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Abstract— As real-time systems continue to integrate more
and more functionality, powerful multi-core architectures are
the only viable solution to meet their computational demands
under reasonable energy budgets. Dramatic increases in the
number of cores on multi-core architectures have led to scal-
ability issues. Modern platforms are moving away from designs
with shared caches and shared buses to designs with private
caches on cores and high-bandwidth Networks-on-Chip (NoC)
for communication. On such architectures, worst-case execution
times of real-time tasks depend on the physical location of
cores and interference on the NoC. In this paper, we present
a dynamic-priority policy for scheduling memory accesses on the
NoC and a location-aware partitioning policy that takes explicit
advantage of this NoC scheduling policy to improve the efficiency
of task allocation. We demonstrate that this combination achieves
significant improvement in task set schedulability and NoC
utilization.

I. INTRODUCTION AND RELATED WORK

The need to meet ever-increasing computational demands
while still maintaining reasonable power/energy consumption
led to the advent of multi-core architectures. Multi-core archi-
tectures were initially used predominantly for general-purpose
computing. However, as real-time systems integrate more and
more functionality, they are demanding more computational
power, making multi-core architectures a natural choice even
within the real-time systems domain. Real-time systems are
those where predictability and timing of functionality (i.e.,
tasks) are paramount. While ensuring predictability and tem-
poral correctness on single-core architectures is challenging
enough, the use of multi-core architectures for real-time exe-
cution introduces additional challenges.

A fundamental consideration in ensuring safe and efficient
execution of real-time tasks on multi-core architectures is how
to schedule tasks on cores. Real-time scheduling on multi-
core architectures has been the focus of much research and
most techniques fall into three categories, namely partitioned
scheduling, global scheduling and a hybrid of the two, semi-
partitioned scheduling. In partitioned scheduling, tasks are
statically allocated to cores and are scheduled using single-core
scheduling algorithms on each core. Partitioned scheduling is
equivalent to a bin-packing problem and may be solved in
practice with variants such as first fit, best fit, worst fit, etc. In
global scheduling, all tasks are placed in a common queue and
dynamically scheduled on available cores, potentially resulting
in task migrations. The third category is a hybrid of the
first two and is called semi-partitioned scheduling. In this
case, most tasks are partitioned onto cores and only a few
of them are allowed to migrate, typically in a pre-determined
fashion. Davis et al. recently conducted a comprehensive
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survey of hard-real-time scheduling techniques for multi-core
architectures [1].

A. Architectural Considerations

Foremost among factors that impede predictability on
multi-core architectures are on-chip memory hierarchies and
the on-chip communication infrastructure. Most of the schedul-
ing techniques discussed in the above-mentioned survey [1] do
not explicitly consider the effects of such architectural factors,
including cache conflicts among tasks scheduled on a given
core, overheads incurred due to cache content migration (in
the case of non-partitioned scheduling approaches), contention
on the shared communication infrastructure among migration
traffic and main memory traffic, etc. They assume that the
effects of these factors are either negligible or that they are
orthogonal aspects that can be easily subsumed into worst-case
execution time (WCET) analysis of a task.

Consideration of architectural factors has been addressed
in several ways. A recent approach by Yao et al. [2] proposes
a memory centric scheduling approach for hard-real-time tasks
executing on a shared bus based multi-core architecture. The
fundamental idea is to divide tasks on each core into memory
phases (phase where memory requests are issued) and execu-
tion phases (phase where execution is performed using cached
data) and employ Time Division Multiple Access (TDMA) for
memory accesses issued by multiple cores. The main drawback
of this approach is the fact that it requires a transformation of
tasks that may not be practical for all types of tasks.

Consideration of shared caches and shared buses as part
of WCET analysis has been explored by several researchers.
Yan and Zhang [3] propose techniques to calculate the WCET
of tasks on multi-core architectures with shared caches. Chat-
topadhyay et al. [4] propose a timing analysis technique for
multi-core architectures that considers both shared caches and
shared buses. Kelter et al. [5] discuss shared bus-aware WCET
analysis under a TDMA approach.

In recent architectures, on-chip memory hierarchies are
moving away from designs with shared caches for (groups
of) cores and towards designs with only private caches on
each core. As the number of cores on a single chip continues
to increase, in the interest of scalability, shared bus-based
architectures are giving way to platforms with a Network-on-
Chip (NoC) for communication among cores and with off-chip
main memory. Examples of such architectures include the Intel
SCC platform [6] and Tilera’s scalable architectures such as
the TilePro64 platform [7]. Recently, several researchers have
proposed techniques targeted at such scalable architectures.

The area of scheduling traffic on the Network-on-Chip
(NoC) has been the focus of much research in recent years,
with techniques being proposed for both general purpose and



real-time computing. Bjerregaard et al. conduct a survey on
research practices of NoCs in general [8]. We now specifically
discuss work relating to handling NoC traffic (e.g., NoC
scheduling, routing, etc.) There are primarily two types of
approaches that have been proposed to handle NoC traffic,
namely static resource reservation-based approaches and ap-
proaches using run-time arbitration of resources.

Goossens et al. [9] and Millberg et al. [10] propose
approaches where the available link transmission capacity is
partitioned into fixed time-slots and a particular traffic flow
occupies the physical link in each time slot. Circuit-switching
techniques were proposed by Wolkotte et al. [11] and Wiklund
and Liu [12]. Here, a dedicated path is provided for a source
and destination core pair that cannot be used by any other
cores. In previous work, we propose a simple time division
multiplexing based approach, namely weighted TDMA [13].
In this work, our goal is to handle contention among main
memory traffic and to make task WCET independent of
the physical location of the core to which it is allocated.
The advantages of resource reservation-based approaches is
their simplicity and ease of analysis. On the other hand, the
fundamental drawback is under-utilization of the NoC.

