N
N

N

HAL

open science

Hardware architecture specification and
constraint-based WCET computation

Hajer Herbegue, Hugues Cassé, M Filali, Christine Rochange

» To cite this version:

Hajer Herbegue, Hugues Cassé, M Filali, Christine Rochange. Hardware architecture specification and
constraint-based WCET computation. 8th IEEE International Symposium on Industrial Embedded

Systems (SIES 2013), Jun 2013, Porto, Portugal. pp.259-268, 10.1109/SIES.2013.6601499 .

01148073

HAL Id: hal-01148073
https://hal.science/hal-01148073

Submitted on 4 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01148073
https://hal.archives-ouvertes.fr

- OATAO

Open Archive Toulouse Archive Cuverte

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12712

To link to this article : DOI :10.1109/SIES.2013.6601499
URL : http://dx.doi.org/10.1109/SIES.2013.6601499

To cite this version : Herbegue, Hajer and Cassé, Hugues and Filali,
Mamoun and Rochange, Christine Hardware architecture specification
and constraint-based WCET computation. (2013) In: IEEE
International Symposium on Industrial Embedded Systems - SIES
2013, 19 June 2013 - 21 June 2013 (Porto, Portugal).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12712/
http://oatao.univ-toulouse.fr/12712/
http://dx.doi.org/10.1109/SIES.2013.6601499
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Hardware architecture specification
and constraint-based WCET computation

Hajer Herbegue, Hugues Cassé, Mamoun Filali, Christine Rochange
Institut de Recherche en Informatique de Toulouse
CNRS Université de Toulouse
firstname.lastname @irit.fr

Abstract—The analysis of the worst-case execution
times is necessary in the design of critical real-time sys-
tems. To get sound and precise times, the WCET analysis
for these systems must be performed on binary code and
based on static analysis. OTAWA, a tool providing WCET
computation, uses the Sim-nML language to describe the
instruction set and XML files to describe the micro-
architecture. The latter information is usually inadequate
to describe real architectures and, therefore, requires
specific modifications, currently performed by hand, to
allow correct time calculation. In this paper, we propose
to extend Sim-nML in order to support the description of
modern microarchitecture features along the instruction
set description and to seamlessly derive the time calcu-
lation. This time computation is specified as a constraint
solving problem that is automatically synthesized from the
extended Sim-nML. Thanks to its declarative aspect, this
approach makes easier and modular the description of
complex features of microprocessors while maintaining a
sound process to compute times.

I. INTRODUCTION

The main characteristic of hard real-time systems
is that they must guarantee a correct timing behavior.
A hard real-time task has a deadline to meet, otherwise
the real-time system may fail with catastrophic
consequences. In the design of hard real-time systems,
it is absolutely required to know the upper bound of
the execution time of each task, named the worst-case
execution time (WCET), in order to determine a task
schedule that ensures the deadlines to be met. Different
methods are applied to compute the WCET [30] of
critical tasks, such as simulation or static analysis of
the executable. Estimating the WCET using simulation
supposes that we have all possible combinations of
input data values that cover all the possible execution
paths and of the initial system states, which is not
possible in general. Static analysis is a safe method
that can estimate the actual WCET with respect to the
target architecture. Generally, the WCET computation
is based on the analysis of the program control flow.
Feasible and infeasible paths are identified, as well
as (program) flow facts and loop bounds. Each
execution path of the analyzed program is split into

code snippets, called basic blocks. The WCET of
a program is expressed as the sum of the execution
times of the basic blocks that compose the longest
execution path, weighted by their respective execution
counts. To search the longest path, the IPET (Implicit
Path Enumeration Technique) [18] is the most used
and successful. It is based on the Integer Linear
Program [29] to formulate the problem. The execution
time of basic blocks are estimated by simulation,
abstract interpretation or execution graphs.

In the present work, we consider the OTAWA
framework as a starting point. OTAWA is dedicated to
the development of WCET analyzers. It includes
a number of analysis tools that are based on
Architecture Description Languages (ADL) to specify
architectures. The Sim-nML language is used to
describe the instruction set architecture and the
basic block execution time is computed by execution
graphs [24] [17]. Our long-term goal is to have a fully
certified WCET computation chain. We present an
ADL-based approach [21], from which we derive a
constraint-based method for WCET computation. In
order to do so, we extend the Sim-nML language to
describe the hardware structure of the processor and
the execution model of instructions. We superimpose
the effective use of resources on the basic description
of instructions. This approach aims at estimating
the execution time of a basic block and enabling the
verification of the architecture specifications.

The paper is organized as follows. Section II
gives an overview of the OTAWA framework, its
limitations and our contribution. Section III presents
the extension of the Sim-nML language. In Section IV,
we introduce a constraint-based method for WCET
computation. We experiment our contribution on the
ARMYS instruction set with an out-of-order superscalar
processor. The implementation and experimental results
are presented in Section V. Related work is overviewed
in Section VI. Section VII concludes the paper.

II. WCET ANALYSIS OVERVIEW
A. OTAWA framework

OTAWA [4] is a framework dedicated to WCET
computation that is able to integrate different kinds of
methods of computation. The framework OTAWA is
founded on an abstraction layer that describes the target
hardware and the instruction set architecture (ISA),
as well as the binary code under analysis. The ISA
specification is expressed in the Sim-nML language.
The hardware configuration is specified in XML files
that describe the pipeline structure, the caches and the
memory. Yet only some architectures can be handled by
such a model. Pipelines described at that level contain
as many stages as required, among 4 stage models:
fetch, lazy, execute and commit. The main goal of such
a description is to represent where time is spent and to
express the capacities of hardware resources.

