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Visual estimation of articulated objects configuration during
manipulation with a humanoid

Antonio Paolillo, Anastasia Bolotnikova, Kévin Chappellet, Abderrahmane Kheddar

Abstract— Robotic manipulation tasks require on-line knowl-
edge of the operated objects’ configuration. Thus, we need to
estimate online the state of the (articulated) objects that are
not equipped with positioning sensors. This estimated state
w.r.t the robot control frame is required by our controller
to update the model and close the loop. Indeed, in the
controller we use the models of the (articulated) objects as
additional ‘robots’ so that it computes the overall ‘robots-
objects’ augmented system’s motion and contact interaction
forces that fulfill all the limitation constraints together with the
physics. Because of the uncertainties due to the floating-base
nature of humanoids, we address the problem of estimating
the configuration of articulated objects using a virtual visual
servoing-based approach. Experimental results obtained with
the humanoid robot HRP-4 manipulating the paper drawer of
a printer show the effectiveness of the approach.

I. INTRODUCTION

Recently, we have devised a multi-objective task space
robot controller formulated as a quadratic program (QP) that
includes manipulated objects modeled as an augmentation
of the robot structure [1][2]. By doing so, robots and ma-
nipulated objects are integrated in a “multi-robot system”
that is controlled with a single QP when they come to
interact. We have illustrated the use of this multi-robot QP
(MQP) control framework in various challenging scenarios
in computer graphics animation [1] and robotics [2]. We
have also used the MQP to make a humanoid robot drive a
car [3]. The driving wheel is (kinematically and dynamically)
modeled as a “robot” with a fixed base and one rotational
joint. It is then integrated to the MQP to form the multi-robot
“humanoid plus driving wheel”. The MQP computes desired
state acceleration for the overall system that is coherent
with both the kinematic constraints of the driving wheel and
the contact forces to steer it. In this example, the position
of the driving wheel matches exactly that of the rotation
of the humanoid’s wrist, as the grasping was particularly
designed to meet such a request. However, the manipulation
task would have been complicated if the robot has to grasp
the driving wheel laterally or if it has to re-grasp. In fact, the
driving wheel does not have encoders measuring its state.

Doors, drawers, valves, switchers and other articulated
tools can also be manipulated by a robot, and modeled as
passive robotic structures to be integrated in the MQP. The
user models all these object as separate urdf files to be
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loaded by our controller and integrated as a single multi-
robot system as well described in [2]. To know the state of
the objects, that are not instrumented with sensors, we need
to devise external observer to estimate them.

Let us consider the example of a humanoid robot opening
the drawer of a piece of furniture (see Fig. 1). The main
link of the object is modeled as the base of a robot, and the
drawer is considered as a link connected to the base through
a prismatic joint. In order to control the opening motion,
we can use the position task of our MQP that considers the
error between the current position of the drawer pdrawer(q),
and its desired position. To achieve this task we need the
measurement of the vector q, i.e. the configuration of the
coupled “humanoid-piece of furniture” multi-robot system.

While the configuration of the humanoid is provided by
the encoders mounted at each joint, an estimator has to
be designed to reconstruct the configuration of the piece
of furniture. We could think of using the robot forward
kinematics for such estimation, assuming that the drawer is
firmly grasped. However, in practice, this does not work for
two main reasons: (i) the humanoid is a floating base system
and we may have uncertainties to localize it, and (ii) the
fingers that pull the printer have no encoders. Furthermore,
some humanoid structures (such as HRP-4) have flexibilities
in the ankles as well as in the fingers. As a results, we
cannot rely much on the pure kinematics of the humanoid
to estimate the drawer’s joint value. One could think of
improving the kinematic measurements integrating other
sensors information (such as vision) that would inform about
the grasp slipping or the backlash between the robot hand the
drawer handle. In a nutshell, one needs to provide the robot
with the capability of reconstructing the object configuration
as required by the MQP (see Sect. II for the related work).

