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Robustness in Dynamical and Control Systems

Rafael Wisniewski

Abstract— We compile some results on robustness of dy-
namical and control systems. As control theory is preoccupied
with stability problems, the robustness put forward in this
paper is related to stability. We ask the question whether
an asymptotically stable system remains asymptotically stable
when perturbations are affecting it. We analyze robustness of
control systems by examining vector fields in Cr topology,
by studying associated Lyapunov functions, and by studying
corresponding input-output maps. In the first case, we conclude
that there is an open set of perturbations such that the system
that is affected by them stays asymptotically stable. In the
second case, we estimate the size of perturbations that do not
destabilize the system. In the third and last case, we provide
conditions on the gains of the interconnected systems such that
the closed loop system has finite gain.

I. INTRODUCTION

In this paper, we intend to gather central information
about how issues related to robustness are addressed in
control theory. Needless to say that this exposition will not
be exhaustive. In brief, the aim of this paper is to extract
the work that has been carried out in control theory in the
light of current trends in computer science. Our particular
attention has been [1], which defines a number of convenient
metics for a robust concept of bi-simulation. To this end, we
decided to present the concepts that involves metric spaces
as this material might occur adaptable to computer science.
Hence, in particular, robustness to parametric uncertainty is
not considered in this article [2].

At the outset, we remark that control theory is preoccupied
by the question of stability. Indeed, this is not without a
reason, the majority of the questions of interest for control
engineers can be re-phrased as questions about stability. As
a consequence, the control theory predominantly deals with
robustness related to stability. To this end, we suppose that
the nominal system is stable, possibly by means of feedback
control and ask the question if this system remains to be
stable when affected by small perturbations.

To formalize the concept of a perturbation, we shall
introduce several metrics in the course of this exposition.
Subsequently, equipped with a convenient metric space, we
wish to estimate the bounds of the perturbations that do not
destabilize the system.

In this paper, we placed our emphasis on nonlinear sys-
tems. In Section III, we present the results on robustness of
a particular class of vector fields - gradient-like vector fields.
Any small perturbation of a gradient-like dynamical system
is a system that qualitatively behaves just like the nominal
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system. In Section IV, we suppose that the system in hand
is asymptotically stable at a singular (equilibrium) point and
ask a question of which perturbations can be added to the
nominal system such that the resulting dynamical system is
asymptotically stable. In the remaining part of the paper,
we refer to the theory of interconnected systems and input-
output stability. In Section V, we put forward a version of
the small gain theorem. It states that a closed loop system
consisting of two input-output stable systems is input-output
stable provided their gains are sufficiently small.

II. NOMENCLATURE

Z+ is the set of nonnegative integers, N = {1, 2, . . .},
R+ is the set of nonnegative reals. Id stands for the identity
map with the domain and the range matching the problem
in hand.

In the first part of the exposition, we frequently use the
notion of a smooth manifold [3]. Without loosing the thread
of this exposition, the readers not acquainted with smooth
manifolds may conceptually substitute a manifold, say M ,
of dimension m with a Euclidean space Rm, and Riemannian
metric g withe the canonical scalar product on Rn, i.e., in
coordinates g(x, y) = xT y. Two simple manifolds, a sphere
and a “deformed” cylinder are illustrated in Fig. 2. Equipped
with a metric, one is able to compute lengths of a piecewise
smooth curve γ : [0, 1]→M as

l(γ) ≡
∫ 1

0

√
g(γ̇(t), γ̇(t))dt.

As a consequence, the distance between points p and q on
M is the infimum of

d(p, q) ≡ inf{l(γ) : γ ∈ Ωp,q}

over the set Ωp,q of piecewise smooth curves defined on the
unit interval [0, 1] joining p and q. Again, on Rm, d(p, q) =
||p− q|| with || · || denoting the Euclidean norm.

