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Infeasibility-free Inverse Kinematics Method

Wael Suleiman1, Fumio Kanehiro2 and Eiichi Yoshida3

Abstract— The problem of inverse kinematics is revisited in
the present paper. The paper is focusing on the problem of
solving the inverse kinematics problem while respecting velocity
limits on both the robot’s joints and the end-effector. Even-
though the conventional inverse kinematics algorithms have
been proven to be efficient in many applications, defining an
admissible trajectory for the end-effector is still a burdensome
task for the user, and the problem can easily become unsolvable.
The main idea behind the proposed algorithms is to consider
the sampling time as a free variable, hence adding more
flexibility to the optimization problem associated with the
inverse kinematics. We prove that the reformulated problem
has always a solution if the end-effector path is in the reachable
space of the robot, thus solving the problem of infeasibility of
conventional inverse kinematics methods.

To validate the proposed approach, we have conducted three
simulations scenarios. The simulation results point that while
the conventional inverse kinematics methods fail to track pre-
cisely a desired end-effector trajectory, the proposed algorithms
always succeed.

I. INTRODUCTION

The inverse kinematics problem is one of the most studied
problems in robotics, and many methods to solve it have been
proposed in the literature. Those methods are extensively
used in robotics, they can be also combined with other
techniques, e.g. force control, to cope with the imperfect
modelling of the robot and its dynamic parameters.

Generally speaking, the objective is to find a vector in
the configuration space that satisfies constraints in the oper-
ational space, in other words the values of the robot’s joints
to make the end-effector reaches a desired goal (position
and orientation) in the Cartesian space. Although in some
special cases the problem can be solved analytically [1], [2],
it is generally solved numerically [3], [4]. Many efficient and
robust numerical algorithms have been proposed for solving
the inverse kinematics problem [5], [6], [7], [3], [4], only to
cite few.

The inverse kinematics problem was originally formulated
as follows:

min
q̇t

q̇t
TQq̇t

subject to

J q̇t = ṙt (1)
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where Q is a diagonal and positive semi-definite matrix,
J is the Jacobian matrix, q̇ ∈ Rn is the joint velocity and ṙt
is the linear and angular velocity of the end-effector.

The optimization problem (1) can be efficiently solved
using the pseudo-inverse technique [3], [4] as follows:

q̇t = Ĵ†ṙt + (I − Ĵ†J)z (2)

where Ĵ† = Q−1JT
(
J Q−1 JT

)−1
and z is an arbitrary

vector. If Q is the identity matrix, Ĵ† becomes the well-
known Moore-Penrose pseudo-inverse. It is worth mention-
ing that the optimization problem (1) is time-invariant as
the time derivative can be simply replaced by the difference.
Thus, we obtain the following equivalent optimization prob-
lem:

min
∆q

∆qTQ∆q

subject to

J∆q = ∆r (3)

The solution of the above problem is given by:

∆qt = Ĵ†∆rt + (I − Ĵ†J)ẑ (4)

However, in order to consider the velocity and joints limits
as well as avoid obstacles, inequality constraints should
be added. The general inverse kinematics problem can be
therefore formulated as follows:

min
q̇t

q̇t
TQq̇t

subject to

J q̇t = ṙt

b− ≤ Aq̇t ≤ b+

q̇− ≤ q̇t ≤ q̇+

(5)

q̇− and q̇+ are respectively the lower and upper limits of the
velocity. A, b− and b+ represent the additional constraints
that result from considering geometric constraints, such as
collision avoidance, or physical constraints, such as joint
limits, for more details the reader is referred to [8], [9], [10],
[11], [12].

The main differences between (1) and (5) are:
• There is no closed-form expression for the solution of

(5). However, it is a convex optimization problem if
Q is a semi-definite positive matrix, and in this case,
the problem can be efficiently solved by a Quadratic
Programming (QP) solver [9], [10], [11], [12].



• Problem (5) is time-variant.
A major difficulty that is faced, in practice, by the user is

how to define the trajectory of end-effector (rt). It is clear
that if the end-effector moves fast, the joints velocities will be
saturated and as a result the end-effector trajectory diverges
from the desired one. A solution to the previous problem is to
ensure that the end-effector velocity is slow enough to avoid
the joints velocity saturation issue, however this solution is
not the optimal one in practice, as it yields to a very slow
motion and it does not take full advantage of the robot’s
physical limits.