Bolotin et al. [14] propose QNoC, a technique that divides
the network services into four different levels and performs
a prioritized arbitration of resources according to the level
of service available in the system. Kavaldjiev et al. [15]
present a round-robin approach to schedule real-time services
on the system. Bjerregaard and Sparso [16] propose a priority-
based round-robin technique to bound latency and bandwidth.
Priority-based wormhole switching technique was introduced
by Shi and Burns [17] to provide communication service
guarantees. In this work, traffic flows are assigned priorities
and contention is resolved on the basis those priorities. The
limitation of this approach is that as the number of traffic
flows increases, it becomes impractical to maintain separate
priorities for all of them. To overcome this limitation, Shi et al.
[18] proposed a priority share algorithm where multiple traffic
flows share the same priority. Shi et al. [19] also proposed
a new ’per-priority’ analysis approach that can efficiently
handle wormhole switching with a priority sharing policy.
In this work, they also present a task mapping and priority
assignment-based on the priority sharing policy in order to
meet the real-time requirements.

Nikolic et al. [20] propose worst case off-chip memory
traffic analysis under a limited migrative model. They allocate
tasks onto cores and propose a technique to calculate the worst-
case interference time of packets belonging to a given task.
This work assumes static priority assignment for tasks.

All the techniques for scalable multi-core architectures
discussed thus far assume that task allocation onto cores is
known a-priori. In contrast, we argue that cache and NoC
aspects must be considered during the task allocation phase
in an effort to derive task allocations that improve cache and
NoC characteristics.

To this end, in recent work, we propose two schemes. First,
we propose a partitioned real-time scheduling scheme [21] in
which each task is allowed to lock a subset of its memory lines

in the cache on the core to which it is allocated!. In order to
maximize cache locking, task allocation is performed with the
explicit goal of reducing cache conflicts among tasks on a
given core. Second, we propose an architecture-aware semi-
partitioned scheduling scheme [13] that also allows tasks to
lock a subset of memory lines in cache. This scheme employs
a proactive cache content migration scheme [27] to migrate
locked cache lines when a task migrates, explicitly considering
the overheads of this migration.

Both the above schemes assume that memory access la-
tencies for a task are independent of the physical location
of the core on which it is allocated. For example, in order
to enforce this, we propose and employ a weighted TDMA-
based NoC scheduling policy in our architecture-aware semi-
partitioned scheduling scheme [13]. However, in the process
of making memory access latency location-independent, we
increase pessimism and sacrifice NoC performance.

B. Contributions of this Paper

In this paper, we propose a two-part scheduling scheme
for hard-real-time tasks executing on cache-based architectures
with NoCs. The first part is a policy for memory traffic
scheduling on the NoC where the memory access latency for a
core is proportional to its distance from the memory controller.
The second part is a location-aware partitioning task allocation
policy that allocates tasks with the explicit goal of maximizing
cache locking benefits under the given NoC scheduling policy.
We compare the performance of our algorithm with that of our
previous architecture-aware semi-partitioned scheme [13] and
demonstrate that it is better, both in total schedulable utilization
of the cores and in utilization of the NoC2.

II. ASSUMPTIONS AND SYSTEM MODEL

In this section, we present assumptions made in our work
and introduce the terminology used in the remainder of this

paper.

We assume a homogeneous multi-core architecture where
each core is assumed to have a lockable, set-associative private
cache and it is assumed that there are no shared caches. We
assume a hard-real-time sporadic task model where relative
deadlines of tasks are less than or equal to their minimum inter-
arrival times (hereafter called period). A task 7; is represented
by the tuple (T;, C;, D;), where T; is its period, C; is its
base worst-case execution time (WCET) and D; is its relative
deadline. We assume that a task may lock its memory footprint
in the cache on its core and that every task requires at most
one way in each cache set. The base WCET of a task, namely
C;, is calculated assuming that a task is able to lock its entire
memory footprint in the cache on its core. The base utilization
of a task 7;, denoted by Utl;, is defined as the ratio of its base
WCET to its period. Tasks are assumed to be independent in

ICache locking is a commonly used technique to improve the predictability
of cache behavior. Several techniques [22], [23], [24], [25], [26] have been
proposed in recent years for static and dynamic cache locking.

’In order to perform a fair comparison of our proposed approach to other
existing NoC scheduling and analysis schemes such as the Limited Migrative
Model approach proposed by Nikolic et al. [20], significant adaptation of
existing schemes is required due to different assumptions about task allocation
and cache-related aspects. Such adaptation is out of the scope of the current
paper. However, we will explore this as part of future work.



nature. Tasks on a given core are assumed to be scheduled
using an Earliest Deadline First (EDF) policy.