III. ROBUSTNESS OF GRADIENT-LIKE DYNAMICAL
SYSTEMS

Our first observation is that robustness in control theory is
studied by considering the solution trajectories of a system
indirectly. We distinguish at least three ways of doing so:
• to study the influence of a perturbation on a vector field;
• to study the influence of a perturbation on a function

associated to a nominal vector field;
• to study influence of a perturbation on an input-to-ouput

map, which describes a control system.
In this section, we address the first problem, i.e., the

influence of small perturbations on a nominal vector field.



A. Cr topology

We follow [4], [5] and define Cr vector fields. For r ∈ N∪
{∞}, let Cr(M,N) denote the space of Cr maps between
two Cr manifolds M and N .

Let f ∈ Cr(M,N), and let (φ,U) and (ψ, V ) be charts on
M and N respectively. Let K ⊂ U be a compact set such
that f(K) ⊂ V , and let 0 ≤ ε ≤ ∞. Define the subbasis
element

N r(f ; (φ,U), (ψ, V ),K, ε)

to be the set of Cr maps g : M → N such that g(K) ⊂ V
and

‖dk(ψ ◦ f ◦ φ−1)(x)− dk(ψ ◦ g ◦ φ−1)(x)‖ < ε

for all x ∈ φ(K) and k = 0, ..., r. The Cr topology
on Cr(M,N) is defined to be the topology generated by
the subbasis elements N r(f ; (φ,U), (ψ, V ),K, ε). The C∞

topology on C∞(M,N) is defined to be the union of topolo-
gies induced by the inclusions C∞(M,N)→ Cr(M,N) for
all r ∈ N ∪ {∞}.

By Theorem 2.4.4 in [5], Cr(M,N), r ∈ N ∪ {∞},
with the Cr topology arises from a complete metric. In
the following, we shall construct a metric for the space
Cr(Mn,Rs) with M a closed Cr manifold such that this
metric generates the topology, which coincides with the Cr

topology.
The space Cr(M,Rs) has a canonical vector space struc-

ture: For f, g ∈ Cr(M,Rs) and a real λ we define

(f +g)(p) = f(p)+g(p), (λf)(p) = λf(p) for all p ∈M.

We shall take a finite open cover {Vi}i=1,...,k of M such that
each Vi is contained in the domain of a local chart (ψi, Ui)
with ψi(Ui) = Dn

2 and ψi(Vi) = Dn
1 , where Dn

r denotes the
open ball of radius r with center 0 in Rn. We shall use the
notation

f i ≡ f ◦ ψ−1i : Dn
2 → Rs,

and define a norm

||f ||r ≡ maxi sup{||f i(u)||, ||df i(u)||, ..., ||drf i(u)|||u ∈ Dn
1 }.

Indeed, the norm ‖ · ‖r generates the Cr topology on
Cr(M,Rs), Section 1.2 in [6]. We let X r(M) be the real
vector space of Cr vector fields on the (closed) manifold M
with Cr topology.

B. Singular Points

Suppose ξ ∈ Xr(M) and a is a singular point of ξ, that
is ξ(a) = 0. Consider a local chart (ψ,U) with a ∈ U and
ψ(a) = 0. In these local coordinates, ξ is represented by

ξ̂ ≡ dψξ ◦ ψ−1.

The singular point a is called hyperbolic if and only if the
differential of ξ̂ at 0, dξ̂(0) : Rn → Rn is hyperbolic, i.e.,
dξ̂(0) does not have any complex eigenvalues whose real
part is zero, Section2.3 in [6].

We denote a flow line of ξ by φξx(t), that is

d

dt
φξx(t) = ξ

(
φξx(t)

)
with φξx(0) = x.

0
W ( )0

u
x

W ( )0

s
x

Fig. 1. Stable and unstable manifolds for ẋ = x+ y2, ẏ = −y

The manifold M is compact thus the vector field ξ generates
a 1-parameter group φξt : M → M, t ∈ R, of diffeomor-
phisms and the smooth flow map Φξ : R×M →M related
in the following way to each other

Φξ(t, x) ≡ φξt (x) ≡ φξx(t).

The stable manifold of ξ at a singular point a, [6], is the
set of all initial values x ∈ M such that the flow φξx(t)
converges to a with t going to infinity,

W s
a (ξ) ≡ {x ∈M | lim

t→+∞
φξx(t) = a}.