A well known approach in the literature to deal simul-
taneously with the velocity limits of the joints and the end-
effector is time parameterization [13], however this approach
is mainly adapted for offline computation and it needs the
whole path to be known in advance.

It is worth to point the difference between a path and a
trajectory. A path denotes the locus of points in the joint
space, or in the operational space, the robot has to follow in
the execution of the desired motion, while a trajectory is a
path on which a time law is specified [14].

In this paper, we are interested in a robust online imple-
mentation of inverse kinematics, which is infeasibility-free
and can efficiently deal with the velocity limits of both the
joints and the end-effector.

II. PROBLEM FORMULATION

We consider two cases, the first one focuses on transform-
ing the original inverse kinematics problem into an equivalent
optimization problem which is always feasible, while the
second focuses on incorporating the end-effector velocity
limits into the inverse kinematics problem. The main idea
is instead of supposing that the sampling time (T ) fixed,
making it a free variable, and solving the inverse kinematics
problem as a function of ∆q and T . Thus:

q̇t ∼=
∆q

T
(6)

The end-effector velocity vector is defined as follows:

ṙt =

[
vt

ωt

]
(7)

where vt is the linear velocity of the end-effector:

vt
∼=

∆Xe

T
(8)

Xe ∈ R3 is the Cartesian position of the end-effector.
ωt is the angular velocity of the end-effector and can be

obtained using the following formula:

[ωt]
∧ ∼=

∆Re

T
Re

T (9)

where Re is the rotation matrix of the end-effector frame,
and [.]∧ designs the skew operator defined as follows:

[.]∧ : ω ∈ R3 → so(3)

[ω]∧ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (10)

where so(3) denotes the Lie algebra of SO(3) which is
the group of rotation matrices in the Euclidean space. The
inverse operator of skew operator can be defined as follows:

[.]∨ : Ω ∈ so(3)→ R3

[Ω]∨ ,

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

∨

=

ωx

ωy

ωz


(11)

and the angular velocity can be calculated using the inverse
operator:

ωt
∼=

1

T

[
∆Re Re

T
]∨

(12)

Note that the skew operator and its inverse are linear oper-
ators.

Let us define ∆r as follows:

ṙt ,
∆r

T
(13)

As a result:

∆r ∼=

[
∆Xe[

∆Re Re
T
]∨] (14)

A. Case Study 1: Sampling Time as a Free Variable

By considering T as a free variable, the optimization
problem (5) can be transformed into the following equivalent
problem:

min
∆q,T

∆qTQ∆q + αT 2

subject to

J∆q = ∆r

b− T ≤ A∆q ≤ b+ T
q̇− T ≤ ∆q ≤ q̇+ T

ε ≤ T

(15)

where 0 < ε� 1, and α > 0 are user-defined constants.
Let us introduce the following parameters:

X =

[
∆q
T

]
, QX =

[
Q 0n×1

01×n α

]
, J =

[
J 0m×1

]

A =


A −b+
−A b−

In −q̇+

−In q̇−

01×n −1

 , B =


0n×1

0n×1

0n×1

0n×1

−ε


(16)

where In and 0k×l denotes, respectively, the identity matrix
of dimension n and a zeros matrix of dimension k×l. Recall
that n and m are the dimension of ∆q and ∆r respectively.

Thus the optimization problem is transformed into the
following classical QP problem:

min
X
X TQXX



subject to

JX = ∆r

AX ≤ B
(17)

The above QP problem can be efficiently solved, in real-time,
using an appropriate QP solver such as uQuadProg solver [9]
or qpOASES solver [15].