We assume that the architecture includes a mesh-based
Network-on-Chip (NoC) with worm-hole switching for com-
munication. We assume that separate channels are available in
the NoC for communication among cores and communication
between cores and main memory, as is found in Tilera’s
TilePro64 architecture [7]. We assume that there are multiple
memory controllers, each with multiple ports, arranged around
the mesh of cores. For example, the TilePro64 architecture has
64 cores arranged in a 2-D mesh and four memory controllers,
arranged two above and two below the mesh. We assume that
every memory controller can access the entire main memory,
as is the case on TilePro64 when the memory is not striped.
Each memory controller has four ports. Figure 1 shows the
layout of one quadrant of the architecture assumed in this
paper. Each port is assumed to serve four cores in a single
column (e.g., Portl serves cores A, B, C and D). So, every
off-chip memory request is routed along a straight path to the
appropriate memory controller and a specific port within the
memory controller, as depicted in Figure 1.
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Fig. 1. 4-core shared bus Tilera like architecture

III. METHODOLOGY

The contributions of this paper are two fold. The first is
a policy for scheduling memory traffic on the NoC and the
second is a location-aware partitioning of tasks onto cores.
Our fundamental idea for memory traffic scheduling on the
NoC is to control the rates of memory requests issued by
different cores to different pre-calculated values and schedule
the memory transfers over a predetermined set of NoC links
using a dynamic priority scheduling policy. Under this scheme,
memory requests from different cores experience different
memory transfer latencies depending on the core’s distance
from the memory controller. The goal of the location-aware
partitioning phase is to derive schedulable task allocations,
if possible, and assign memory request rates to each core
in the process. Note that our scheme does not require any
modification to user-level tasks executing on cores. Once a
memory request has been issued, a task simply busy waits
until the request is completed, as is typical. Rate controlling
is performed transparently at the system level.

As mentioned in Section II, we assume that all memory
traffic from a given core travels along a fixed, straight path
to a designated port of a designated memory controller. For

example, in Figure 1, all cores (in the quadrant shown) are
served by the single memory controller shown and core D can
take only the highlighted route to access (off-chip) memory
and can only be served by Portl on the memory controller.
By employing this approach, we essentially bound the number
of cores sharing a given column of NoC links and a given
port within a given memory controller. In the remainder of
this section, we explain the details of our algorithm using a
single column of (four) cores that share one port in the memory
controller since traffic flows from multiple such columns do
not interfere with each other in our scheme.

A. Memory Traffic Scheduling Terminology

Memory traffic is scheduled on the NoC in a manner
analogous to real-time task scheduling on a processor and we
employ a policy analogous to the Earliest Deadline First (EDF)
scheduling policy for this purpose since EDF supports maximal
utilization. We name our NoC scheduling policy EDF-on-
NoC. Memory requests from a core are analogous to jobs of
a sporadic real-time task and the NoC bandwidth is analogous
to the processor on which these jobs are to be scheduled.
In accordance with this analogy, every core k is assumed to
contain one abstract implicit deadline sporadic task, namely
7-]’%, with minimum inter-arrival time or period represented by
Ty, and a worst-case execution time or WCET represented
by Ck,. Tk, represents the minimum separation between
consecutive memory requests that our algorithm enforces on
a given core k. C%, represents the worst-case on-chip latency
of a memory access initiated by core k when it is the only
memory access in progress over a given NoC column. C]kw for
a given core k is calculated based on the distance of the core
from the memory controller designated to serve the core. T%,
is calculated such that it is larger than or equal to the worst-
case response time (i.e., the time between the initiation and
completion) of a memory access initiated by core k, but small
enough to ensure schedulability of tasks on core k. We now
describe the calculation of C¥,. Since the calculation of 7%,
is dependent on task allocation, it will be described later.

B. Calculation of Cyy

Memory requests may be of two types, namely read and
write requests. In the case of a read request, the memory
request for a particular cache line goes from the core to the
memory controller and then a memory line is transferred from
the memory controller to the core over a NoC column. For a
write request, a core sends a write request and a cache line to
the memory controller over a NoC column. For the purposes of
our NoC scheduling policy, these two requests are analogous.
We use a read request to demonstrate the calculation of Cjy
for a given core.

Figure 2 shows the progression of a memory read request
initiated by the core farthest from the memory controller,
namely core A, and the subsequent return of the requested
memory line. Let us assume that the bandwidth of each link
on the NoC is sufficiently large to transfer an entire request
in one packet, but that a memory line requires four packets
for its transfer (note that this is a realistic assumption on
an architecture such as the TilePro64). The memory request
packet then takes 4 cycles to reach the memory controller
from core A. Let us assume that the latency of processing
the memory request and actually receiving the requested line



from memory is x cycles. So, the requested line arrives at the
memory controller at cycle 4 4+ z relative to the start of the
request, reaches core D at cycle 5 + x and so on. Subsequent
packets arrive in successive cycles. Following this approach,
the first packet, P1, reaches its final destination, core A, at
time 8 + x and the final packet, P4, reaches core A at time
11 + z. Among these cycles, we consider only the on-chip
latency (i.e., the portion of the latency using the NoC). Hence,
C4l is 11 cycles. Similarly, CB is 9, C; is 7 and CD is 5.
In summary, C¥, for a given core k depends on the distance
of the core, in terms of number of hops over the NoC column,
from the memory controller designated to serve it.

Cyclel Cycle2 Cycle3 Cycle4d
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P1 Cycle 5+x
P2<— Cycle 6+x
P3t«— Cycle 7+x
P4« Cycle 8+x

Fig. 2. Calculating C{a

Formally, C} is calculated as shown in Equations 1 and
2 for read and write requests, respectively. Here, h* is the
number of hops between core £ and the memory controller,
r is the size of a request, [ is the size of a cache line and
b is the bandwidth of each link. For a read request, the first
term represents the time for the request to travel over the NoC
and the second term represents the time for the returned cache
line to travel over the NoC. In the case of a write request, the
request and cache line are both sent over the NoC one after
another.