The unstable manifold of ξ at a is

Wu
a (ξ) ≡ {x ∈M | lim

t→−∞
φξx(t) = a}.

The stable and unstable manifolds of the vector field

ξ(x, y) =
(
x+ y2,−y

)
at the origin are depicted in Fig. 1.

C. Structural Stability - Robustness

We are ready to define the elements of a subset
Gr(M) ⊂ Xr(M) which play an important role in
dynamical systems. We will see that they are robust to small
perturbations.

Definition 1: A vector field ξ on M will be called
gradient-like provided it satisfies the following four condi-
tions:

1) The vector field ξ has a finite number of singular
points, say β1, ..., βk, each hyperbolic.

2) Let

α(x) ≡
⋂
τ≤0

⋃
t≤τ

φξt (x) and

ω(x) ≡
⋂
τ≥0

⋃
t≥τ

φξt (x),

where A stands for the closure of A.



Fig. 2. The right sphere intersects transversally the “deformed cylinder”
in R3; whereas, the left sphere does not.

Then for each x ∈M , α(x) = {βi} and ω(x) = {βj}
for some i and j.

3) Let Ω(ξ) be the set of nonwandering points1 for ξ, then
Ω(ξ) = {β1, ..., βk}.

4) The stable and unstable manifolds associated with the
βi have transversal intersection, Section 3.2 in [5]. For
the illustration of a transversal intersection see Fig. 2.

The set of gradient-like vector fields on M is denoted by
Gr(M).

We remark that a gradient-like vector field is a Morse-
Smale vector field, Section 4.1 in [6], which does not have
any closed orbits.

In the remaining of this section, we will discuss robust-
ness of gradient-like vector fields. To this end, we define
topological equivalence.

Definition 2: Two vector fields ξ, η ∈ Xr(M) are topolog-
ically equivalent if there exists a homeomorphism h : M →
M such that

1) h ◦ φξ(R, x) = φη(R, h(x)) for each x ∈M ,
2) h preserves the orientation, that is if x ∈ M and δ >

0 there exists ε > 0 such that, for 0 < t < δ, h ◦
φξ(t, x) = φη(τ, h(x)) for some 0 < τ < ε, see Fig 3.

The first condition of the definition states that the home-
omorphism h takes orbits into orbits. The second states
that a stable manifold of ξ goes to a stable manifold of
η. Specifically, for a pair of topologically equivalent vector
fields ξ and η via a homeomorphism h : M → M and a
singular point p we have W s

ξ (p) = h−1(W s
η (h(p))).

Example 1: Consider two vector fields ξ, η on R2 given
by

ξ(x, y) = (x, y) and η(x, y) = (x+ y,−x+ y).

1We say that p ∈ M is a wandering point for ξ if there exists a
neighborhood V of p and a number t0 such that φξt (V ) ∩ V = ∅ for
|t| > t0. Otherwise we say that p is nonwandering.

h

φξ(t, x)

φη(τ, h(x))

h(x)

x

M

M

h

Fig. 3. An orbit of the vector field ξ goes to an orbit of the vector field
η, h ◦ Φξ(t, x) = Φη(τ, h(x)).

The origin corresponds to a node source for the vector field
ξ, and a spiral source for η. By the Grobman-Hartman Theo-
rem, Proposition 2.14 in [6], any two linear hyperbolic vector
fields with the same indices are topologically equivalent; in
particular, ξ and η have index 0. Thus, they are topologically
equivalent.

As mentioned before, a vector field that is robust is
one whose orbits do not change qualitatively under small
perturbations.

Definition 3: A vector field ξ ∈ Xr(M) is structurally
stable if there exists an open neighborhood U of ξ in Xr(M)
such that every η ∈ U is topologically equivalent to ξ.

If ξ ∈ Xr(M) is a gradient-like (or more generally Morse-
Smale) vector field then ξ is structurally stable, Theorem 4.1
in [6]. This means that small perturbations of a gradient-
like vector field behave qualitatively the same. In particular,
asymptotically stable dynamical systems are robust to small
perturbations. In the next section, we will estimate the size
of perturbations that do not destabilize the system.