The framework includes a flow analyzer that builds
the control flow graph (CFG) of the program from the
binary code. Flow facts (e.g. loop bounds, instruction
cache analyzer output) are retrieved from annotated
source code and then added to the CFG. The archi-
tecture abstraction, the program representation and the
flow facts are the input of different analyses performed
by OTAWA. A pipeline analysis consists in building
execution graphs to model the execution of basic blocks
on the pipeline and then compute the corresponding
times [24].

B. Motivation and methodology

This work is not intended to rebuild the OTAWA
framework, but to reuse some of its modules in our
approach. Our analysis method is fully automatic and
aims at computing the WCET of a basic block with
respect to its execution context. Actually, the execution
time of a basic block depends on the instructions
executed before it. In our analysis, we consider a basic
block with the sequence of blocks executed before it
that directly affect the timing of the block, referred to
as the prefix. We call instruction path, the instruction
sequence consisting in the prefix followed by the basic
block.

We think it is necessary to enhance the expressivity of
OTAWA with regard to the processor description lan-
guage. In fact, the time analysis relies on both the ISA
description and the hardware architecture description,
which are structured into two modules, using different
formalisms. The currently used model to describe the
processor is too restrictive and does not allow to handle
features often found in the microprocessors (instructions
with exotics execution path in the pipeline, instructions
decomposed in several micro-instructions, instructions
with a variable duration in the functional unit, etc)
and, as a result, cannot be fully automated. Actually,

these features are implemented by hand using OTAWA
libraries and integrated to the analysis during the build
of the execution graph. The aim of our work has
been to dissociate the hardware processor description
(structure and features) and the subsequent analyses.
In order to do so, we have enhanced the Sim-nML
language to take into account the general hardware
description of complex processors and the execution
model of the instruction set. The presented analysis
is generic, based on the architecture description and the
program. Moreover, for our analysis, we have tried to
reuse well known constraint specification languages [27]
and resolution tools [2], [3], in order to apply existing
efficient constraint solvers. Actually, our constraint
specification is build on the Global Constrait Catalog [5]
and does not embed any specific constraint resolution
method. As we will see in section IV, since our
constraints are generic, we can also reuse any constraint
solver. Figure 1' describes the new work flow to

N 1
Sim-nML O
ISA Hardware
description description
A[Instruction path o
—
Architecture and
Instruction path models

£ A @
Tools Execution Graph Constraint 4
P! based description

Sources and
Generated modules

WCET analyzer WCET analyzer @
OTAWA Constraint solver

CFG Constructor
OTAWA

Analysis

— Automatic

—> Dataflow

Figure 1: Work flow for ADL-based WCET estimation.

compute the worst case execution time of a basic block.
The user provides a Sim-nML architecture description
while the CFG constructor performs the path analysis
on the program binary and provides the instruction path
to analyze. From the architecture description and the
instruction path, we generate an abstract description for
the architecture and for the instruction path. This is
achieved using the GLISS tool [23] which includes a
Sim-nML parser and a C-library generator. We have
extended GLISS to take into account the extension of
Sim-nML language and to automatically generate the
architecture and the instruction path models. From
the architecture and the instruction path models, we
generate an execution graph, that can be analyzed by
the OTAWA framework. We also have implemented
a module that generates a constraint-based description,
that can be analyzed with any constraint-based resolu-
tion method.

'We will use the numbers in the figure for the illustrating example
of section V

III. THE SIM-NML LANGUAGE AND THE PROPOSED
EXTENSION

An architecture description consists in the descrip-
tion of its hardware components and the supported
instruction set. In this section, we review how an
instruction set and a hardware architecture are described
and how we have extended it.

A. Instruction set description

Sim-nML [9], [11], [22] is a hierarchical and a
highly structured architecture description language used
to describe instruction set architecture and to generate
processor specific tools such as assemblers, disassem-
blers, processor simulators, functional simulators, etc.
In Sim-nML, the processor model is described as a
hierarchical structure using an attributed grammar. Two
kinds of rules are used to produce instructions spec-
ifications. OR-rules gives alternatives of instruction
parts and so represents non-terminal symbols. AND-
rules gives the composition of an instruction parts
and so defines terminal symbols. AND/OR rules are
also used to describe the addressing modes, used to
define instruction operands. Instructions and modes are
described by pre-defined attributes :

- syntax: the textual representation of the in-
struction or addressing mode in the assembly
language.

- image : the binary representation of the instruc-
tion or the addressing mode in the executable
code.

- action : the semantics of the instructions.

An example of instruction specification is given in list-
ing 1. The top-level operation, named instruction,
is the root of all instructions and is given by an AND-
rule with a parameter referencing to the all_instr
rule. This parameter represents any of the instructions
supported by the processor. This property is specified
using an OR-rule, all_instr, listing all the possi-
ble family of instructions. The processor instructions
presented in the example are add, load and branch.
The processor uses two addressing modes, reg_index
and mem_index, representing respectively, register
access and memory access modes. Types and temporary
variables can be declared to complete instructions and
modes definition.

