive. These are
the models which do not execute applications directly e.g.
bus or memory models. The passive service models provide
their services to other service models and thus do not have a
manager associated.

The process of a simulation is as follows:
1) At initialization, the initial marking of all models are

loaded to prepare the platform model for simulation and
the individual managers initialize the applications that
are mapped to the service model with which the manager
is associated.

2) The managers of the active models checks if the Service
Requests places of the service model interface of the
service model they manage is empty, implying that a
service request can be requested. If this is the case, and
the manager has unrequested service requests left, the
next service request is requested.

3) All transitions are now checked for enablement. The set
of enabled transitions are fired consuming and producing
the tokens specified by their implementation.

47

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10, 2009 at 03:14 from IEEE Xplore. Restrictions apply.

hSVF1,BP(n)

k1

x(n)

hSVF2,BP(n)

+

k2
hSVF5,BP(n)

k5

y(n)++

hSVF3,BP(n)

+

k3
hSVF4,BP(n)

+

k4

Fig. 9. Block diagram of the 5-band cascaded equalizer example application.

4) The managers remove all service requests from the
Service Done places and annotate these with the current
simulation cycle.

5) The simulation engine increments the simulation cycle
and step 2 to 5 is repeated.

The managers of the active models thus collect information
about the execution time of the applications running on the
platform. In order to extract other runtime information, such
as memory usage, resource occupancy, stalls and their causes,
etc., it is possible to associate custom event loggers with
the individual models. Thereby, the designers of the model
can determine which properties should be logged, and the
method, thus, does not limit the type of properties which can
be extracted.

The performance estimation method presented is closely
related to the execution of applications on the actual hard-
ware architecture. The accuracy of the performance estimation
method is therefore directly dependent on the level of details
included in the models of which the platform models are
composed. The modularized structure of the performance
estimation method makes it quite easy to extend or refine the
different elements and also implies that not only design space
explorations can be performed on algorithm or architecture
level, but also that e.g. the importance of compiler technology
can be explored using the proposed framework.

IV. EXPERIMENTAL RESULTS

In order to illustrate the use of the performance estimation
method, a 5-band equalizer application from the algorithm
portfolio of Bang & Olufsen ICEpower a/s is considered. The
5-band equalizer, illustrated in figure 9, is implemented as
five cascaded band pass filters, each implemented by a state
variable filter (illustrated in figure 2). The five filter blocks are
identical in structure differing only by their filter coefficients.

The use of state variable filters makes the 5-band equalizer
application ideal to implement using one or more of the SVF
processors described in previous sections. To find the best pos-
sible platform for the application, a number of configurations
are considered including various multi-core configurations.
However, the exact configuration of the processor or the
optimal number of processors and the inter-connection scheme
are not straightforward to determine.

A number of variants of the example platform model
described in section III-B have been produced ranging from
a single processor platform to multi-core configurations of
up to five processors (SVFxX - X denotes the number of
SVF processors used in the configuration). The effect of
being able to perform forwarding of data operands is also

investigated through three different versions of the SVF pro-
cessor model: SVF#NOForward, SVF#Forward and SVF#Impl.
SVF#NOForward is modelled without forwarding capabilities,
the SVF#Forward version with full forwarding capabilities,
and lastly the SVF#Impl version is modelling the actual
hardware implementation. The three types of models are all
based on variants of the SVF processor model introduced
in the previous sections. The differences between these are
modelled by the actions associated with the transitions of the
models. Furthermore, two different inter-connection schemes
are investigated. The first (SVFx1-SVFx5) is based on direct
point-to-point connections between the processors and the
second (SVFx4@BUS and SVFx5@BUS) scheme is bus based.

The 5-band equalizer application, is divided into five sub-
applications (one for each band) which can be mapped individ-
ually to the processors of the platform. When the applications
have been mapped, they are compiled into one or more lists
of service requests, one for each processor of the platform. In
the configurations with multiple SVF processors, the mapping
of the 5-band equalizer is done so that it is as balanced as
possible e.g. for the configuration with three SVF processors,
the five sub-applications are mapped as 2-2-1 etc.