IV. ROBUSTNESS OF ASYMPTOTICALLY STABLE
SYSTEMS

We shall briefly introduce the Lyapunov stability theory.
The aim is to provide necessary conditions for a dynamic
system to be asymptotically stable and relate asymptotic
stability to robustness. To this end, we associate a function
decreasing along the flow lines.

One of the most important concepts in control is stability
of a singular point. We say that a system ξ is stable at a if for
any open neighborhood U of a there is an open neighborhood
V of a (possibly “smaller” than U ) such that for any initial
value x0 in V , the flow line φξx0

(t) remains in U for all
t > 0. More desirable property of dynamical systems is



U

V

U
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a

Fig. 4. Illustration of stability (to the left) and asymptotic stability (to
the right); in the figure to the left, the flow line with the initial value in V
stays forever in U . In the figure to the right, the flow line converges to the
singular point a.

asymptotic stability. This concept combines stability with the
convergence of the flow lines to a, Fig 4.

A. Asymptotic and Exponential Stability

Definition 4 (Definition 2.1.24 in [7], Sec. 2.7 in [12]):
Let M be a Riemannian manifold with a metric g. Suppose
a is a singular point of ξ ∈ Xr(M).

1) The point a is stable if for any neighborhood U of a,
there is a neighborhood V of a such that if x ∈ V then⋃
t≥0 φ

ξ
t (x) ⊂ U .

2) The point a is asymptotically stable if it is stable and
there is a neighborhood V ′ of a such that if x ∈ V ′,
then

lim
t→+∞

φξt (x) = a.

3) The point is exponentially stable if it is stable and there
are a neighborhood V ′′ of a and numbers ω < 0 and
A > 0 such that if x ∈ V ′′, then

d(φξt (x), a) ≤ Aeωtd(x, a),

where d is the Riemannian distance.

Exponential stability is an important classification of sta-
bility as it has an intrinsic robustness property. For illustra-
tion, consider the following example.

Example 2: A dynamical system ξ : R→ R, ξ(x) = −x3
is asymptotically stable at 0 on R. Indeed, the solution of
the Cauchy problem

ż = −z3, for the initial value x at t = 0

is given by

(Φξx(t))2 =
x2

2tx2 + 1
.

Thus, |Φξx(t)| < |Φξx(t′)| for t > t′, and limt→+∞ φξt (x) =
0. On the other hand, it is not exponentially stable.

Notice that asymptotic stability can be deduced from the
specific form of the vector field ξ. In truth, the vector field
ξ : x 7→ −x3 is negative for x > 0 and positive for x < 0.
Thus, at each x, it points toward 0.

Lc

Fig. 5. The vector field ξ is transversal to the set Lc = {x ∈ Rn| f(x) ≤
c} and points into it.

Consider now, a perturbation η(x) = α2x of ξ with
arbitrarily small but fixed nonzero real α. Observe that

ξ(x) + η(x) = −x(x− α)(x+ α),

which is positive for x ∈]0, α[; in other words, ξ(x) + η(x)
points out of 0. Thus, the perturbed system ξ+η is unstable
for arbitrary small parameter α.

In the example, we have explicitly solved the differential
equation describing the system dynamics. However, for more
complex system, this approach is not tangible. An alternative
approach is to associate a function f that is decreasing along
the flow lines of ξ, and which has its minimum precisely
at a singular point a. As a consequence, by studying the
directional derivative of the function along the vector field
alone,

ξ(f)(x) ≡ df(x)ξ(x) =
∑

ξi(x)dfi(x),

it is possible to determine if the system is stable. Locally
in Rn, we formulate the following sufficient conditions for
stability.

Theorem 1 (Theorem 4.1 in [8]): Let 0 be a singular
point of a vector field ξ ∈ Xr(Rn) (r ≥ 1). If there exist an
open neighborhood U of 0 and a C1 function f : U → R
such that f(0) = 0, f(x) > 0 for x ∈ U − {0}, and
−ξ(f)(x) ≥ 0 for x ∈ U . Then 0 is stable. Moreover, if
−ξ(f)(x) > 0 for x ∈ U − {0} then 0 is asymptotically
stable.