Listing 1: Sim-nML instruction set description

// types used in the description
type index = card (2) // register index type
//and—rule top—level instruction definition
op instruction (x all_instr)

syntax = format ("%s", x.syntax)

image = format ("%8b", x.image)

action = {PC = PC + 2;

x.action; }

//or—rules
op all_instr = add | load

// mode definition

mode reg_index (i:index) = R[i]
syntax = format ("r%d",i)
image = format("%2b" i)

mode mem_index (i:index) = M[R[i]]
syntax = format ("(r%d)".,i)
image = format("%2b" ,i)

// instruction definitions
op add (d:reg_index ,srcl:reg_index ,src2:reg_index)
syntax = format ("add %s %s %s",dest.syntax,srcl .

syntax , src2.syntax)

image = format ("00%s%s%s" ,dest.image,srcl.image,
src2 .image)
action = {dest = srcl + src2 ;}

op load (dest:reg_index ,src:mem_index)
syntax = format ("load %s %s ",dest.syntax,src

syntax)
image = format ("0100%s%s" ,dest.imag,src.image)
action = {dest = src;}

Resources used in the instruction definitions, like the
register PC, register bank R and memory M are part of
the hardware architecture description, presented in the
next section. [9] details the Sim-nML formalism.

Instruction I Instruction I Instruction I

Instruction | Instruction
Fetch Decode Shift

Execution Commit

I Re-order I I
Buffer _

FSSY

A
o

Fetch |
Buffer

NN s oy e

Instruction
Cache

Buffers and queues

El Registers

D Cache memories

[] stages and functional units

Figure 2: An out-of-order Superscalar Processor Model

B. Hardware components description

In this section, we present the main features of
Sim-nML extension that we rely upon for the WCET
computation. To illustrate subsequent explanations, we
consider the following example of microprocessor.

An out-of-order Superscalar Processor: Super-
scalar architectures allow parallel instruction execution.
To improve efficiency, modern processors execute also
instructions out-of-order: the execution order is gov-
erned by the availability of resources rather than the

program order. Figure 2 shows such a processor sup-
porting 2 instructions per cycle. The pipeline includes a
fetch stage, a decode stage, an instruction selector stage,
an execution stage and a commit stage. The execution
stage has three functional units (two arithmetic and
logical units and one memory access unit). Only the
execution stage supports out-of-order execution to im-
prove usage of its functional units. Fetched instructions
are stored in a 4-entry fetch buffer and are pulled by
the decode stage. Then, this stage stores them in the 8-
entry re-order buffer. This buffer is used to maintain the
program order for the commit stage. The instructions
execution in the functional units is possibly out-of-order,
with respect to the availability of the resources and the
data dependencies.

Listing 2: Hardware architecture description
stage FE , DE , IS , ALU[2] , MEM , (M

extend FE , DE , IS , CM
capacity = 2 // degree of super—scalarity
inorder = true // in—order stages

extend ALU , MEM
inorder = false // out—of—order stages

extend FE
blocked = 16 // cache block size in byte

// Fetch Buffer and Re—order Buffer
buffer FBuf [4] , RoB [8]

// registers and memory declaration

reg PC [1, card(32)] // program counter register
of 32 bits

reg R [32, card(32)] // a register bank with 32
registers of 32 bits

mem M [32, card(8)] // a main memory with 2"32
words of 8 bits

Stages: Functional units and stages in a pipeline
are considered as execution resources, both declared
as stage. Each stage or functional unit completes a
part of an instruction. An instruction is executed at
most by one stage or one functional unit, at a time.
In the processor description, no limitations on pipeline
depth are imposed. In listing 2, one occurrence of fetch
stage F'E, decode stage DE and instruction selector stage
IS are declared. ALU [2] means that the processor
contains two occurrences of that functional unit.

Our formalism allows a simple and explicit descrip-
tion of the pipeline features, using attributes extending
the stages specification. We express superscalarity of a
stage with an integer attribute (capacity) assigned to
stages or functional units. We also assign an attribute
inorder to stages specification to identify out-of-
order executing stages. User can specify other archi-
tecture characteristics that are pertinent for subsequent
architecture analysis. For example, the cache block size
is a relevant parameter to estimate time penalties when
instructions are fetched from cache: two instructions

belonging to two different cache blocks cannot be
fetched simultaneously.

Buffers: Buffers are special hardware compo-
nents that store instructions temporarily, while awaiting
for being processed by some stage, or for some unavail-
able resources. Buffers and queues slots cannot be read
or written by instructions. Also, they are not hardware
units executing instructions, but instructions containers.
An instruction occupies only one slot of the same buffer
type. The key word buffer introduces buffers. For
example, FBuf [4] means that the pipeline contains a
4-entry fetch buffer. We consider each buffer slot as a
resource.

Registers and memories: Registers and memo-
ries are part of the original Sim-nML language. They
are used in instructions and modes definitions. A
memory is introduced with key word mem and is char-
acterized by the number of bits needed to address it and
the size of its elements. The key word reg introduces
registers. A register bank is given by the data type and
the number of registers it contains. Each element of
register bank declared with key word reg. Memory is
considered as a monolithic resource.

C. Instruction execution model

The instructions own resources and perform actions
all along their execution. From the processor point of
view, the pipeline executes in its different stages sev-
eral instructions that access concurrently the available
resources. To be executed on a stage, an instruction
has to wait for its requirements to be ready (released
by previous instructions). Therefore, the execution time
of an instruction is impacted by the resources state. So,
we extend the instruction set description by an execution
model that defines, in a timed sequence, the resources
used by an instruction in each step of its execution. This
is represented by the attribute uses made of a sequence
of clauses separated by commas. Each clause represents
a step in the instruction execution in the pipeline as a
list of required resources.

