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Transferring Human Manipulation Knowledge to Robots with
Inverse Reinforcement Learning*

Emil Blixt Hansen1,2, Rasmus Eckholdt Andersen1, Steffen Madsen1, and Simon Bøgh1

Abstract—The need for adaptable models, e.g. reinforcement
learning, have in recent years been more present within the
industry. In this paper, we show how two versions of inverse
reinforcement learning can be used to transfer task knowledge
from a human expert to a robot in a dynamic environment.
Moreover, a second method called Principal Component Anal-
ysis weighting is presented and discussed. The method shows
potential in the use case but requires some more research.

I. INTRODUCTION

The manufacturing industry has seen an increased demand
for higher customisable products and the globalisation has
brought more competitors to the market. Rapid technological
development is, at the same time, decreasing product life
cycles; the manufacturing industry needs new methods and
technologies to overcome these challenges [1]. A result of
this is Industry 4.0, which is defined as a collection of modern
technologies to enhance manufacturing and reduce the time to
market [2]. One of these technologies is autonomous robots,
which can work in dynamic environments where classical
robot manipulators struggle. Recent approached to cope with
classical robot programming has been sought through skill-
based programming principles [3][4] and task-space human-
robot interaction [5]. A slaughterhouse is an example of a
dynamic environment due to the variation present in meat.
This can prove a challenging environment for process solu-
tions using classical robot and automation methods [6].

A. Adaptable models

An adaptable model is a technique, which can handle
dynamically changing environments. Examples of classical
adaptable models are potential fields which has been used
to navigating a mobile robot successfully in an unknown
environment [7].

In recent years an interest in the subject of machine
learning and especially deep machine learning utilising neu-
ral networks to predict an outcome, has become a popular
buzzword and technique to use. In the realm of machine
learning, three paradigms exist: supervised learning, unsu-
pervised learning, and reinforcement learning. Unsupervised
learning is typically used to find un-specified patterns in
datasets. In supervised learning, a model is first trained using
a dataset with known classes. The model can then be used to
predict the probability that an input belongs to a given class.
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In reinforcement learning, prior examples of optimal actions
are not given. These must thus be discovered through trial-
and-error principle by getting rewards based on performance.

This paper focuses on handling dynamically changing
environments with modern technologies such as machine
learning and Virtual Reality (VR) system. The machine
learning paradigm chosen is reinforcement learning which, in
this paper, will be used to transfer human expert knowledge
to a robot.

II. RELATED WORK

The neural network machine learning boom started around
the middle of the 2010s, whereas the mathematics behind
backpropagation, feed-forward and activation functions are
some decades-old [8][9][10]. Nonetheless, the computation
power and the large datasets required to get good results were
not available at that time. In 2015, DeepMind published a
paper on Deep Q-Learning (DQN), which showed a method
to stabilise the normally unstable neural networks. Since the
publication, the usage and interest in neural networks in
reinforcement learning have gained traction [11].

In the field of robotics and reinforcement learning, exam-
ples of work can be found in different sub-fields of robotics.
In the path-planning sub-field, a traditional Q-learning al-
gorithm was used to control a 6 DoF manipulator [12] and
solve a wire loop game [13]. Welding tasks has also been
tested with deep reinforcement learning where, e.g. an Actor-
Critic network (ACN) has been used for solving welding
tasks [14][15]. In the robotics sub-field of pick-and-place,
examples of the deep reinforcement learning algorithm Deep
Deterministic Policy Gradient (DDPG) exist [16][17][18].

In this paper, we will mainly use DDPG to solve a use
case by trajectory learning from a human expert.

III. USE CASE

At the industrial partner (slaughterhouse), they have a task
of picking a large middle piece of meat from a table and place
it on a hook located on a rod (illustrated in Figure 1). The
worker is only allowed to perform the task continuously for
40 minutes due to the high strain from lifting the heavy meat
and repetitive behavior. Since this is a heavy and tedious task,
the industrial partner is researching the ability to use robotic
solutions in this dynamic job.

A. Direct task learning

To understand the concept of transferring human expert
knowledge to a robotic system, it is useful to understand
what kind of knowledge is to be transferred. In this use



Fig. 1. The red line indicates the trajectory of the meat from the aluminium
table to the hook.

case, the operator slides the meat to the edge of the table
before lifting it above the hook. Gravity is then used to
place the meat firmly on the hook. With this movement, the
operator reduces the effort which is needed and thus limiting
the risk of injuries. To better understand the correspondence
of knowledge, we describe what we call Direct Task Space
Learning. In classical teleoperation of a manipulator, the
operator moves the robot, and thus the task is handled in the
task space of the robot and not in the operator’s task space.
It is believed that information can be lost and therefore, we
want to bring the robot into the expert’s task space and learn
directly from it.