Figure 5 illustrates that the geometrical interpretation of the
condition −ξ(f)(x) > 0 that the vector field ξ is transversal
to a (sub-level) set Lc = {x ∈ Rn| f(x) ≤ c} and points
into it.

Corollary 1 (Theorem 4.2 in [8]): Let 0 be a singular
point of a ξ ∈ Xr(Rn). If there is a C1 function f : Rn → R



such that f(0) = 0, f(x) > 0 for x 6= 0, −ξ(f)(x) > 0
for x ∈ Rn and f(x) → +∞ as ‖x‖ → +∞. Then
0 is asymptotically stable on Rn, i.e. for any x ∈ Rn,
limt→+∞ φξt (x) = 0.

A very interesting class of dynamical systems consists of
linear systems, i.e., their vector fields are of the form

L : Rn → Rn : x 7→ Lx,

where L is a linear operator, L ∈ L(Rn). The reason
for this interest is that the closed form solution of any
linear differential equations is known. Furthermore, the
“behaviors” of the flow line as time goes to infinity is
completely characterized by the placement of eigenvalues.
Lastly, by studying linearization of a generic nonlinear
systems, it is possible to determine if the nonlinear systems
is asymptotically stable in sufficiently small neighborhood
of a singular point. As a consequence, a linearized nonlinear
system is stable if and only if it is exponentially stable.

The singular point 0 of a linear vector field L ∈ L(Rn) is
asymptotically stable if and only if all the eigenvalues of L
have negative real part. In the next theorem, we shall relate
asymptotic stability to the solution of a certain equation.

Theorem 2 (Lyapunov Stability Theorem 3.2 in [9], [10]):
The singular point 0 of a linear vector field
L ∈ L(Rn) ≡ {A : Rn → Rn| A is linear} is asymptotically
stable if and only if, for any selfadjoint positive definite
matrix Q there exists a unique selfadjoint positive definite
matrix P satisfying the Lyapunov equation

LTP + PL = −Q. (1)

The Lyapunov function f from Theorem 1 and the solution
P of the Lyapunov equation (1) are related by

f(x) = xTPx, (2)

since

−L(f)(x) = −xT(LTP + PL)x = xTQx > 0

for x 6= 0.
We suppose that L = dξ(0). By Taylor expansion, Sec.

XIII.6 in [11], ξ may be considered as a perturbation of a
linear ordinary differential equation of the form

d

dt
φξx(t) = ξ ◦ φξx(t) = Lφξx(t) + η ◦ φξx(t), (3)

φξx(0) = x

in some open neighborhood U of 0 in Rn, where η : Rn →
Rn is a Cr−1 map that satisfies

η(0) = 0

‖η(x)− η(y)‖ ≤ δ(ε)‖x− y‖ for ‖x‖, ‖y‖ < ε (4)

with the function δ : [0,∞) → [0,∞) continuous and
monotonically increasing.

In the next corollary, we relate asymptotic stability of a
vector field to asymptotic stability of its linearization.

Corollary 2: Let 0 be a singular point of a vector field ξ ∈
Xr(Rn), r ≥ 1. Suppose L = dξ(0). If L is asymptotically
stable, then the point 0 is asymptotically stable for ξ.

Proof: The linear system L is asymptotically stable; thus, for
any selfadjoint positive definite Q, there is a unique solution
P to the Lyapunov equation. Define a map f : Rn → R by
x 7→ xTPx. By the Taylor expansion of ξ, we have

−ξ(f)(x) = xTQx− 2xTPη(x).