Listing 3: General instruction description

op instruction (x : all_instr)

syntax = x.syntax

image = x.image

action = x.action

uses = clause_1, clause_2, clause_3 ,

Basic resource request: Resource requests
can be expressed according to different schemes:
non-deterministic and deterministic resource requests.
We have a non-deterministic resource request when an
instruction requires a resource, which exists in many
copies in the architecture, without specifying any oc-
currence of it. This is specified in the uses by giving
only the resource identifier. For example, buffers are
required in a non-deterministic schema. In fact, when

an instruction requires any slot resource available in
the buffer can be assigned. In the processor example
presented above, the two ALU units can execute the add
instruction (listing 4) while the multiply instruction is
only supported by the first occurrence, ALU[0]. This
is a deterministic resource access. If the stages may
be accessed deterministically or not, the accesses to
registers is always deterministic: the register number
is specified in the encoding of the instructions. The
memory, represented as a monolithic resource, is always
deterministically accessed. For the latter resources, it
is also required to know if a read or a write access,
keywords read and write, is performed.

Parallel resource request: The simultaneous

access to many resources is expressed using the ‘&°
operator. An instruction begins execution on a stage
when all the required resources of this stage are avail-
able. Otherwise, the instruction stalls until its re-
sources are available. In listing 4, to achieve execution
on ALU stage, the mul instruction waits until both
ALU[O] stage and the registers R[dest], R[srcl]
and R[src2] are available. If one of these resources
is not available, the others will not be allocated until
all resources are available. The instruction releases
simultaneously acquired resources before it allocates
resources of the next step.
In a parallel resource request, no more than one resource
of the same type requested in a non-deterministic way is
allowed. Actually, an instruction cannot be stored in two
buffer slots simultaneously. An instruction cannot be
executed, at the same time, by two stages or functional
units.

Listing 4: Uses attribute

op mul (dest:reg_index ,srcl:reg_index ,src2:reg_index)
uses = FE & FBuf , DE , IS & RoB ,
ALU[0] & R[srcl].read & R[rsc2].read
& R[dest].write & RoB , CM

op load (dest : reg_index, src : mem_index)

uses = FE & FBuf :increment_pc #{2}, DE , IS & RoB ,
MEM & R[dest]. write & R[src].read & M.read
& RoB#{10} :action , (M

Attributed resource request: Instructions ac-
quire resources for a limited number of time units.
Some actions can be performed when resources are
granted or/and when released. A time-action attribute
can be specified for clauses. The time attribute defines
the duration for which resources are allocated by the
instruction. In the specification of the 1oad instruction
(listing 4), the fetch stage FE and the FBuf buffer slot
are allocated for 2 time units, the decode stage DE for
one time unit (default value). If an instruction is stalled,
the specified time value does not include the additional
time due to the stall. The Sim-nML extension allows
specifying an action to perform when resources are
acquired and an action to perform when resources are

released. For example, we can specify the predefined
action attribute to be performed after instruction
execution on ALU. The action increment_pc, that
increments the program counter, is performed on fetch
stage before the instruction cache access.

D. Resources and stages allocation strategy

In a pipeline architecture, instructions are executed
in parallel and access concurrently resources. To ensure
a deadlock-free instructions execution, a strategy for
resource allocation and releasing have to be fixed. Fur-
ther, the instructions use hardware components (stages,
buffers, registers, etc.) differently, since each com-
ponent has a particular role. We present below the
more relevant properties of the proposed resource usage
model.

Resources allocation: To move from the current
execution step to the next step, an instruction releases
the resources that are not required on the next stage. If
a resource that the instruction already has is required on
the next step, then the resource is not released. If we
consider the uses attribute in listing 4, to move forward
from the fetch to the decode stage, if the stage DE is
available, both resources FE and FBuf, not used on the
decode step, are released. However, if the stage DE is
not available, the instruction is stalled. In that case, all
the resources previously granted by the instruction are
released, except the buffer resource (see later). When
instruction goes from the IS stage to the ALU unit, the
buffer RoB is not released. First acquired by instruction
on the IS stage, the RoB buffer is not released until
instruction is executed by the commit stage.

Buffers usage model: Buffers are special re-
sources that contain instructions. The fetch buffer,
for example, stores instructions since they are fetched
from memory cache until the decoding starts. After
an instruction is fetched and stored in a buffer slot, if
the decode stage is not available, then the instruction
stalls on the fetch buffer. So that, the fetch stage is
not locked and can continue to fetch instructions from
memory. Then, unless the resource is used on the next
step, the current buffer slot remains allocated, as long as
the instruction is stalled. The only situation where the
fetch stage is locked is when an instruction is fetched
and there is no free slot in the fetch buffer to allocate.
So the fetch stage is locked by that instruction, until a
fetch buffer slot becomes available.

E. Overview of the internal description language

This abstract syntax concerns the architecture de-
scription and the resource request superposed to Sim-
nML clauses. The abstract architecture description is
automatically generated from the Sim-nML description.
With respect to Sim-nML, the relevant aspects of a

processor description is the list of stages together with
the list of unit resources, which are buffers, registers
and memories. The abstract representation of clauses
(listing 5) is based on the OCCAM language [6], [15].