Chi= 4T =D+ R+ 11 )
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C. Location-aware Partitioning and Calculation of Ty

As mentioned in the previous section, C’]’f/[ for a core k is
proportional the core’s distance from the memory controller.
Hence, it is advantageous to allocate tasks with a higher
number of memory requests to a core closer to the memory
controller. In the context of our paper, since tasks are allowed
to lock their memory footprints in the cache on the core to
which they are allocated, only lines that they are unable to
lock lead to off-chip memory accesses. Since we assume that
a task’s memory footprint does not exceed one cache way,
the only reason for unlocking cache lines would be conflicts
with other tasks allocated to the same core. Hence, the goal
of our location-aware partitioning algorithm is to ensure that
1) cache conflicts are reduced to the extent possible, 2) when
unlocking becomes necessary due to unavoidable conflicts, the
choice of which task will unlock lines is made with the goal
of improved schedulability and 3) cores containing tasks with
a higher number of off-chip memory accesses are closer to the
memory controller. Algorithm 1 shows the steps involved in
our approach. We now explain the working of our algorithm

and the calculation of T, for cores with the help of a simple
running example.

Algorithm 1 Task Allocation Algorithm
1: Function: allocate_tasks()
2: order_tasks_non_increasing_utilization(task_list)
3: for each task € task_list do

4. allocated <+ try_allocate_fully_locked(task)

5. if (allocated = false) then

6: allocated < try_allocate_partially_unlocked(task)
7: if (allocated = false) then

8: {Task set is unschedulable}

9: EXIT

10: end if

11:  end if

12: end for

13:

14: Function: try_allocate_fully_locked(task)
: for each core € available_cores do

16:  prev_util = find_util(core)

17:  allocate_task_to_core(task, core)

18:  cur_util = find_util(core)

19: if (cur_util < 1) then

—
wn

20: if (cur_util — prev_util = locked_util(task)) then
21: return (true)

22: end if

23:  else

24: deallocate_task_from_core(task, core)

25: return (false)

26:  end if

27: end for

28:

29: Function: try_allocate_partially_unlocked(task)
30: for each core € available_cores do

31:  prev = find_period(core)

32:  allocate_task_to_core(task, core)

33:  schedulable < check_schedulability(core)

34:  {Use Equations 4, 3 and 5 for schedulability test}
35:  if schedulable then

36: curr = find_period(core)

37: change = prev - curr

38: add_info(sched_core_info_list, core, change)
39: deallocate_task_from_core(task, core)

40:  end if

41: end for

42: if is_empty(schedulable_core_info_list) then

43:  return (false)

44: else

45:  core <—min_period_change_core(sched_core_in fo_list)

46:  allocate_task_to_core(task, core)

47:  relocate_cores_on_noc()

48:  {Relocate such that cores with shorter periods are closer
to memory controller}

49:  return (true)

50: end if

1) Running Example Setup: Table I lists the characteristics
of the task set used as a running example. The first, second
and third columns represent the ID, period and base WCET
of tasks, respectively. Recall that the base WCET is calculated
assuming a task’s entire memory footprint is locked in cache.
The fourth column represents the number of accesses a given



task performs to its locked cache footprint, termed its access
frequency. Tasks 1—8 have the same characteristics, so they are
consolidated into a single row. Figure 3 shows the architectural

7 T; C; |AF;
1-8 100000 [ 25000 {3000
9 [100000{25000| 294
10 | 100000 {25000 347

TASK SET CHARACTERISTICS FOR RUNNING EXAMPLE

TABLE 1.

setup used for our running example. The setup consists of 4
cores organized in a single column that share a port within a
memory controller, i.e., the setup is essentially one column of
the NoC shown in Figure 1. Each core has a private, lockable
2-way set associative cache. For the sake of illustration, in
our running example, we assume that the memory footprints
of all tasks map to the same cache sets. This implies that at
most two tasks can lock their contents in any given set without
conflicting.

Fig. 3. Architectural Setup for Running Example

2) Task Ordering: The first stage in task partitioning is
determining in what order tasks are chosen for allocation. In
our algorithm, tasks are chosen for allocation in non-increasing
order of their base utilizations (Line 2 in Algorithm 1). In our
running example, since all tasks have the same base utilization,
we choose them in order of their index or ID.

3) Task-to-Core Allocation: The second stage in task parti-
tioning is determining where to allocate a chosen task. In our
algorithm, there are two factors to consider when allocating
a given task to a core. The first factor is schedulability of
tasks on a given core. The second factor is schedulability of
core memory requests, which are abstracted using task 75, on
each core k, on the NoC. Since we employ an EDF policy
for scheduling tasks on cores and for scheduling abstract tasks
(i.e., memory requests) on the NoC, schedulability conditions
are simply based on utilization. The tests for core schedula-
bility and NoC schedulability are shown in Inequalities 3 and
4, respectively. Here, U tili»C denotes the utilization of task 7;
on core k and m is the number of cores sharing a memory
controller port (in our case, m = 4).