The matrix Q is selfadjoint positive definite, therefore by the
Spectral Theorem, xTQx ≥ c‖x‖ where c is the smallest
eigenvalue of Q. Furthermore, we use the estimate

|xTPη(x)| ≤ ‖x‖ ‖P‖ ‖η(x)‖ ≤ δ(ε)‖P‖‖x‖2,

where δ is continuous and monotonically nondecreasing as
in (4). Therefore, we can choose ε such that δ(ε) < d, where
d is an arbitrary real number. For ‖x‖ < ε, we have

−ξ(f)(x) = xTQx− 2xTPη(x) ≥ c‖x‖2 − 2|xTPη(x)|
≥ (c− 2δ(ε)‖P‖) ‖x‖2.

We shrink ε such that κ ≡ c− 2δ(ε)‖P‖ > 0 and get

−ξ(f)(x) ≥ κ‖x‖2, ∀ ‖x‖ < ε.

Thus, by Theorem 1, the singular point 0 of ξ is asymptoti-
cally stable.

To prove converse to Corollary 2, we make stronger
assumption. Indeed, in the next theorem, we assume that
the singular point 0 is exponentially stable.

As a consequence, 0 is an asymptotically stable singular
point of ξ. Theorem 3 below shows that it is in fact an
exponentially stable singular point.

Theorem 3 (Theorem 2.3 in [12]): 0 is an exponentially
stable singular point of ξ ∈ Xr(Rn) if and only if it is ex-
ponentially stable singular point of L = dξ(0). Furthermore,
the stability exponents ω < 0 and A > 0 are the same for ξ
and L,

||φξt (x)|| ≤ Aeωt||x||, (5)

||φLt (x)|| ≤ Aeωt||x|| (6)

on some V ⊂ Rn.

To address robustness, we assume that 0 is an
asymptotically stable singular point of ξ, and we let
η ∈ Xr(Rn) be such that η(0) = 0. The vector field η plays
the role of a perturbation. Subsequently, we ask for what
perturbations η the singular point 0 is asymptotically stable



of ξ+η. An answer is provided by the following proposition.

Proposition 1 (Lemma 2.7 in [12]): If 0 is an exponen-
tially stable singular point of ξ ∈ Xr(Rn) with the stability
exponents ω < 0 and A > 0, and

||dη(0)|| < |ω|
A
,

where ||L|| ≡ sup{||Lx|| | ||x|| = 1} is the greatest singular
value of L, then 0 is exponentially stable singular point of
ξ + η (in sufficiently small open neighborhood of 0).

Example 3: Let ξ by an exponentially stable planar dy-
namical system with a singular point 0. Thus, the two
eigenvalues of its linearization L = dξ(0) have negative real
parts. There exists a linear isomorphism T : R2 → R2, [13],
such that L in the new coordinates can be represented as one
of the following three case

L1 =

[
λ1 0
0 λ2

]
, L2 =

[
λ 1
0 λ

]
, and L3 =

[
α β
−β α

]
,

with −λ,−λ1,−λ2,−α ∈ R+ The solution of ż = L1z with
the initial value x is

φL1
x (t) = (x1e

λ1t, x2e
λ2t)

hence ||φL1
x (t)|| ≤ emax{λ1,λ2}t||x||. The solution of ż =

L2z is
φL2
x (t) = (x1e

λt, x2te
λt).

Observe that there is T > 0 such that e−
λ
2 t > t. Therefore,

|x2|teλt < |x2|Te
λ
2 t,

and ||φL2
x (t)|| ≤ Teλ2 t||x||. Finally, the solution of ż = L3z

is

φL3
x (t) = (x1e

αt cosβt+ x2e
αt sinβt,

x1e
αt sinβt+ x2e

αt cosβt).

Thus, ||φL3
x (t)|| ≤ eαt||x||. In conclusion, if the perturbation

η has a linear term with ||dη(0)|| < −max{λ1, λ2} in the
first case, ||dη(0)|| < − λ

2T in the second, and ||dη(0)|| < −α
in the third, then the system ξ + η is exponentially stable in
a sufficiently small open neighborhood of the singular point
0.

V. ROBUSTNESS OF INTERCONNECTED SYSTEMS

In this section, we will address robustness of input-output
maps. We look upon a control system as an input-output
map. The inputs are interpreted as disturbances and outputs
as commodities to be kept constant. Subsequently, the task
of controller is to make the outputs deviations small when
the system is affected by disturbances. We fomulate the
framework for studying robustness as an interconnection of
two input-output maps, which represent the nominal systems
and unmodeled dynamics.