Algorithm 1
1: Compute the jacobian matrix (J)
2: Compute ∆r . Eq. (14)
3: procedure INVERSE KINEMATICS(J, ∆r, A, b− ,b+ , q̇− , q̇+)
4: Solve the optimization problem (17)
5: return ∆q and T
6: go to 1

B. Case Study 2: Incorporating End-effector Velocity Limits

By adding constraints on the end-effector velocity, the
optimization problem (15) is transformed into the following
optimization problem:

min
∆q,T

∆qTQ∆q + αT 2

subject to

J∆q = ∆r

b− T ≤ A∆q ≤ b+ T
q̇− T ≤ ∆q ≤ q̇+ T

ε ≤ T
ṙ− T ≤ ∆r ≤ ṙ+ T

(18)

where ṙ+ and ṙ− are respectively the upper and lower
limits of the end-effector velocity.

Note that the new constraint can be rewritten in an
equivalent and more compact form as follows:

ṙ− T ≤ ∆r ≤ ṙ+ T ⇔ |∆r| ≤ ṙ+ T (19)

By introducing the following parameters:

X =

[
∆q
T

]
, QX =

[
Q 0n×1

01×n α

]
, J =

[
J 0m×1

]

Â =


A −b+
−A b−

In −q̇+

−In q̇−

01×n −1
0m×n −ṙ+

 , B̂ =


0n×1

0n×1

0n×1

0n×1

−ε
−|∆r|


(20)

Similarly to Case Study 1, the optimization problem is
transformed into the following classical QP problem:

min
X
X TQXX

subject to

JX = ∆r

Â X ≤ B̂
(21)

Algorithm 2
1: Compute the jacobian matrix (J)
2: Compute ∆r . Eq. (14)
3: procedure INVERSE KINEMATICS(J, ∆r, A, b− ,b+ , q̇− , q̇+ , ṙ+)
4: Solve the optimization problem (21)
5: return ∆q and T
6: go to 1

III. COMPLEXITY ANALYSIS

A complexity comparison with conventional inverse kine-
matics algorithms, Eq. (5), can give a clear idea about the
possibility of an online implementation of the proposed
algorithms.

1) Algorithm 1:
• By comparing the optimization problems (5) and

(17), the dimension of the optimization variable in
the proposed algorithm (X ) is n + 1 where n is
the dimension of the conventional joints velocity
variable (q̇t).

• One additional inequality constraint has been
added.

As a result, the computational complexity of Algo-
rithm 1 and of a conventional inverse kinematic
algorithm are almost the same. However, Algorithm
1 have a significant advantage of always providing a
feasible solution.

2) Algorithm 2:
• Similarly to Algorithm 1, the dimension of the

optimization variable (X ) is n+ 1.
• The number of inequality constraints has however

been increased by m+1, where m is the dimension
of the end-effector configuration vector.

Consequently, the complexity of Algorithm 2 and a
conventional inverse kinematics problem are compa-
rable. Recall that Algorithm 2 can simultaneously
handle constraints on the joint and the end-effector
velocity limits, while conventional inverse kinematics
algorithms simply cannot.

The numerical simulations in Section V also confirmed
the above conclusions.

IV. PRACTICAL IMPLEMENTATION

Many of robotic systems have a control loop with a fixed
time step. To take this constraint into account, the sampling
time T should satisfies the following condition:

T = nTs (22)



where n ∈ N is a strictly positive integer, which becomes
the new optimization variable, and Ts is the robot’s control
loop fixed time step.

Theoretically speaking, the optimization problems (17)
and (21) become Mixed-Integer Quadratic Programming
(MIQP) problems. However, in practice, solving a MIQP is
generally more complex and computationally expensive than
solving a standard QP.

In our special case, however, one can figure out that we
do not need to solve MIQP problems, instead once T is
obtained by solving (17) and (21), the parameter n can be
easily obtained such as: (n− 1)Ts ≤ T ≤ nTs.

V. SIMULATION RESULTS

We have conducted three simulations scenarios:

A. Scenario 1: Joint Velocity Limits

In order to validate the proposed algorithm for the case of
joint velocity limits (Algorithm 1), we consider a planar
redundant manipulator, which has 4 degrees of freedom
(Fig. 1). The end-effector path is a Bezier curve defined by
an initial, control and a goal positions. The joint velocity
limits have been chosen as follows:
• q̇+ = −q̇− = 0.5× [1 1 1 1]T
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Fig. 1. Planar robot configurations