B. Collection of human expert data

To accomplish this direct task space learning, the behaviour
of the expert doing the task is needed. We can collect
this behaviour with a VR system with trackers mounted
on the meat and thus gathering the expert data required.
We used an HTC VIVE system and performed a hand-
eye calibration with the robot manipulator (Universal Robot
UR5) and the HTC VIVE system, shown in Figure 2. The
unknown transformation (illustrated with red lines) is then
found with the hand-eye calibration method from [19]. After
the calibration, it is possible to relate any point from the HTC
VIVE system with the robot base.

With the calibration, ten expert trajectories were recorded,
by a human expert dragging a lump of a fake piece of meat
on the table and placing it on the hook.

IV. TRAJECTORY LEARNING

A deep reinforcement agent needs to explore the statespace
and thus make mistakes in order to learn. It is not desirable
for an agent controlling a robot to make a lot of mistakes
since it is hazardous for itself and its surroundings; thus, a
simulation environment is required.

A. Simulation environment

As a simulation platform Gazebo was chosen as it al-
ready has a functional ROS connection. The simulation

Fig. 2. The transformation matrices in the setup, where the two unknowns
are the transformations world

base T and tool
trackerT , illustrated with red.

environment enables us to speed up the training. However,
it was discovered that Gazebo has some stability issues. To
overcome this stability problem while remaining in the task
space, we created a simple simulation environment called
TCP Simulation. This simulation does only focus on the TCP
coordinate in the Cartesian space, and thus no dynamics and
kinematics of the robot nor the world are present. However, it
is much faster than Gazebo and does not suffer from stability
issues.

B. Distribution of training

Since the TCP simulation is far faster compared to Gazebo
(0.003 seconds compared to 0.1 seconds, per step), but it is
at the cost of lost kinematics and dynamics information, we
suggest a distribution of training. This distribution is shown in
Figure 3. The initial training is done in the TCP simulation till
the exploration is less and the agent has started to converge.
The training is hereafter moved to Gazebo and then to the
real robot.

Fig. 3. The distribution of training.

C. Inverse reinforcement learning

One of the challenges of reinforcement learning is the
deduction of a rewards function. In our case, the optimal
policy for the agent is already given by the expert and
the expert data. Therefore we can use inverse reinforcement
learning to flip the problem and letting the agent find the
optimal reward function given the expert data.

In this paper, we tested two inverse reinforcement learning
algorithms - the first called linear inverse reinforcement learn-
ing [20] and the second known as apprenticeship learning
[21]. The first approach is a linear programming problem, and
the second is a quadratic programming problem. Besides the
two mentioned methods, our concept of Principal Component



Analysis (PCA) weighting is also introduced and discussed.
Since the state space and action space is continuous the
reinforcement learning method, DDPG was chosen.

Along with the inverse reinforcement learning algorithms,
the concept of viapoints is introduced as features for the
agent. The features are therefore the minimum Euclidean dis-
tance to each of the points, and thus it becomes a Euclidean
minimisation problem. The algorithms were tested with 2, 4
and 100 viapoints:
• 2 viapoints: The edge of the aluminium table and the

top hook.
• 4 viapoints: The edge of the aluminium table, top of the

hook, floating between table and hook, and a distraction
point raised above the table.

• 100 viapoints: 10 viapoints are sample uniformly from
10 expert trajectories.

The hyper-parameters of the DDPG agent was not changed
throughout the different runs.

In Linear Inverse Reinforcement Learning (IRL), a reward
function is assumed to be representable by some linear
combination of features and weights. The first approach to
Linear IRL is by finding a reward function for which the
expected value of some observed trajectories generated by
an unknown optimal policy π∗ is higher than the expected
value of some observed trajectories following a policy π as
shown in Equation 1. [20]

E[V π
∗
(s0)] ≥ E[V π (s0)] (1)

Where s0 is a fixed starting state. The value V (s0) is
calculated as a linear combination of some static basis feature
functions φi(s) chosen at design time. When the reward
function is defined as R = φi, then the value of a basis
function is computed as shown in Equation 2.

V πi (s0) =

T∑
t=0

γtφi(st) (2)

The value for a state is then a weighted sum of all the
basic feature functions as shown in Equation 3.