Listing 5: Data type of clauses
type access = Read | Write
type ("a,’s,’r) clause =
| USES of (’s,’r) request % access option

| PAR of (’a,’s,’r) clause list
| SEQ of (’a,’s,’r) clause list
| ATTR of (’a,’s,’r) clause * ’a

Intuitively, ‘a is the attribute superimposed to clauses,
‘s is the stage type and ‘r is the resource type.

IV. CONSTRAINT-BASED WCET ANALYSIS
A. The execution time of a basic block

In the most used approach, IPET (Implicit Path
Enumeration Technique), the WCET of a program is the
maximized objective function of an ILP (Integer Linear
programming) problem [18]:

maximize E Ny = C
beB

where B is the set of the basic blocks of the program.
Cp, and N, denote an estimation of the time and the
execution count of a basic block b. Since the execution
time of a basic block depends on the instructions
executed before it, the preceding instructions, called a
prefix, are involved and form, with the considered basic
block, an instruction path. The execution cost of a basic
block, ¢y, is defined as the time between the completion
of the last instruction in the prefix and the completion of
its last instruction®. According to the paths of the CFG,
different prefixes can be used as the execution context
of a basic block. The worst-case execution time of the
block is the maximum of the times obtained for every
possible prefixes.

Our method aims at deriving a WCET estimate for
each basic block. Each instruction is broken down into
steps representing the execution of the instruction in
a pipeline stage. Therefore, c;, is defined as the time
between the last stage of the last instruction of the prefix
ip,q and the last stage of the last instruction of the basic
block 4y, 4. This is shown in figure 3, where i, ,.end
denotes the end date of the step i, ,. One can observe
that our implementation allows instructions may have
different lengths. The cost of the basic block is defined
as:

Cy = ip,q.end — i, qg.end

To evaluate the WCET of the basic block, we describe
the execution of an instruction path on a processor as a

2This definition makes sense when instructions terminate in pro-
gram order, which is the case for most microprocessors

micro-steps

ig | 19,0 | 10,1 | ...| i0,d |
it [dre [i1 J=ee] 14 |
prefix B
.
H . Last step
’ " ¥ of prefix
ip [ipe [ip.t [=e=] ipd |
ip+1 [ip+1,0 [ip+1,1 | === [ip+i,d |
basic . :
block |
Last step
= . L] _ in basic block
in [Gme [int [oee [ina |

n : instruction path length
d : a pipeline depth

ix,y step <y> of instruction <x>

p : index of last instruction of the prefix

Figure 3: Composition of an instruction path.

Constraint Satisfaction Problem (CSP). Instructions and
steps are described with temporal intervals that represent
their lifetimes. We express instructions dependencies
through constraints intervals. Solving the CSP consists
in finding all the possible values of the interval bounds
of every step 7, , where the WCET is the minimization
of the maximum value of all the ¢, ,.end.

B. The constraint sub-language

Our goal is to propose a constraint-based declarative
approach to compute cost of basic blocks. In the
following subsections, we recall the notons that we have
used in our proposal.

1) Allen intervals: Allen intervals are used to en-
force the relations between the non atomic activities
we consider. The attached algebra defines temporal
relations between time intervals. 13 (exclusive) basic
relations are defined (figure 4) where only 7 relations
are depicted (other ones are obtained by symmetry , =
being its own symmetrical).

A Before B | === ——
—
A Bqual B =
A Meets B —
A Overlaps B [
Task interval A —
— A During B —_—
. —
Task interval B A Starts B prm—
=
A Finishes B ——

Figure 4: Allen intervals

2) The StartsBeforeBegin constraint: The Starts-
BeforeBegin constraint is considered to handle effi-

ciently priorities. Given two tasks ¢ and j, the Starts-
BeforeBegin constraint expresses that the task j starts
at the same time or after the begining of the task 7.

3) The cumulative constraint: The cumulative con-
straint is used to enforce the concurrency relations, e.g.,
sharing of resources. With respect to a given resource
with C' units available, given a list of tasks® 7 =
[(i0,¢0);- -5 (dn—1,Ccn—1)] defined by their respective
execution interval ¢; and capacity requirement c;, the
cumulative constraint Cumulative(C, 7) expresses that,
at any time, the resources granted (exclusively) do not
exceed the number C' of available resources.

Vit € [oérkl?n{l’“m} , olgnlgfn{ik'M}]' Ypop <C
with ix.m and ix.M denoting the lower and upper
bounds of the interval i;. A particular case of the cu-
mulative arises when the number of available resources
is 1: a mutual exclusion constraint. Such a constraint
is usually called disjunctive. In the following, we
apply the Allen constraints to the computation of the
basic block cost.

C. The constraints space

With respect to our concerns, an interval is used to
model the lifetime of instructions, steps and resources
allocation. We denote by ¢; the instructions. An
instruction ¢ executed on a stage j is represented by
a step t; ;. We denote by ¢; ;1 , the allocation of the
resource k by a step t; ;. This representation is used
in the case of a non-deterministic resource. In case
we have a deterministic resource access, we use the
notation %; ; 1. occ, Where occ is the accessed occurrence.
The right bound and the left bound of the interval ¢; ;
represent the start time and the end time of the step,
referred to respectively by ¢; ; ,, and ¢; ; ar.

The problem is defined by:

e the intervals associated with the instruction
path,

e the constraints that captures (1) instructions se-
quence, (2) stages chaining, (3) resources allo-
cation and (4) architecture specific constraints,
e.g., out-of-order stages, ...

All these constraints are conjoined to constitute the CSP
problem.