> Utilf <1 3)
Ti€Ek

m k

D @
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We now describe the steps involved in the task allocation
process, the calculation of task utilization on a given core and
the calculation of the periods of abstract tasks for cores.

a) Allocation without Unlocking: Our algorithm first
attempts to allocate a chosen task, say 7;, to a core where
its base utilization can be accommodated and where it does
not suffer any cache conflicts with other tasks (Function

try_allocate_fully_locked() in Algorithm 1). In other words,
it attempts to allocate task 7; to a core, say k, where 7; it is
able to lock its entire memory footprint, thus retaining its base
utilization (i.e., Utili-C = Util;). If more than one such core
exists, the one with least current utilization is chosen in an
effort to balance load better. In our running example, since we
assume a 2-way set associative cache, at most two tasks with
overlapping cache footprints can be accommodated on each
core without any actual cache conflicts. Tasks 7 through 7g
are found to be schedulable in this step on cores A through
D. Note that, since these tasks are able to lock their entire
footprints on their respective cores, these allocations affect
only core schedulability and not NoC schedulability. The state
of the system after this step is shown in Figure 4.

A B C
T3 T4

Fig. 4. System After Allocation of Tasks 71 through 73

b) Allocation with Partial Unlocking: If a chosen task
7; cannot be accommodated on any core with its entire
footprint locked, allocation with unlocking of some cache lines
is explored (Function try_allocate_partially_unlocked() in
Algorithm 1). Since unlocking of cache lines results in requests
to main memory, NoC schedulability is affected in addition to
core schedulability due to such an allocation. So, the goal of
this step is to find a core where 7; can be accommodated and
both the core and the NoC remain schedulable. The algorithm
proceeds to the steps described next.

i) Slack-aware Unlocking: A core, say k, is chosen from
cores that have not previously been considered for the allo-
cation of task 7;, starting from the core that is closest to the
memory controller. If core k£ cannot even accommodate the
base utilization of task 7;, it is not considered further and the
algorithm skips to step iii). Otherwise, the algorithm proceeds
as follows. If the allocation of 7; on core k would result
in a cache conflict on core k, either task 7; must unlock (a
subset of) its lines or an existing task on core k must do the
same. Here, we employ a policy based on slack and access
frequency. Slack of a task is defined as the difference between
the task’s period and its base WCET. Among the tasks with
a cache conflict, the task that has highest ratio of slack to
access frequency of the chunk to be unlocked is chosen for
unlocking. The goal of this heuristic is to minimize the increase
in utilization on the core and the increase in memory traffic
over the NoC. Equation 5 shows the calculation of updated
utilization for task 7; and the same applies to any task on core
k that ends up unlocking (a subset of) its cache lines. Here,
AFF is the access frequency to the chunk of lines that task 7;
ends up unlocking on core k.

AF} x [Ty]
T;

The only unknown value in Equation 5 is 7%, which is

calculated as shown next.

ii) Calculation of T]’f/[ and Schedulability Check: If core k
has no unlocked cache lines at all, Ty, = 0 since the core

Util¥ = Util; + &)



initiates no off-chip memory requests. If core k& had unlocked
cache lines before the consideration of task 7;, T%, would
already have a value assigned in a previous iteration. If the
allocation of task 7; on core k does not result in any changes to
cache line unlocking, T]’\} remains unchanged. If the allocation
of 7; would result in a change to cache line unlocking on core k
in accordance with step i), 7%, must be updated. As mentioned
earlier, 77, is the minimum inter-arrival time between memory
requests from a core k. The value of T, must be chosen
such that it maintains schedulability of tasks on core k and
schedulability of memory accesses on the NoC.

Inequality 3 represents the schedulability of tasks on core
k. This imposes an upper bound on the inter-arrival time
between memory requests for core k, i.e., an upper bound
on the period, namely Tz’fp of the abstract task on core k. We
set the value of T]’\} to this upper bound and use the updated
characteristics of the abstract task in Inequality 4 to check for
schedulability of memory requests on the NoC. If Inequality
4 is satisfied, task 7; is schedulable on core k, i.e., core k is
considered a candidate core for the allocation of task 7;.

iii) Choose Best Candidate Core (Line 45 in Algorithm 1):
Steps i) and ii) are repeated for every core. If no candidate
core is found, the task set is declared unschedulable and the
algorithm terminates. If, on the other hand, multiple candidate
cores are identified, the core that leads to minimum increase
in the NoC utilization is chosen. If there are multiple such
cores, the core that suffers the minimum increase in its own
utilization is chosen. Finally, if there are multiple such cores,
the core with the lowest absolute utilization is chosen.

iv) Relocation of Cores (Line 47 in Algorithm 1): As
mentioned above, the lower the value of T]’fl, the more frequent
the number of memory accesses core k issues. In order to
reduce the NoC utilization and improve NoC schedulability,
the core with the lowest value of T, should, in general, be
closest to the memory controller since it would then have
lowest values of C;. As observed in earlier steps, when a new
task 7; is allocated to core k, it is possible that TA’“/[ decreases
due to cache line unlocking. In this process, it is possible
that T, becomes less than the value of T%,, where core [ is
closer to the memory controller. In this situation, our algorithm
(virtually) relocates core k to the position of core [ and moves
all cores starting from core [ one position further away from
the memory controller. We now prove that such relocation of
cores is guaranteed not to jeopardize schedulability.

First of all, since we only relocate cores, but do not change
the tasks allocated to cores or the periods of the abstract tasks
on cores, the utilization of tasks on relocated cores, calculated
according to Equation 5, and hence, the schedulability of the
cores, remain unchanged. So, we only need to prove that the
schedulability of the NoC is not jeopardized by relocation.
Let C'1 denote the on-chip memory access latency for core
I before relocation and let C2 denote that of core k before
relocation. By definition of on-chip memory access latency,
C1 < C2. The combined contribution of cores [ and k to NoC
utilization before and after relocation are given by Equations
6 and 7, respectively. In both equations, the first term is the
NoC utilization of [ and the second, that of k.

cl1 C2

Utiltdre = ¥ o
M M

(6)

Utilafter — Q + g
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Subtracting Equation 6 from Equation 6 and simplifying, we
get Equation 8.