Through this example, we can extend the reasoning to the
necessity of having the reconstruction of articulated objects
configuration for the control of this “augmented” system.
Knowing the configuration of the objects to be operated,
allows to effectively close the loop of the MQP.

This paper addresses this problem:

• formulating (Section III) the estimation of articulated
objects configuration as a virtual visual servoing prob-
lem (Section IV);

• enabling closed-loop experiments with a humanoid op-
erating the drawer of a printer, using the estimation of
the object configuration as feedback in our MQP control
framework (Section V).



II. BACKGROUND

Reconstruction of the configuration of articulated objects
is a well studied problem in both the computer vision
community (tracking of human motion, hands, etc.), and in
robotics (tracking of robotic systems).

Several methods to track the motion of the articulated
bodies have been proposed over the years. A kinematic tree
based parametrization of articulated objects was used in [4].
In this work the tracking was formulated as a tree parameters
fitting problem, assuming full geometric model of an object
to be known. In [5] the articulated structure tracking is
handled as an extension of rigid object tracking. Independent
trackers are used to compute motions of every link, then
constraints between the links are imposed to find optimal
set of motions that satisfy constraints. Multiple hypothesis
using derivative- or gradient-free optimization techniques
have been studied in the line of works (e.g. [6][7][8]).
Such approaches are quite helpful to avoid local minima
in optimization. Recently, these methods have also been
further studied for estimating force from vision [9][10].
Yet, estimating the configuration of articulated structures
with multiple hypothesis methods, can lack frame-to-frame
consistency, due to occasional ambiguous observations which
cause false hypotheses temporarily to have hight matching
scores. This issue is not critical in many applications areas
(surveillance, computer graphics, etc.), but in robotic closed-
loop control schemes, such estimation inconsistency could
result in a bad behavior, such as jumps and jerky motions.

The motion of articulated objects can also be estimated
using depth information in a GPU-based implementation
of an Extended Kalman Filter (EKF) in [11]. This method
has been extended further to consider physical constraints
in tracker objective function by using contact information
in robotic object manipulation scenario [12]. Another depth
based method for estimating the state of a robotic arm was
proposed in [13]. It demonstrated robustness to calibration
errors in a closed-loop manipulation task. Combination of
depth and joint encoders data was used in [14] to track the
state of robotic arm. For some robotic platforms, especially
humanoids, end-effector distance from the camera may not
exceed the minimum distance for depth data acquisition by
a standard range sensor. In such case, RGB data processing
is the only reliable source of visual information. Articulation
tracking can also be done using images collected by a multi-
camera system and then processed by a particle filter [15].
These methods are yet computationally expensive to be
applied at the low-level robot control.

Model-based approaches using monocular cameras are
interesting techniques to achieve fast and accurate estimate
of articulated objects configuration. In [16] a Kalman filter-
based tracking, using multiple models (such as the geometric
and the appearance model of the object), is proposed to
recover values of joint position and velocity, but not that of
the floating base. Another method [17] uses a virtual visual
servoing-based approach [18] providing the configuration of
the object, but not expressed with the classical generalized

coordinates. Further computations should be added to re-
trieve the joint variables.

An advantage of the model-based approaches is that the
object and the visual features trackers can work together
cooperatively: knowing the model of the object, the track-
ing of features leads to the reconstruction of the object
configuration and vice-versa. Extending this concept, the
features motion can also reveal geometric information of
the observed object, that in turn is used to better track the
features. This idea is exploited in [19], that estimates the
kinematic structure of the observed object combining the
manipulation task with the perception algorithm. With the
same principle, color and depth (RGB-D) information are
processed by an EKF to provide also a measurement of the
joint values in [20]. In [21], RGB-D data is processed in a
unified framework able to estimate the pose, the shape and
the structure of the observed object. These approaches do not
need the model of the object, being itself estimated, and have
been validated with simple articulated objects. Furthermore,
they are not guaranteed to converge fast or to be reliable in
all circumstances. Some are computationally expensive.