We consider the following instruction path to illus-
trate the constraints. In the first table we represent
instructions i, in assembly code. In the second table,
we show the uses attribute of the first instruction 7.
Each execution step is illustrated (first column) using
its representing micro-step %o -

3We use lists instead of sets because two tasks with the same
interval and resource must not be mixed.

Assembly of the instruction path
4o ldr r3, [rll,-#20]
11 cmp r3, #100
Qo bgt 838c // end of prefix
13 mov r0, r3, 1lsl #0
i4 sub rl3, rll, #12

15 ldmia r13, {, rll, rl3, rl5}
Sim-nML "uses" attribute of 10
i0,0 FE & FBuf,
t0,1 DE ,

10,2 IS & RoB ,
10,3 MEM & M.read & R[3].write & R[11l].read & ROB,
io.a CM

1) Instruction constraints: We capture here the
constraints related to the instructions execution.

When an instruction executes on a stage, it is
generally stored in a buffer resource where it remains
until it goes to the next stage. The lifetime of the step
and the allocation time of the buffer slot are the same.

to,0 = to,0,FBuf N to2 = to2,RoB N to,3 = t0,3,RoB

During a step, the instruction is contained continu-
ously in a buffer. Otherwise stated, a step yields the
control to the following step. Here we present the
continuity constraints of the instruction 70:

t070 Meets t()?l N t071 Meets t()?g AN
to’g Meets to,g A t0’3 Meets t0,4

A step is performed if and only if the corresponding
stage is available. The start time of the step and the
allocation time of the stage are equal.

to,0,FE,0 Starts to,o N to,0,DE0 Starts to,1 N
t0,0,15,0 Starts to2 N to,3,MEM,0 Starts to,3 A
t0,0,CM,O Starts t074

A step t;; using a register that is produced by
another step t;/ ;» implies that ¢,/ ;» must execute before
t; ;. In our example, 70 produces the register R[3] on
the ALU and ¢1 and 43 use it.

to,3 Before t;3 A tp3 Before ¢33

2) Stage constraints: These constraints are drawn
from the stages features.

Each step accesses exclusively one stage. If we
consider a stage s with nb_s occurrences, the following
cumulative constraint is defined:

Cumulative (nb_s, (t; js,1), (tirjrs,1),...)

where 1; ; are the task set corresponding to the access
to the stage s. The constraint below concerns the two
ALU stages of the processor example.

Cumulative (2, (t1,3,45v,1), (t2,3,4L0, 1),
(ts,3,arv,1), (ta3,4L0,1))

In-order execution implies that the instructions exe-
cute in program order in some stages. In case a stage
executes only one instruction in a cycle, every step ex-
ecutes before its successor in the program. Considering
a simple-scalar stage j, we define the following in-order
execution constraint, where n is the instruction path
length:

Vi < n. ti,j before ti+17j

The superscalar execution defines a particular ex-
ecution order for instructions. In a superscalar stage
with in-order execution, the steps of two successive
instructions may be processed in parallel, but the overall
program order is maintained. This particular case of
temporal relation is not stated in the Allen’s intervals
algebra. What we need to model is, for two steps t; ;
and ti’,j’7 ti,j.starts S ti/7j/.8ta’l“t5. So is defined
the temporal relation StartsBeforeBegin. Otherwise
said, for a stage, of index j, with a superscalarity degree
S, we have :

Vo < 8. t;; StartsBeforeBegin ¢;,,; (1)

In the same context, a stage with a scalarity degree .5,
can execute at most S instructions at the same time.
This parallel execution is expressed as a cumulative
constraint, where the available resources parameter is
the superscalarity degree and the capacity requirement
of instructions is set to 1. Let s be a superscalar stage
and ¢; ; s the steps representing the access to the stage
s, we consider the following constraint:

Cumulative (S, {(ti s, 1)}) (2)

The limited capacity of a superscalar stage requires
to force a precedence relation between steps ¢; ; and
ti+s,j-

tj,’j before ti+S,j (3)

The example below shows the constraints related to the
commit stage CM (2-scalar stage).

(1) to4 StartsBeforeBegin ¢; 4

(1) t1,4 StartsBeforeBegin ¢34

(2) Cumulative (2, (to.4,cnm,0,1), (t1,4,c0,0, 1),
cees (taa,00,0, 1), (85,4,000,0, 1))

(3) to4 Before 34

(3) t1,4 Before t34...

3) Architecture constraints: Some architecture fea-
tures results in dependencies between instructions. For
example, a cache line bound may break the parallel
execution of instructions because a single cache line
can be fetched each cycle. In other words, if two
instructions 4 and 4/, where 4 precedes i/, are not in the
same cache line, they can not be fetched simultaneously.
This constraint is generated only for the fetch stage, and

is derived from the instruction addresses and the cache
line size, specified in the Sim-nML description.

ti,O Before ti’,O

4) Resource constraints: Resources used by an
instruction in a stage are accessed after the stage is
allocated and are released before the instruction leaves
the stage. Thus, the live time of the resource allocation
is included in the lifetime of the stage allocation. As
shown in our example, the instruction ¢0 uses registers
R[3] and R[11] and the memory M when executed in
the ALU.

to,3,r,3 During to 3 prearo A
to,3,r,11 During to3 mEMm0 A
to.3,0r,0 During o 3 a7E01,0

Buffers are allocated to instructions in a non-
deterministic way. Such as stages, a buffer slot can
hold, at the same time, only one instruction. A k-
entry buffer can not hold more than k instructions at a
time. We express the buffers exclusive access property
as a cumulative constraint, where the resource capacity
parameter is the number of buffer slots available and
the tasks capacity requirements set to 1. Below is the
constraint of the 4-entries fetch buffer FBuf.