TABLE I
LATENCY AND THROUGHPUT IN CYCLES PER DATA SAMPLE FOR

DIFFERENT ARCHITECTURES MODELLING AN SVF PROCESSOR without

FORWARDING (SVF#NOForward), with FORWARDING (SVF#Forward) AND

AS THE ACTUAL HARDWARE IMPLEMENTATION SVF#Impl.

Latency Throughput
SVF#NOForward SVFx1 33 33

SVFx2 35 21
SVFx3 37 15
SVFx4 39 15
SVFx5 41 9
SVFx4@BUS 45 15
SVFx5@BUS 49 9

SVF#Forward SVFx1 17 17
SVFx2 18 11
SVFx3 19 8
SVFx4 20 8
SVFx5 21 5
SVFx4@BUS 26 8
SVFx5@BUS 29 5

SVF#Impl SVFx1 27 27
SVFx2 28 17
SVFx3 29 12
SVFx4 30 12
SVFx5 31 7
SVFx4@BUS 36 12
SVFx5@BUS 39 7

Table I shows the latency and throughput per sample for the
different configurations and table II shows detailed information

48

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10, 2009 at 03:14 from IEEE Xplore. Restrictions apply.

TABLE II
UTILIZATION AND CAUSE OF STALLS DURING DESIGN EXPLORATION OF THE DIFFERENT CONFIGURATIONS OF THE PLATFORMS RUNNING THE 5-BAND

EQUALIZER APPLICATION. R-stalls DENOTE RECEIVE STALLS EXPERIENCED WHEN A PROCESSOR NEEDS DATA FROM ANOTHER PROCESSOR, D-stalls

DENOTE DATA DEPENDENCY STALLS CAUSED BY MISSING FORWARDING CAPABILITIES.

SVF#NoForward SVF#Forward SVF#Impl
Configuration Utilization R-stalls D-stalls Utilization R-stalls D-stalls Utilization R-stalls D-stalls
SVFx1 P1 52.4% 0% 100% 100% 0% 0% 63.0% 0% 100%
SVFx2 P1 52.3% 0% 100% 100% 0% 0% 64.8% 0% 100%

P2 37.6% 48% 52% 72.3% 100% 0% 46.7% 56% 44%
SVFx3 P1 53.4% 0% 100% 100% 0% 0% 66.8% 0% 100%

P2 52.6% 3% 97% 99.3% 100% 0% 66% 3% 97%
P3 32.7% 61% 39% 61.8% 100% 0% 40.9% 72% 28%

SVFx4 P1 53.4% 0% 100% 100% 0% 0% 66.8% 0% 100%
P2 33.1% 61% 39% 62.3% 100% 0% 41.4% 72% 28%
P3 32.8% 61% 39% 62.0% 100% 0% 41.3% 72% 28%
P4 32.6% 62% 38% 61.8% 100% 0% 40.9% 72% 28%

SVFx5 P1 55.6% 0% 100% 100% 0% 0% 71.4% 0% 100%
P2 55.1% 2% 98% 99.6% 100% 0% 71.0% 2% 98%
P3 54.7% 4% 96% 99.2% 100% 0% 70.6% 4% 96%
P4 54.3% 5% 95% 98.8% 100% 0% 70.2% 6% 94%
P5 53.8% 7% 93% 98.4% 100% 0% 69.8% 8% 92%

SVFx4@BUS P1 53.4% 0% 100% 100% 0% 0% 66.8% 0% 100%
P2 33.0% 61% 39% 61.3% 100% 0% 41.3% 72% 28%
P3 32.8% 61% 39% 62.2% 100% 0% 41.0% 72% 28%
P4 32.3% 62% 38% 61.8% 100% 0% 40.8% 73% 27%

SVFx5@BUS P1 55.6% 0% 100% 100% 0% 0% 71.4% 0% 100%
P2 55.0% 2% 98% 99.4% 100% 0% 70.9% 3% 97%
P3 54.5% 5% 95% 98.8% 100% 0% 70.4% 5% 95%
P4 53.9% 7% 93% 98.2% 100% 0% 69.8% 8% 92%
P5 53.4% 9% 91% 97.6% 100% 0% 69.2% 10% 90%

of the simulations regarding the utilization of each processor of
the different architectures as well as the distribution of stalls.
The utilization is defined as the cycles in which the processor
is not idle or stalled, i.e. the period where actual application
execution is performed. The processors of the simulations,
however, are executing infinite loops and, hence, they are never
idle. The processors are thus either executing application code
or stalled.