In our attempt to find the articulation tracking solution,
whose formalism can be defined and used as a part of MQP
in the closed-loop object manipulation control, no existing
method could fit our requirements. Therefore, we took in-
spiration from previous works to devise a tracker whose
formalism suits the MQP requirements and is presented in
the remaining of the paper.

III. PROBLEM FORMULATION

To track articulated objects for robotic manipulation, we
propose a method based on the so-called virtual visual
servoing. To be self-contained, we briefly recall the basics
of this technique and formulate our tracking problem.

Visual Servoing (VS) achieves a cartesian task using visual
feedback [22]: the control provides the camera velocity vc in
order to zero the error between the measured and the desired
value of visual features, denoted with s and s∗, respectively.

VS can be exploited in a dual way: let a virtual camera
moving in the cartesian space, whose unknown pose p is de-
fined w.r.t. an observed object, i.e. in correspondence of some
virtual visual features, collected in the vector s(p)1. The real
pose of the camera p∗ is defined in correspondence of some
measured visual features, collected in s∗. The convergence
of s(p) to s∗ implies the convergence of p to p∗. Thus,
in this context, the VS control law is used as “estimator”
of the camera pose2. This methodology, known as Virtual
Visual Servoing (VVS), was introduced in the framework
of augmented reality [23] [18]. The same technique can be
used to estimate the pose of the object moving in the camera
scene, and extended to articulated object tracking as in [17]
that inspired our work. In particular, we share with [17] the

1Note that s(p) is reconstructed by using the projection model of the
camera. Thus, to be rigorous, it is dependent also on the camera intrinsic
parameters, assumed to be known, that here are omitted to highlight the
dependence on the unknown variable p.

2For example, the camera pose can be reconstructed using p = exp(vc).
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Fig. 1. A humanoid robot manipulating the drawer of a furniture.

rationale of the approach, but we use a lighter formalism
allowing an easier implementation of the method.

Let us consider the case of a camera looking at an
articulated object, as in the depicted scenario of Fig. 1,
where a humanoid robot is opening the drawer of a piece
of furniture. The camera frame of the robot Fc is used as
reference in the algorithm. Its origin is placed at the focal
point and the z-axis is aligned with the focal axis; the y-
axis points downwards and the x-axis completes the right-
handed coordinates system. Another frame of interest, Fo, is
arbitrarily defined at the floating base (FB) of the object.

The real configuration of the articulated object (the piece
of furniture in the presented example) is denoted by

q∗ =

 po
σo

qj

 ∈ R7+n (1)

where po ∈ R3 and σo ∈ S3 ⊂ R4 are the position and
orientation (expressed with a quaternion) of Fo w.r.t. Fc,
respectively. Quaternions prevent the orientation representa-
tion from being singular. The vector qj ∈ Rn in (1) is the
vector of the generalized coordinates describing the internal
configuration of the object, composed of n joints.

Let us define a vector ρ ∈ R3p of p points of interest
(PoI) on the articulated object, whose projection on the image
plane of the camera provides p corresponding visual features.

The real motion of the articulated object (1) produces the
motion of real visual features collected in the vector s∗ ∈
R2p. These features are actually observable and measurable
on the image plane of the camera.

Whereas, the virtual configuration of the articulated object,
denoted with q, affects the motion of virtual visual features,
gathered in the vector s(q) ∈ R2p. Note that the virtual
visual features depend on (i) the geometric model of the
object, assumed to be known and used to calculate the
location of the virtual PoI in Fc, and (ii) the camera intrinsic
parameters, used to project the virtual PoI on the image
plane. Since Fc is the reference frame, we do not need the
camera extrinsic parameters to build the projection model.

Assuming to known ρ and measuring s∗, the aim of the
tracking is to estimate q∗. Only rigid objects are considered.