Cumulative (4, (t0,0,FBufy 1), ory (t5,0,FBuf7 1))

V. EXPERIMENTS

In this section we review the experimentation of our
framework (see Figure 1). We also report on the current
state of our framework. As stated before, our work flow
consists in the following steps:

1) We define the Sim-nML description of the
ARMYS instruction set. Actually, we have
extended the existing OTAWA description by
the introduced hardware components and the
directives related to the execution model, e.g.,
uses.

2) For each target program, we generate instruc-
tion paths.

3) Taking a path described trough its instruction
addresses, we generate its internal description.

4) From the preceding internal description, we
generate the constraints to be satisfied.

5) The generated constraints are solved using
the CHOCO solver [2]. We could have also
used other solvers implementing the global
constraints [5], such as [3].

In Figure 5, we represent the different constraints gen-
erated for the example of instruction path considered
in the previous section. With respect to the imple-
mentation, currently, we reuse the existing processor

descriptions and the OTAWA path analyzer which gener-
ates instruction paths from binaries. We have extended
the new Sim-nML parser and the internal description
generator (section III-E) while we have implemented
a sanity check verifier and a constraint generator. In
order to resolve the constraints through the CHOCO
solver, we generate java code of the constraints. We
mention that since our ultimate goal is a certified
WCET computation chain, the trace documentation is
automatically generated. All this is implemented in the
Ocaml language (~3500 lines).

Our first case study has considered the ARMVS
instruction set and the benchmarks taken from the
Milardalen suite [13]. The Table I concerns the bench
bsort100 and shows computed WCETs with OTAWA
and CSP approaches. We give the basic block and the
prefix lengths of analysed paths in instruction number.
We remark that with respect to the calculated WCET,
our results are equals to those of OTAWA, except for
paths where :

IS 1-cycle underestimation caused by the lack of
a constraint specifying the issue order (actually
the program order) of two ready instructions.

SS the solver strategy is more precise than that of
OTAWA (it is known that the execution graph
approach may cause a bit of overestimation in
some cases with superscalar microprocessors).

o1 102 | — ¢ 103 104
DE(i0) | o IS(i0) MEM(i.0)

PR 4]

g L

. c. ! .

_ [\ .

113 . Cl4
ALU(i_1) CM(i 1)

AT i 5[6
R l : R
2.4

123 | t
ALU(i_2) H CM(i

2
\ . 6 7
: \‘ 3

5] 6

3.3 . 3.4
ALU(i_3) N

D

[: 144
ALU(i_4)

9:‘710 Jwolu 11 ‘ 12

150 5.1 t52 9 (53 5.4
MEM(i_5)
7|8 8]9 oo} [ufe 12] 13

—® Meets - - » StartsBeforeBegin

micro-step

- Cumulative Stage (instruction)

start_time [end_time

Figure 5: Graph of the instruction path constraints

VI. RELATED WORK

With respect to the model-based approach, several
techniques have been used for WCET analysis. Abstract

Table I: WCETSs of bench Bsort100.

Basic block Prefix OTAWA CSP Diffe-
‘ length ‘ length WCET WCET rence ‘
8 0 7 8 -1 IS
15 6 12 11 1 SS
5 4 5 3 2 SS
5 3 5 5 0
7 3 6 3 3 SS
5 3 6 6 0
3 5 1 0 1 SS
16 5 12 12 0
3 3 3 0 3 SS
6 3 6 6 0
5 1 6 6 0
30 14 16 17 -1 IS
6 14 6 6 0
1 5 5 5 0
5 4 6 5 1 SS
6 28 3 2 1 SS
11 2 9 9 0
5 4 6 5 1 SS
5 13 3 2 1 SS
18 3 13 11 2 SS
5 3 6 6 0
5 16 6 3 3 SS
4 3 4 4 0
5 9 3 3 0
6 3 5 2 3 SS
5 3 5 5 0

interpretation was used in [10], [26] to analyse models
of pipelines and caches. As they remark, faithful
abstract models are hard to obtain. Processors are
described at the circuit level through a VHDL descrip-
tion [25]. Although, the complexity of this low level
description entails a lack of accuracy in the WCET
analysis, efficient tools supporting this approach become
nowadays available [1]. Another formal approach has
been investigated by [7], [8] by modeling the processor
and the program using timed automata. Verification
and WCET analysis are achieved by model-checking
but the time cost and the combinatory explosion of the
state space of such a method limits the capacity of the
approach to handle complex architectures. Other works
are based on ADL [21] for architecture modeling. ADL
are classified into categories. Behavior-centric ADLs
like ISDL [14] and nML [9] describes the processor
by its instruction set architecture. Architecture-centric
languages like MIMOLA [16] capture the structure of
the processor. Mixed languages that bring together the
two processor aspects have also been proposed [22],
[28]. Thanks to high level processor descriptions, it
becomes possible to make high level analysis of proces-
sor behaviors. Another interesting feature of high level
descriptions is that they enable early verification [20].

VII. CONCLUSION

In this paper, we have presented an ADL-based
approach for WCET analysis. To achieve this goal, we
have proposed an extension to the Sim-nML language.