(N

(C2 — C1)(TL, — Tky)
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Since C1 < C2 and T%, > T%, Equation 8 evaluates to a
positive value. In other words, the NoC utilization can only
decrease due to the relocation. The argument used for core
l can be repeated for all other cores that are relocated to
positions further away from the memory controller than they
were.

¢) Running Example - Allocation with Partial Unlock-
ing: In our running example, tasks 79 and 71¢ fall into the
category of tasks that must be allocated with partial unlocking.
Among these two tasks, 79 is chosen for allocation first and
then 71¢.

Allocation of T9:

i) Since core D is closest to the memory controller, we first
try to allocate task 79 on core D. Existing tasks on core D
are 77 and 7g. Since all tasks have the same slack and 79 has
the lowest access frequency among the three tasks, it has the
highest ratio of slack to access frequency and it must unlock
its cache lines.

ii) We evaluate Inequality 3 to calculate an upper bound
for T1) that maintains the schedulability of core D. This
evaluation is shown in Inequality 9.

25000 25000 25000 904 x TH
100000 ~ 100000 ~ 100000 100000 —
From this inequality, we obtain 7%) = 85. We now use this

value in Inequality 4 to check for NoC schedulability, as shown
in Inequality 10.

C))

5

— <1 10

85 — 10
Since both core and NoC schedulability are satisfied, D is a
candidate core for task 7g.

iii) In a similar way, cores C' through A are also found to
be candidates for task 79. We find that allocating task 79 on
core D results in the minimum increase in NoC utilization.
Hence, task 79 is allocated on core D. Figure 5 denotes the
state of the system after allocation of task 7g.

A B C D
TS T6
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D -
T core =25+60

Fig. 5. State of system after allocation of Ty Please Update the figure

iv) After the allocation of task 79, core D is the only core
with unlocked cache lines. Since it is already closest to the
memory controller, no core relocation is required.

Allocation of Task T10:



i) Core D is not considered for task 7o since core D
cannot accommodate even the task’s base utilization. Next,
our algorithm checks core C. On this core, it is found that 7
would have to unlock its cache lines.

ii) Inequality 3 is evaluated to calculate an upper bound
for T, as shown in Inequality 11.

2 2 2 TS,
5000 5000 5000 347 % Mo (1
100000 ~ 100000 = 100000 100000

From this inequality, we obtain 7%} = 72. We now evaluate
NoC schedulability, as shown in Inequality 12.

5 7

— 4+ —<1 12

85 + 72— (12)
Since both core and NoC schedulability are satisfied, C' is a
candidate core for task 7.

iii) Core C' is found to be the best candidate core for 71
and the allocation is performed.

iv) Since core TS; < TL and core D is closer to the
memory controller, we now perform a relocation of cores.
Figure 6 shows the state of the system before and after the
relocation of cores necessitated by the allocation of task 7.

D. Practical Considerations

We now provide a brief discussion on practical aspects
involved in implementing EDF-on-NoC on a real platform.
Although we assume a mesh-based NoC in this paper, it should
be noted that the EDF-on-NoC policy itself can be applied to
other topologies. However, the calculation of C); and Tj; may
need to be updated according to the topology.

First, every core must have a buffer to hold outstanding
memory requests from tasks. A given task busy waits after
it performs a memory request. However, it is possible that
the task gets preempted while it is waiting for a memory
request to complete and the preempting task may perform
another memory request. Hence, at any given time, there may
be outstanding memory requests equal to the number of tasks
that have unlocked cache lines on a given core. This number
is known offline and is typically small. Since tasks performing
memory requests can get preempted, every core must also have
a buffer to hold returning memory lines until the requesting
tasks resume execution and use them. Once again, the number
of returned memory lines that need to be buffered is bounded
by the number of tasks that have unlocked cache lines.

Note that a given task performs one memory request at a
time. Hence, a task that has an outstanding memory request
cannot also have unused returned data. Hence, a single buffer
can be used for both purposes. An outstanding read request
needs space for just the request and an outstanding write
request needs space for the request as well as the cache line
to be written. The size of the return data for a read request
is equal to that memory line and that for a write request is
empty. Hence, the size of the buffer is bounded by the number
of tasks with unlocked cache lines times the size of data for a
read request.

Second, the router on every core to be able to determine
which packet to forward in any given cycle. To do so, every
router must contain a lookup table to store the relative deadline

(also equal to the period) of the abstract tasks of the cores
that contend for a given port of a memory controller. Absolute
deadlines of the “jobs” of this abstract task can be maintained
online in this lookup table. Every router must also have a buffer
that is capable of storing one packet per contending core at
any given time. The number of contending cores is statically
bounded for a given hardware platform. For example, on the
TilePro64 platform, this number is 4.

IV. PRIOR WORK USED FOR COMPARISON

In previous work, we proposed a cache-aware semi-
partitioned scheduling scheme [13] for the same task and
architectural model that we assume in the current paper. In
that work, the underlying partitioning policy (which is the
first stage in a semi-partitioned scheduling algorithm) is a
cache-aware policy. We also propose a weighted Time Division
Multiple Access (TDMA)-based approach to bound memory
access latency. We now briefly describe these two aspects of
our previous work.