As can be seen in both table I and II, not being able to
forward data has a severe performance impact when executing
the 5-band equalizer application. This is due to the sequential
nature of the application which requires operations on a series
of intermediate results in sequence.

Table I shows that using the MPSoC configurations corre-
sponds to a high level pipelining of the equalizer application
increasing the throughput at the cost of a larger latency per
sample.

Independently of the number of processors of the platform,
it can be seen from table II that the best utilization of the pro-
cessors is obtained when a balancing of the number of appli-
cations executed per processor can be achieved, corresponding
to balancing the work when pipelining a combinatorial circuit.
Thus, in terms of utilization, one should either use a single
processor system or a system consisting of five processors.

To obtain the optimal SVF processor in terms of utilization
and throughput when executing the 5-band equalizer applica-
tion, forwarding should be implemented for all data operands
as can be seen from the results of SVF#Forward in table
II. However, this is not possible unless the SVF instruction
can be executed in a single clock cycle because the results

otherwise simply will not be valid. The solution employed
in the currently implemented SVF processor, modelled by
SVF#Impl, provides forwarding of all general purpose register
operands but not the SVF operands.

The performance estimation results also show that the
penalty of using bus based interconnects instead of point-to-
point connections only corresponds to the amount of time to
negotiate access with the bus arbiter, and thus is a promising
choice because a bus based platform provides more flexibility,
if the application is to be changed after the manufacturing
of the platform. The reason for the limited penalty of using
a bus based interconnect vs. point-to-point connections lies
in the sequential nature of the equalizer application which
means that the data transfer between the processors is timed
in accordance with each other in the current application and
hence no congestion is seen.

A. Functional Verification

In order to functionally verify the behaviour of the detailed
SVF processor model (SVF#Impl), the platform model consist-
ing of a single SVF processor is used and the 5-band equalizer
application is mapped to the processor. Two versions of the
SVF#Impl, are used, one implemented using double data types
and another implemented using the 24 bit fixed point data
representation found in the actual hardware implementation.

As input to the 5-band equalizer application a multi-tone
signal (20Hz-20kHz), consisting of 1764 samples, is used.

As a reference for the simulation output produced by the
simulation of the constructed system model, an implemen-
tation of the 5-band equalizer application has been made in

49

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10, 2009 at 03:14 from IEEE Xplore. Restrictions apply.

TABLE III
MEAN AND VARIANCE OF THE DIFFERENCE BETWEEN THE SIMULATIONS

AND THE MATLAB REFERENCE IMPLEMENTATION OF THE 5 BAND

EQUALIZER APPLICATION. THE TIME INDICATION IS RELATIVE, WITH

MATLAB AS THE REFERENCE I.E. EQUAL TO 1.

µ σ2 Time
Matlab Double - - 1
SVFx1 Double 1.586 · 10−16 1.726 · 10−31 121

24 bit fixed 8.139 · 10−7 5.555 · 10−14 121
RTL level 24 bit fixed 8.139 · 10−7 5.555 · 10−14 115

Matlab using double-data types.
The result of the simulation performed on the SVF processor

model, implemented using double data types, matches the
reference as can be seen in row one of table III. The real
SVF processor model, however, is implemented using a 24
bit fixed-point data type representation. A simulation of the
SVF processor model implemented using the 24 bit fixed-
point representation is easily obtained based on the original
SVF processor model. The simulation run is repeated and the
result is shown in row two of table III. As expected, due to
the smaller resolution, this result in a small mean difference
compared to the double implementation.

However, more importantly, it can be seen from the table
that the simulation performed on the system model imple-
mented with the 24 bit fixed-point representation matches
the results of the RTL level simulation (VHDL simulation in
ModelSim [12]), shown in row three of table III, thus verifying
the functionality of the SVF model.