Using the description of processors and instructions sets,
we generate a constraint based time analysis. This
constraint description is solved using a CSP solver. To
the best of our knowledge, WCET analysis through
a constraint based declarative approach is new. Cur-
rently, we have made a small number of experiments.
It should be stressed that the speed of computation
is close to that of OTAWA. However, currently, we
have not made any optimization, e.g., variable range
strengthening, over the generated constraints. We hope
that more refined constraints will provide better perfor-
mance. With respect, to the architecture features taken
into account, we believe that the constraint approach is
more modular than current approaches [17], [24] and
consequently can be extended easily. As a matter of
fact, for our future work we intend to take into account
cache analysis, bus access [12], [19] and to stress the
proposed approach with exotic actual microprocessor
implementations. Moreover, as said in the beginning,
since our ultimate goal is a certified wcet computation,
such a modular approach should make the validation
work easier.

Aknowledgement. We would like to thank Marie
de Roquemaurel for introducing us to the world of
Constraint Satisfaction Problems.

REFERENCES

[1] aiT Worst-Case Execution Time Analyzers. http://www.absint.
com/ait/.

[2] Choco: an Open Source Java Constraint Programming Library.
http://choco.mines-nantes.fr.

[3] Gecode: GEneric COnstraint Development Environment. http:
/Iwww.gecode.org, 2006.

[4] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. Otawa:
An open toolbox for adaptive wcet analysis. In Software
Technologies for Future Embedded and Ubiquitous Systems

(SEUS), 2010.
[5] N. Beldiceanu, M. Carlsson, and J.-X. Rampon.
Global ~ Constraint ~ Catalog. http://www.emn.fr/z-

info/sdemasse/gccatold/index.html, 2005.
[6] A. Burns. Programming in Occam 2. Addison-Wesley, 1988.

[7]1 FE Cassez. Timed games for computing wcet for pipelined
processors with caches. In International Conference on Ap-
plication of Concurrency to System Design (ACSD, 2011.

[8] A. Dalsgaard, M. Olesen, M. Toft, R. Hansen, and K. Larsen.
METAMOC: Modular execution time analysis using model
checking. In [0th International Workshop on Worst-Case
Execution Time Analysis (WCET), 2010.

[9] A. Fauth, J. Van Praet, and M. Freericks. Describing instruction
set processors using nml. European Design and Test Conference
(EDTC), 1995.

[10] C. Ferdinand and R. Wilhelm. Fast and efficient cache behavior
prediction. Technical report, Universitits und Landesbibliothek,
1997.

[11] M. Freericks. The nml machine description formalism. Tech-
nical Report 1991/15, TU Berlin, 1991.

[12] N. Guan, M. Lv, and W. Y. 0001. Fifo cache analysis for wcet
estimation: a quantitative approach. In Design, Automation and
Test in Europe (DATE), 2013.

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

[27]

(28]

[29]

[30]

J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The
Meilardalen WCET benchmarks — past, present and future. In
International Workshop on Worst-Case Execution Time Analy-
sis (WCET), 2010.

G. Hadjiyiannis, S. Hanono, and S. Devadas. Isdl: an
instruction set description language for retargetability. Design
Automation Conference (DAC), 1997.

C. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

R. Leupers and P. Marwedel. Retargetable code generation
based on structural processor descriptions. design automation
for embedded systems. In In Design Automation for Embedded
Systems, 1998.

X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order
processors for WCET analysis. Real-Time Systems, 2006.

Y.-T. S. Li and S. Malik. Performance analysis of embedded
software using implicit path enumeration. In Design Automa-
tion Conference (DAC), 1995.

M. Lv, N. Guan, Q. Deng, G. Yu, and W. Y. 0001. Mcait - a
timing analyzer for multicore real-time software. In Interna-
tional conference on Automated technology for verification and
analysis (ATVA), 2011.

P. Mishra and N. Dutt. Modeling and validation of pipeline
specifications. ACM Trans. Embedded Computer Systesms,
2004.

P. Mishra and N. Dutt. Processor description languages:
applications and methodologies, chapter 2. Morgan Kaufmann
Publishers/Elsevier, 2008.

V. Rajesh and R. Moona. Processor modeling for hardware
software codesign. In International Conference on VLSI De-
sign, 2000.

T. Ratsiambahotra, H. Cassé, and P. Sainrat. A versatile
generator of instruction set simulators and disassemblers. In
Proceedings of the 12th international conference on Symposium
on Performance Evaluation of Computer & Telecommunication
Systems (SPECTS), 2009.

C. Rochange and P. Sainrat. A context-parameterized model
for static analysis of execution times. Transactions on High-
Performance Embedded Architectures and Compilers II, 2009.

M. Schlickling and M. Pister. A framework for static analysis
of VHDL code. In 7th Intl. Workshop on Worst-Case Execution
Time (WCET) Analysis, 2007.

J. Schneider and C. Ferdinand. Pipeline behavior prediction for
superscalar processors by abstract interpretation. Languages,
Compilers, and Tools for Embedded Systems (LCTES), 1999.
E. T. Foundations of constraint satisfaction (Computation
in Cognitive Science). Computation in cognitive science.
Academic Press, 1993.

C. Tradowsky, F. Thoma, M. Hiibner, and J. Becker. Lisparc:
Using an architecture description language approach for mod-
elling an adaptive processor microarchitecture. In International
Symposium on Industrial Embedded Systems (SIES), 2012.

R. J. Vanderbei. Linear programming: Foundations and exten-
sions, 1996.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
strom. The worst-case execution-time problem—overview of
methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS), 2008.