A. Weighted TDMA approach

The basic idea of this scheme is to route all memory
requests from a given core along a straight path to the
appropriate memory controller and divide the available NoC
bandwidth in inverse proportion to the core’s distance, in terms
of number of hops, from the memory controller. This scheme
makes a task’s WCET independent of the physical location
of the core on which it executes. For the architectural setup
shown in Figure 3, this weighted TDMA approach results in
a memory access latency of 55 + 60 cycles, where 55 is the
latency over the NoC and 60 is the off-chip portion of memory
access latency.

B. Cache-aware Partitioning

In this approach, tasks are chosen for allocation in non-
increasing order of task utilization. Task allocation rules are
as follows. Cores on which a chosen task’s base utilization
can be accommodated are identified and one core is chosen
using a worst-fit strategy. If the chosen task is allocated to a
core that already contains tasks, its locked cache regions may
conflict with those of tasks already on the core. Thus, one or
more tasks (including the new task) may be required to unlock
a subset of their cache lines to resolve the conflicts. In this
approach, the task that has the minimum access frequency to
conflicting cache lines must unlock its cache lines. Unlocked
cache lines result in memory accesses, thus requiring the use of
the location-independent memory access latency calculated as
described in the previous section. This increases the utilizations
of the tasks on the core under consideration. If, after this step,
there are multiple feasible cores, the algorithm chooses the
core that suffers the minimum change in utilization due to the
addition of the new task. If two or more cores have the same
change in utilization, the core with the minimum utilization
among them is chosen.

C. Running Example - Cache-aware Partitioning

Now, we apply the cache-aware partitioning scheme pro-
posed in our previous work to our running example whose
characteristics were shown in Table 1. As is the case with our
EDF-on-NoC approach, tasks 7; through 7g are allocated to
cores A through D, as shown in Figure 4. However, task 79
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Fig. 6. State of system before and after reallocation of cores

is not able to get scheduled on any of the given cores. This
is because of the pessimistic (location-independent) memory
access latency employed in this approach. Equation 13 shows
the calculation of the total utilization after the allocation of 79
for any of the cores (A to D).

[55 + 60]
100000

Here, Util exceeds 1, making task 79 and, hence, the task set
unschedulable.

Util = 0.75 + 294 x (13)

V. EXPERIMENTAL SETUP

We have implemented a software simulator for our algo-
rithm. The architectural configuration used in our simulations
is shown in Table II, where the 4 cores are organized as
shown in Figure 3. The purpose of this setup is to demonstrate
the working of our algorithm on a set of cores that share a
given memory controller port. Note that our algorithm is not
restricted to any specific number of cores sharing a memory
controller port. The results of the demonstration can be directly
extrapolated to a platform with several such NoC columns
since there is no interference across such columns. On each
core, we assume that all four ways of the L1 data cache are
lockable.

[Parameter [ Configuration |
Processor Model in-order
Cache Line Size 32Bytes
L1 D-Cache Size/Associativity | 256KB/4-way
L1 hit latency 1 cycle

Number of Cores 4
Cache to cache Transfer latency 13 cycles
External Memory Latency 60 cycles

TABLE II.

SYSTEM CONFIGURATION

We generate and use synthetic task sets in order to evaluate
our algorithm and compare its performance to our prior work
[13]. The synthetic task sets are generated using an unbiased
random task set generator that is based on an approach
proposed by Bini et al. [28]. In order to impose the maximum
stress on caches, we generate task sets whose cache conflict
graph forms a clique, i.e., all tasks conflict at least partially
with all other tasks. The memory footprint of a given task
is divided into chunks. Each chunk has a given number of
elements and a known access frequency that is proportional
to the number of elements in the chunk. When a task must
unlock lines, it must do so in the granularity of these chunks,

T3 T4 MC
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(b) After Relocation of cores

i.e., a given chunk is either completely locked or completely
unlocked.

VI. EXPERIMENTAL RESULTS

In this section, we present the results of our evaluation
of our prior scheme [13] and the scheme proposed in the
current paper. Each of these schemes consists of three aspects,
namely the policy used for scheduling memory requests on
the NoC, the policy used for task allocation and, within that,
the policy used to determine which task must unlock cache
lines in the presence of cache conflicts during allocation. The
NoC scheduling scheme of our prior work and current work
are referred to as TDMA and EDF-on-NoC, respectively. The
task allocation schemes in our prior work and current work are
referred to as cache-aware partitioning or CAP and location-
aware partitioning or LAP, respectively. Finally, the heuristics
used to determine which task unlocks cache lines in prior work
and current work are referred to as minimum access frequency
or MAF and maximum slack ratio or MSR, respectively.

We present results from four different experiments. In each
experiment, we build and compare two scheduling schemes,
A and B, using a combination of three components, namely
NoC scheduling policy, task allocation policy and cache line
unlocking policy. We first randomly generate a set of 30 tasks
with a total utilization of 4.3 This set of 30 tasks is given
to algorithm A, which attempts to schedule as many tasks
as possible from the set of 30 tasks. The subset of task sets
scheduled by A is now given as input to algorithm B and the
results of the two are compared. This comparison is referred
to as A < B. Next, the same initial set of 30 tasks is taken.
This time, the set is first given to algorithm B, which attempts
to schedule as many tasks from the set as it can. The subset of
tasks that algorithm B manages to schedule is then given as
input to algorithm A. This comparison is referred to as B —
A. This way, we are able to fairly compare the performance
of the algorithms when they are each given a common input
task set that at least one of them is able to feasibly schedule.
This process is repeated for 100 different task sets of 30 tasks
each.