IV. VVS-BASED TRACKING OF ARTICULATED OBJECTS

The approach used to address the articulated object track-
ing problem relies on the VVS paradigm, i.e. uses a visual
controller to estimate the derivative of the configuration vec-
tor. Thus, the estimate q is reconstructed through integration.

The error of the proposed control scheme is the difference
between s(q) and s∗ defined in the previous section, i.e.,
e = s(q)−s∗. The dynamics of this error says how the visual
features change over time, and can be written as follows:

ė = ṡ(q)− ṡ∗ (2)

where the dot over the variables denotes the time derivative.
The motion of the virtual visual features is a consequence

of the motion of the virtual object (i.e. its PoI) w.r.t. the
camera. In Fc, the 6D velocity of each PoI can be expressed
using the geometry of the object, i.e., vi = J i(q)q̇ where J i

is the 6×(7+n) Jacobian of the i-th PoI, i = 1, . . . , p. Thus,
the dynamics of each virtual visual feature can be written as

ṡi(q) = −LiJ i(q)q̇ = Aiq̇ (3)

where Li is the image Jacobian associated to the i-th virtual
visual feature [22]; it depends on the depth of the correspond-
ing PoI, that is available in the estimation process. The minus
in (3) explains that the apparent motion of the features s(q)
is due to the motion of the observed object (actually, its PoI)
w.r.t. the camera (typical of hand-to-eye systems [24]). The
dynamics of the error can be now explicitly written:

ė = Aq̇ − ṡ∗ (4)

where we define, following the nomenclature in [17], A =
(A1, . . . ,Ap)

T as the 2p× (7 + n) articulation matrix, that
relates the FB and joints velocity of the articulated object
to the velocity of the visual features. Imposing a stable
dynamics of the error (ė = −λe, λ > 0), we derive the
following “control law”

q̇ = −λA#e+A#ṡ∗ (5)

where the term depending on ṡ∗ introduces an anticipatory
action, improving the tracker performance. The bars below
the variables denote approximations. The controller’s local
stability is ensured if A and its approximation are full-rank,
and we use a good approximation ofA and ṡ∗. If (n+7) > p
(as in the presented results), it has to be ensured that the
configuration of the object is not singular [24].

Note that we refer to (5) as a control law, being the term
borrowed from the VS nomenclature. However, it actually
is an estimator providing, at steady state, an estimate of the
object’s FB and joint velocities q̇k at each time kTs (Ts being
the sampling time of the algorithm and k the loop iterator).
From this, qk, an estimate of the real object configuration,
is obtained by numerical integration. To avoid the error
introduced by brute-force normalization-based methods, the
derivative of the quaternion is integrated using a closed-form
exponential map method [25]. The other elements of qk are



Algorithm 1 VVS-based tracking of articulated objects

for each new image frame I do
s∗ ← DETECT FEATURES(I)

ρ← UPDATE MODEL(q)

for each visual feature i do
J i ← COMPUTE JACOBIAN(q,ρi)

si(q)← PROJECT(ρi)

Li ← COMPUTE IMAGE JACOBIAN(ρi,z, si(q))

Ai = −Li J i

end for
q̇ = −λA#e+A#ṡ∗

q ← INTEGRATION(q̇)

end for

obtained with Euler explicit integration:

qk =

 po,k−1 + (ṗo,k + ṗo,k−1)
Ts

2

exp(Ωk−1 Ts)σo,k−1

qj,k−1 + (q̇j,k + q̇j,k−1)
Ts

2

 (6)

where Ω is the 4×4 skew matrix of the FB angular velocity.
Algorithm 1 presents the complete procedure to compute

the vector q. Each new image is processed to detect the
visual features filling s∗. Using the current estimation q, the
model of the object is updated, so that the positions of the
PoI ρ are also estimated and available for the subsequent
computations. Then, for each visual features i = 1, . . . , p
these steps are performed:

• the Jacobian J i of the corresponding PoI is computed
using the current q and the estimated ρi;

• the virtual visual feature si(q) is obtained projecting ρi
on the image plane;

• the interaction matrix Li is computed using the esti-
mated depth of the point (i.e., the z-coordinate of the
point ρi) and the coordinates of the visual feature;

• finally, the articulation matrix Ai is obtained.
Once these operations are repeated for all the features, the
articulation matrix is fully composed. Finally, q̇ is computed
and q is obtained by numerical integration.