A. Extended Signal Spaces

For each p ∈ N ∪ {∞}, let Lpm be the Lp space Lp(Rm)
with the norm || · ||p [14],

||f ||p =

(∫ ∞
0

||f ||pdt
) 1
p

for p ∈ N,

||f ||∞ = inf{C ≥ 0| ||f(t)|| ≤ C almost every t ≥ 0}.

Let Γ ≡ Γm ≡ {f : R+ → Rm} be a set of measurable
maps. For each T ∈ R+, we define a map T : Γ→ Γ given
by

f 7→ T (f) ≡ fT =

{
f(t) 0 ≤ t < T

0 t ≥ t.

The extended space Lpme is

Lpme ≡ Lpe(Rm) = {f ∈ Γ| fT ∈ Lpm for all T ∈ R+}.

To define a topology on Lpme, we observe that for each
T ∈ R+, || · ||pT , given by ||f ||pT = ||fT ||p, is a seminorm
on Lpme. Suppose g ∈ Lpme, and let

BrT (g) ≡ {f ∈ Lpme| ||f ||pT < r}.

Subsequently, the collection

B ≡ {BrT (g)| g ∈ Lpme, T ∈ R+, r > 0}

forms a base of a topology T on Lpme. In fact, Lpme is a
metric space with a metric

d(f, g) =
∑
r∈N

2−n
||f − g||pTn

1 + ||f − g||pTn
,

where the sequence {Tn} ≡ {Tn| n ∈ N} is dense in R+

[15]. The metric d is translation invariant, i.e.,

d(f + h, g + h) = d(f, g), for all f, g, h ∈ Lpme.

Furthermore, the metric d is compatible with T . In particular,
a sequence {fn} converges to u if and only if for all T ∈ R+

the sequence {fnT } converges to fT .

B. Input-Output Stability

So far in this paper, we have met two forms of stability:
structural stability of vector fields and asymptotic stability
of dynamical systems. Below, we want to formalize input-
output stability. Informally, we say that a system system
is input-output stable if small input signals generate small
output signals.

At the outset, we define the concept of causality. We say
that a map G : Lpme → Lpne is causal [16] if and only if

(G(u))T = (G(uT ))T for all T ∈ R+ and u ∈ Lpme,

or equivalently for all u, v ∈ Lpme and T ∈ R+

(uT = vT ) =⇒ ((G(u))T = (G(v))T ).

A map G : Lpme → Lpne is said to have finite Lp gain if
there exist γ and β both in R+ such that for all T ∈ R+,

||G(u)||pT ≤ γ||u||pT + β for all u ∈ Lpme.
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Fig. 6. Feedback configuration

We shall refer to the constant γ as a gain and β as a bias.

Proposition 2: If G has finite Lp gain with β = 0 then
the map G is causal.

Proof: Since for all T ∈ R+,

||G(Id− T )u||pT = ||T (G(Id− T )u)||T ≤ γ||(Id− T )u)||,

but (Id−T )u) = 0; thus, T (G(Id−T )u) = 0, and (G(u))T =
(G(uT ))T

Finally, we say that a map G : Lpme → Lpne is Lp-stable
if for any u ∈ Lpm, G(u) ∈ Lpn.

If G is causal then G is Lp stable is equivalent to G has
finite Lp-gain, Proposition 1.2.2 in [17].

The most popular norm that control theory works with is
|| · ||2; partly, because it has a physical interpretation as the
energy of a signal, partly, because L2 has a structure of a
Hilbert space. This has been explored in many branches of
control theory, for example passivity theory [18]. In linear
control theory [2], if a control system is modeled as a real,
rational transfer function G̃(s) then

||G(u)||2 ≤ γ||u||2, where γ = sup
ω
|G̃(jω)|.