A. Experiment 1: Full Algorithm Comparison

In this experiment, we compare the performance of our
complete prior scheme, i.e., algorithm A uses TDMA + CAP +
MAF, and the complete scheme proposed in the current paper,
i.e., algorithm B uses EDF-on-NoC + LAP + MSR. Figure

3Since we use a 4-core setup, the maximum utilization supported is 4.
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7 shows the result of this comparison. The x-axis shows task
sets and the y-axis shows the difference in base utilizations
scheduled by the two algorithms for the two cases, namely
A — B and B — A. From this figure, we observe that, in
all cases, the difference in base utilization scheduled by the
two algorithms is 0 for A — B, indicating that task sets that
were schedulable by A are also schedulable by B. In other
words, task sets schedulable using the algorithm proposed in
our prior work are always schedulable by the scheme proposed
in the current paper. On the other hand, in the case of B — A,
we observe that this is not the case. 96% task sets exhibit a
difference in scheduled utilization, i.e., most task sets that are
schedulable by algorithm B (EDF-on-NoC + LAP + MSR) are
not schedulable by algorithm A (TDMA + CAP + MAF).

B. Experiment 2 : Using Cache Unlocking Policy MAF

In this experiment, we employ a common cache line un-
locking policy for both algorithm A and algorithm B, namely
the minimum access frequency or MAF policy, which was used
in our prior work [13]. In other words, algorithm A is built
using TDMA + CAP + MAF and algorithm B is built using
EDF-on-NoC + LAP + MAF. Figure 8 shows the results of
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Fig. 8. Comparison with MAF cache line unlocking policy

this comparison. The format of the graph is the same as that
in the previous experiment. Since a common cache unlocking
policy is used, these results essentially compare TDMA + CAP
and EDF-on-NoC + LAP. We observe from Figure § that all
task sets schedulable using TDMA + CAP are also schedulable
using EDF-on-NoC + LAP. However, 96% task sets that are

schedulable by EDF-on-NoC + LAP are not schedulable by
TDMA + CAP. This demonstrates that a combination of a less
pessimistic NoC scheduling scheme and location awareness
improves overall schedulability.

C. Experiment 3 : Using Cache Unlocking Policy MSR

In this experiment, once again, we employ a common cache
line unlocking policy for both algorithm A and algorithm B,
but the maximum slack ratio or MSR policy proposed in our
current work. So, algorithm A is built using TDMA + CAP +
MSR and algorithm B is built using EDF-on-NoC + LAP +
MSR. Figure 9 shows the performance of the two algorithms.
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From this figure, we observe once again that all task sets that
are schedulable by TDMA + CAP are also schedulable by
EDF-on-NoC + LAP, but 97% task sets that are schedulable by
EDF-on-NoC + LAP are not schedulable by TDMA + CAP.
We observe no specific pattern due to the difference in the
cache line unlocking policies used in Experiments 2 and 3.

Overall, the results from these three experiments demon-
strate that combination of location awareness and improved
NoC scheduling affect task set schedulability significantly.

D. Experiment 4: Comparing TDMA and EDF-on-NoC

In the last experiment, we wish to compare the performance
of the NoC scheduling policies, namely TDMA and EDF-
on-NoC. In order to perform a fair comparison among the
two policies, we employ a common underlying task allocation
and cache line unlocking scheme. Specifically, we employ the
cache-aware partitioning scheme or CAP along with minimum
access frequency or MAF unlocking policy, as proposed in
prior work [13]. The reason for this is that our location-aware
partitioning is unsuitable for use with a location oblivious NoC
scheduling scheme. So, essentially, algorithm A is TDMA +
CAP + MAF and algorithm B is EDF-on-NoC + CAP + MAF.

Since a common underlying task allocation is employed,
the base utilizations scheduled by algorithms A and B are
the same. Our goal is to compare the effectiveness of NoC
scheduling schemes. Hence, total utilization of the system
under each algorithm is a more suitable metric for comparison.
The total utilization is the sum of base utilization and the
increase in utilization due to cache line unlocking. Figure 10
shows the result of this comparison. This figure shows the base
utilization scheduled by both algorithms A and B and also the
total utilizations obtained for each individual algorithm. We
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observe that the total utilization under the EDF-on-NoC policy
is significantly less compared to that under the TDMA policy,
with TDMA resulting in an average increase in utilization of
25%. This demonstrates the benefits of a less pessimistic NoC
scheduling policy such as EDF-on-NoC.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a dynamic-priority policy for
scheduling memory requests on the Network-on-Chip of a
cache-based many core platform. We use this policy to de-
velop a location-aware partitioning algorithm for hard-real-
time tasks that improves task set schedulability. We compare
the performance of our proposed approach with a cache-aware
partitioning scheme proposed in prior work and demonstrate
that it achieves significantly improved performance.

In future work, we propose to conduct sensitivity studies
with varying task set utilizations and varying cache usage
patterns to further analyze our scheme. We also propose to
compare the effectiveness of our scheme with other recent
schemes for bounding response times of tasks with explicit
consideration of interference over the Network-on-Chip. Fi-
nally, we propose to implement our schemes on a real hardware
platform and study the practical applicability of the approach.
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