The method can reconstruct also other information about
the object such as the length of the links, the PoI position
in the presented study or even the composition of the
CAD model, that is assumed to be known. This can be
achieved modeling the distances as virtual prismatic joints.
We exemplify this functionality in the next section.

V. EXPERIMENTAL RESULTS

For our experiments we used the humanoid robot HRP-4,
that is equipped with a Xtion PRO LIVE RGB-D sensor. The
Xtion is used as monocular camera, providing images with
a resolution of 640 × 480 pixels at 30 Hz. A calibration
procedure provided the intrinsic parameters used in the
projection model of the algorithm. The images are processed
by WhyCon [26], a vision-based localization library that
detects proper markers placed in the field-of-view of the

(a) (b)

Fig. 2. Experimental setup: (a) HRP-4 manipulating the paper drawer of
a printer and (b) the corresponding image acquired by the onboard camera.

camera, and also gives an estimate of their position in
the camera frame. In particular, p WhyCon markers are
placed at known positions on the articulated object to track.
These markers represent the p PoI in our algorithm, and
the detection of their corresponding visual features fills the
vector s∗. For each new set of detected visual features, the
algorithm described in Section IV provides an estimate of
the articulated object configuration. The implementation of
the algorithm is based on the Robotics and Vision Control
toolbox [27], while the communication and the control of
the robot have been managed by using the ROS framework.

The approach has been used to make HRP-4 manipulate
the paper drawer of a printer (Fig. 2a). The printer has
been structured with six WhyCon markers, placed at known
positions, four on the FB and two on the drawer, as shown in
Fig. 2b. The configuration vector q ∈ R9 that we provide is
composed of (i) the pose (position vector and quaternion)
of the printer FB, (ii) the value of the prismatic joint
of the drawer, q1, and (iii) the distance between the two
markers on the drawer, q2, modeled as a virtual prismatic
joint. The configuration vector has been initialized to q0 =
(0.0, 0.1, 0.6, 1.0, 0.0, 0.0, 0.0, 0.0, 0.1)T . To have a smooth
transient phase and good tracking performance, we designed
a profile of the gain λ dependent on the VVS error (high
when the norm of the error is low and vice versa). The
maximum and minimum values of the gain were set to
λmax = 5 and λmin = 2, respectively. Since the computation
of the visual features derivative was noisy and the camera did
not move excessively during the execution of the experiment,
we disabled the derivative action in (5).

To validate our approach, we compare the results of the
proposed VVS-based tracking algorithm with a Singular
Value Decomposition (SVD) based method for rigid motion
reconstruction. It uses two sets of points: m PoI on the FB
expressed in camera frame, cρ, and the same points expressed
in the object frame, oρ. The first set is provided by WhyCon,
the latter is known, manually measured. The reconstruction
of the object pose (position vector po and rotation matrix
Ro) is formulated as a least squares error problem:

(Ro,po) = argmin
Ro,po

m∑
i

‖(Ro
oρi + po)− cρi‖2. (7)
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Fig. 3. Experimental results: norm of the VVS error.

To find an optimal combination of Ro and po that satisfies
the minimization problem in (7), we apply an SVD on the
cross-covariance matrix of the two points distributions (cρ
and oρ), that results in the decomposition UΣV T . The sum
in (7) is minimized when Ro = V UT . Then, the translation
is computed as po = µc − Roµo, where µc and µo are
the centroids of the sets cρ and oρ, respectively. For the
validation of the drawer prismatic joint, we consider the 3D
position of a marker on the drawer in Fo reconstructed using
Ro and po. The amount of drawer opening is equal to the
position of the drawer marker on z-axis of Fo (Fig. 1). For
the validation of estimated distance between two markers on
the drawer, Euclidean distance between corresponding points
is computed using coordinates in Fc provided by WhyCon.