C. Robustness of Input-Output Maps

The focus is on the stability analysis of interconnected
systems as in Fig. 6., i.e., the closed loop system ΣG1,G2

,
for G1 : Lpm,e → Lpn,e and G2 : Lpn,e → Lpm,e, is defined by

y1 = G1(u1), y2 = G2(u2),

u1 = e1 + y2, u2 = e2 + y1. (7)

We identify Lp(m+n),e ≈ L
p
m,e ×Lpn,e ≈ Lpn,e ×Lpm,e, and

define two maps G, F : Lp(m+n),e → Lpm+n,e by

G = G1 ×G2, (u1, u2) 7→ (G1(u1), G2(u2)),

and
F = π2 × π1, (u1, u2) 7→ (u2, u1),

where π1(u1, u2) = u1, π2(u1, u2) = u2 are canonical
projections. As a consequence, the following equality holds

y = G(u+ Fy). (8)

In (8), we have used the standard notation v = (v1, v2). The
equality (8) gives rise to the following relation on Lp(m+n),e×
Lp(m+n),e

Rey ≡ {(e, y) ∈ Lp(m+n),e × L
p
(m+n),e| y = G(u+ Fy)}.

We say that a relation R ⊂ Lpq,e×Lpq,e has finite Lp gain,
Definition 1.2.3 in [17], if there exist γ, β ∈ R+ such that
for all (u, y) ∈ R

||y||pT ≤ γ||u||pT + β for all T ∈ R+.

Perhaps, the most commonly used robustness criterion for
the closed loop system ΣG1,G2

in Fig. 6 is the small gain
theorem: If both components in the feedback loop have finite
gain and their product is less than one then the closed loop
system has finite gain.

Theorem 4 (Theorem 2.1 in [17]): Let p ∈ N ∪ {∞}.
Suppose that G1 has finite Lp gain γ1, and G2 has finite
Lp gain γ2. The closed-loop system ΣG1,G2

in (7) has finite
Lp gain if γ1γ2 < 1.

The small gain theorem is a consequence of the graph
separation theorem [19]. Let GG ⊂ Lpme × Lpne denote the
graph of a map G : Lpme → Lpne. The inverse graph GIG ⊂
Lpne × Lpme is defined by

GIG ≡ {(y, u) ∈ Lpne × Lpme| (u, y) ∈ GG}.

For each T ∈ R+, we have introduced a seminorm || · ||pT ,
which we use to define a Huasdorff distance on the subsets
of Lpme × Lpne. In particular, the distance between a point
x ∈ Lpme × Lpne and the graph GG is

dT (x,GG) = inf{||x− z||pT | z ∈ GG}

Theorem 5 ([19]): The feedback system (7) has finite Lp

gain with 0 bias if and only if there exists γ ∈ R+ such that
for any x ∈ GIG2

,

||x||pT ≤ γdT (x,GIG2
).

The small gain theorem has a version for linear systems
G1 : L2

n → L2
m and G2 : L2

m → L2
n. If G1 and G2 are

modeled as elements G̃1, G̃2 in the space RH∞ of proper,
real rational stable transfer matrices, Section 4.3 in [2], the
induced norm || · ||∞ (||G||∞ ≡ sup{||Gu||2n| ||u||2m = 1})
can be computed (Parseval’s theorem) by

||G||∞ = sup
{
σ̄( G̃(jω))

∣∣∣ ω ∈ R
}
,

where σ̄(·) is the function taking a matrix to its maximal
singular value.

Theorem 6 (Theorem 9.1 in [2]): The feedback system
(7) has finite L2 gain (with 0 bias) if

||G1||∞||G2||∞ < 1.



In conclusion, we note that there are numerous versions
of the small gain theorem. For instance, a specialization of
Theorem 4 to the systems represented in the state space
model can be found in [20].

VI. CONCLUSION

The paper gave the overview of three methods for ana-
lyzing robustness in control. All the methods discussed used
much the same approach of defining a convenient space of
maps and subsequently studying small perturbations in that
space. Three approaches were addressed: robustness of a
gradient-like vector fields in the space of Cr vector fields
on a closed manifold, robustness of locally asymptotically
stable vector fields, and robustness of the input-output maps
in the extended Lp-space.
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