Fig. 2(a) points out that the constraints on the joint velocity
are fully respected, and Fig. 2(c) shows that the error between
the executed trajectory and the desired one is less than
10−5m. To compare those results with a conventional inverse
kinematics algorithm, the end-effector path has been first
transformed into a trajectory by considering a uniform time
distribution with a sampling time T = 5 × 10−3s over the
interval [0, tf ], after several trials we found that the minimum
tf that makes the problem feasible is tf = 4.40 s. It is
worth to mention that, at every trial, the conventional inverse
kinematics algorithm stopped after few iterations because of
an infeasibility issue. From Fig. 3 and Fig. 2, one can notice
that:

• Our method automatically found that tf = 3.30 s
versus tf = 4.40 s for the conventional method. This is
because our method adapts the sampling time according
to the joint velocity constraints; on the other hand, the
conventional method requires a fixed sampling rate for
the whole trajectory.

• Fig. 3(a) shows that the joint velocity constraints have
been violated over the time interval [0.02s, 0.83s], this
is because the constraints of the optimization problem
(5) cannot be simultaneously satisfied. The solver, in
this case, tries first to satisfy the equality constraints
and the inequality constraints are considered in a second
priority. It is important to point out that the high
oscillations in the joint velocity trajectories are not fully
transmitted to the end-effector, this is because the robot
is redundant with respect to the desired task.

• The end-effector tracking error in Fig. 3(c) is much
bigger than that one of our method Fig. 2(c).

B. Scenario 2: Joint and End-effector Velocity Limits

To validate the proposed algorithm for the joint and end-
effector velocity limits (Algorithm 2), we consider the same
planar redundant manipulator in Scenario 1. The following
parameters has been chosen:
• q̇+ = −q̇− = 0.5× [1 1 1 1]T

• ṙ+ = −ṙ− = [ẋ+
t ẏ+

t ] = 0.7× [1 1]T

Fig. 4(a) and Fig. 4(b) show that the constraints on the
joint and the end-effector velocity are fully respected, and
Fig. 4(c) shows that the error between the executed trajectory
and the desired one is less than 2.5× 10−5m. Note that the
total time of the trajectory became 4.30 s, as it can be seen in
Fig. 4(b), this is mainly to respect the end-effector velocity
limits.

C. Scenario 3: Simulated Baxter Research Robot

A simulated scenario of a Baxter research robot and an
obstacle that consists of a sphere attached to a thin cylindric
rod is given in Fig. 5(a). The objective is to reach a goal pose
(position and orientation) from an initial pose while avoiding
the collision with the obstacles.

The following constraints have been considered:
1) Collision avoidance: the Baxter robot is approximated

by its collision geometry model from the Unified Robot
Description Format (URDF) file, where the arms are
approximated by cylinders and boxes. The collision
avoidance is formulated as inequality constraints [8]
having the following form: Aq̇t ≤ b.

2) Velocity limits on the robot’s joints, these values are
given in the URDF file.

3) Desired velocity limits (linear and angular velocities)
of the right arm end-effector.

The formulation of the inverse kinematics problem in this
scenario is however different, as the end-effector tries to
reach the goal pose at each iteration via a direct straight
line, at the same time the collision avoidance inequality
constraints repulse the arm to keep a minimum clearance
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(c) End-effector tracking error

Fig. 2. Algorithm 1: joint velocity limits

to the obstacles. Snapshots of the simulated motion is given
in Fig. 5(a). The right arm’s joint trajectories are shown in
Fig. 5(b).

VI. CONCLUSION AND FUTURE WORK

In this paper, a new method for inverse kinematics while
simultaneously considering joint and end-effector velocity
limits is proposed. The method is simple to implement, yet
efficient to handle velocity constraints. The proposed algo-
rithms solve the problem of infeasibility that conventional
inverse kinematics algorithms suffer from. These algorithms
can be implemented online, and they have as input the
geometric path of the end-effector that is converted, on-
the-fly, to a feasible trajectory. Simulation results revealed
the efficiency of the method to solve inverse kinematics
problems in several scenarios. Future work will focus on the
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(c) End-effector tracking error

Fig. 3. Conventional inverse kinematics algorithm

implementation of the proposed algorithms on a real robotic
platform such as Baxter research robot or the humanoid robot
HRP-2.
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