As discussed in the Sect. I, the robot is controlled with
our MQP [2]. Indeed, in order to achieve the closed-loop
behavior, it is possible to define the error between the current
value of the drawer’s joint and a desired joint target: τq =
(q1 − q1,d). Here, q1,d is specified by the user (it could be
defined by a higher level planning), while q1 is provided by
our method, see Sect. IV. This term is actually added to the
cost function of the MQP after the robot grasps the drawer

wq

∥∥∥τ̈q + 2
√
kpτ̇q + kpτq

∥∥∥ , (8)

where kp is a positive gain and τ̈q = Jq q̈1+ J̇q q̇1; Jq is the
Jacobian of the task and wq a given weight.

The experiment starts with the robot already at the op-
erational configuration, at stand position, with the left hand
grasping the drawer of the printer. During the experiment, a
user sends opening/closing commands to the MQP.

Figure 3 shows the norm of the VVS error. After a
transient time required to make the virtual visual features
converge on their real counterparts, the error decreases
exponentially and remains below a threshold.

The position of the FB as estimated by the VVS (blue
continuous lines with triangle markers) and by the SVD-
based method (red dashed line) is shown in the plots of
Fig. 4. Again, after an initial transient required to recover the
bad initialization, the signals provided by the VVS converge
to the position of the object; the curves provided by the SVD-
based method validate the estimation results. Similarly, plots
of the FB orientation (transformed in roll-pitch-yaw angles)
are presented in Fig. 5. The effectiveness of the VVS at
estimating the pose of the FB is validated by the comparison
with SVD-based method. Furthermore, it appears to be less
noisy and more appropriate to be used as control feedback.
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Fig. 4. Experimental results: position of the object w.r.t. the camera frame.
From top to bottom: x, y and z-coordinate.
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Fig. 5. Experimental results: orientation of the object w.r.t. the camera
frame. From top to bottom: roll, pitch and yaw angle.

The plots in Fig. 6 refer to the joint of the printer drawer.
The black dash-dot line shows the desired command sent
to the MQP, that is followed by the estimation of the joint
position, as shown by the curves. The control has been
enabled around time 15 s. A phase can be observed in
tracking. This is due to two main factors: the backlash in
the humanoid-drawer system, especially when there are two
consecutive opening/closing commands, and the task error
decrease rate of the MQP that controls the robot. Note also
that the estimation algorithm computes an output for each
set of detected features. It could happen that the detection
process fails creating instant lack of estimation.

Finally, the plot in Fig. 7 shows the effectiveness in
estimating the distance between the markers placed on the
printer drawer, modeled as a prismatic joint in our algorithm.

The experiment is also shown in the video available at
https://youtu.be/Vr2LUEovof8.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the problem of estimating
the configuration of an articulated object to be manipulated
by a humanoid robot. The approach is based on the vir-
tual visual servoing paradigm, and uses visual information
coming from the robot onboard camera to reconstruct the
pose of the object floating base and its joints configuration.
The output of the estimator is fed back to a multi-robot
quadratic program framework for controlling the humanoid
HRP-4. Experimental results showed the effectiveness of the
approach in manipulating the paper drawer of a printer.

Future work will investigate the use of lines instead
of points as features, to avoid the structuring the object
with known markers. Robotic structures and more complex
articulated objects can also be tracked with this method.
Furthermore, future perspectives can be traced in the field of
safe physical human-robot interaction, where the detection
and prediction of a human partner motion is very important.
In fact, the proposed algorithm can be extended to the
tracking of human bodies.
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