As can be seen in the table, the time required to run the
simulation in the current version of the simulator used in
this method, is comparable to the time used in the RTL level
simulation of the same platform. However, the time needed for
constructing a platform model in the current method, compared
to writing an RTL level description of the same platform,
is much shorter and more straightforward. Furthermore, in
this version of the simulator, the focus has been on a proof-
of-concept. Thus, it is expected that the performance of the
simulator can be greatly increased, and so, reduce the runtime
requirements of the simulator.

V. FUTURE WORK

The current execution semantics only support the execution
of models modelling synchronous hardware consisting of a
single clock domain. In real world applications it is rarely
the case that MPSoC systems are implemented using a sin-
gle clock domain only, thus, a mandatory extension of the
presented method is to enable support for modelling multiple
clock domains. It should be noted that for systems consisting
of multiple clock domains, asynchronous and even purely
combinatorial components can be modelled if the execution
semantics of the models are modified. The discussion of
extending the execution semantics, however, lies outside the
scope of this paper and, therefore, it should only be noted
that the modelling of multiple clock domains can be done by

partitioning the components of a platform model into groups
and letting the maximum step occur within each group. Special
care must be taken in controlling when each group is allowed
to let their maximum step occur in order to accommodate the
different clock frequencies modelled.

VI. CONCLUSION

This paper has presented a serviced based estimation
method for MPSoC performance modelling, based on system
level simulations using modified HCPNs as the model of
computation. The method allows MPSoC designers to perform
design space exploration of complete systems consisting of
software and hardware at a very early stage in the design
phase.

The method provides means for a flexible construction of
models, including the modelling of components at different
levels of abstraction, utilizing the composition possibilities of
HCPNs. At the same time, the level of accuracy which can be
obtained is very high, ranging from execution time analysis
including modelling of data dependencies and resource occu-
pancies to actual data values and word sizes as exemplified in
section IV.

VII. ACKNOWLEDGEMENTS

This work was supported in part by DaNES (Danish Na-
tional Advanced Technology Foundation) and ARTIST2 (IST-
004527).

REFERENCES

[1] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Springer-Verlag, 1992.

[2] J. Grode and J. Madsen, “A unified component modeling approach for
performance estimation in hardware/software codesign,” vol. 1. IEEE,
1998, pp. 65–69.

[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic sys-
tem design environment,” Computer, vol. 36, no. 4, pp. 45–52+4, 2003.

[4] F. Angiolini, J. Ceng, R. Leupers, F. Ferrari, C. Ferri, and L. Benini,
“An integrated open framework for heterogeneous MPSoC design space
exploration,” Design, Automation and Test in Europe, 2006. DATE ’06.
Proceedings, vol. 1, pp. 1–6, 2006.

[5] J. Ou and V. K. Prasanna, “Design space exploration using arithmetic-
level hardware–software cosimulation for configurable multiprocessor
platforms,” ACM Transactions on Embedded Computing Systems, vol. 5,
no. 2, p. 355, 2006.

[6] A. Pimentel, L. Hertzbetger, P. Lieverse, P. van der Wolf, and E. De-
prettere, “Exploring embedded-systems architectures with Artemis,”
Computer, vol. 34, no. 11, pp. 57–63, 2001.

[7] Y. Yi, D. Kim, and S. Ha, “Fast and accurate cosimulation of MP-
SoC using trace-driven virtual synchronization,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 12, pp. 2186–2200, 2007.

[8] A. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to
exploring embedded system architectures at multiple abstraction levels,”
IEEE Transactions on Computers, vol. 55, no. 2, pp. 99–112, 2006.

[9] M. Reshadi and N. Dutt, “Generic pipelined processor modeling and
high performance cycle-accurate simulator generation,” Design, Automa-
tion and Test in Europe, 2005. Proceedings, pp. 786–791, 2005.

[10] H. Chamberlin, Musical Applications of Microprocessors. Indianapolis,
IN, USA: Sams, 1980.

[11] G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed
Programming. Addison-Wesley, 2000.

[12] “Modelsim 6.3,”
http://www.model.com.

50

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10, 2009 at 03:14 from IEEE Xplore. Restrictions apply.