V π (s0) =

k∑
i=0

wiV
π
i (s0) (3)

Where the weights wi are the parameters to fit such
that Equation 1 is true. This gives the linear programming
problem posed in Equation 4.

max

k∑
i=1

(
V π

∗
(s0)− V π (s0)

)
(4)

s.t. |wi| ≤ 1, i = {1, . . . , k}

The second approach to Linear IRL, called apprenticeship
learning, comes from [21]. The approach is overall similar

to the method presented by [20], as it also set up a linear
combination of feature functions that are weighted. While
the first algorithm tries to match some value of a trajectory
as shown in Equation 3, the algorithm presented by [21] tries
to match feature expectation vectors estimated as shown in
Equation 5 given m trajectories.

µ =
1

m

m∑
i=1

∞∑
t=0

γtφ(s
(i)
t ) (5)

Equation 5 is then used to compute the feature expectation
for both the expert µE and a policy µπ . The idea is that by
matching these feature expectations, the policy π will produce
trajectories that perform as good as the expert. Another differ-
ence is that [21] puts a ‖ w ‖≤ 1 constraint on the weights
meaning the problem is a quadratic programming problem
rather than a simpler linear one as shown in Equation 6.

max wT (µE − µπ) (6)
s.t. ||w||2 ≤ 1

V. RESULTS

A. Linear inverse reinforcement learning and apprenticeship
learning

Since the solution to the use case is a trajectory, it can
be hard to measure the performance of it relative to the
trajectories generated by the expert, i.e. a trajectory does
not explicitly need to follow the expert’s trajectory to solve
the case. Therefore, one of the best performance measure
(besides that it reaches the goal) is a visual inspection. In
Figure 4, the results related to the linear inverse reinforcement
learning algorithm is shown and compared with traditional
reinforcement learning. It can be seen that both methods
succeeded in approaching the goal. It should be noted that
the traditional reinforcement learning algorithm is the same
as inverse just with the weights of the features fixed to -0.5
and thus treated equally.

Fig. 4. A learned trajectory with two viapoints. Note that the reward function
has been smoothened with a value of 0.6.

In Figure 5, the four viapoints is shown, and it can be
seen that the traditional reinforcement learning does not learn
to ignore the distraction point, whereas the inverse rein-
forcement learning does. This is expected behaviour because
all of the features are weighted equally in the traditional



reinforcement learning; thus, the distraction point is just as
important as the hook viapoint.

Fig. 5. A learned trajectory with four viapoints. Note that the reward
function has been smoothened with a value of 0.6.

For the 100 viapoint, shown in Figure 6, the same problem
can be seen. Here when the upwards motion begins, the
traditional reinforcement learning starts to deviate from the
expert trajectory. An explanation for this behaviour is that all
points only contribute to the minimum distance, and thus the
goal is overshadowed by all the points. This is not the case
in inverse reinforcement learning where the agent learns to
ignore more of the viapoints and therefore a higher weight
is assigned for the goal point.

Fig. 6. A learned trajectory with 100 viapoints. Note that the reward function
has been smoothened with a value of 0.6.

The usage of apprenticeship learning, i.e. the quadratic
programming problem, does not seem to derive a better result
as can be seen in Figure 7. Moreover, a problem related to
apprenticeship learning was tendencies to produce positive
weights, resulting in an increasing reward when moving
farther away from the goal.

B. PCA weighting

One of the believed problems with the two tested inverse
reinforcement learning methods was the selection of the
viapoints and the weighting of them. A second approach is
in this section proposed for weighting features, called PCA
weighting. It is deemed possible that the eigenvector of the
biggest eigenvalue related to the feature matrix covariance
contains information about each feature contribution. Note
that the feature matrix is features extracted for all expert
data combined. This eigenvector thus contains the weights

Fig. 7. An expert trajectory along with learned trajectories for 2, 4, and
100 viapoints using quadratic programming inverse reinforcement learning,
from apprenticeship learning.

representing the importance of each feature. Features with
the most significant variance are assumed to be of most
importance. In Figure 8 the result can be inspected. It can be
seen that by using PCA weighting, the agent solved the task,
there are, however, still some derivation between the learned
trajectories and the expert.

Fig. 8. An expert trajectory along with learned trajectories for 2, 4, and 100
viapoints using PCA weighting.

In the approach mentioned above, a single weighting was
found for each feature. Another approach would be to have a
time-step wise implementation of the PCA weighting, i.e.
deriving a weight for each time-step. Let covw denote a
weighted covariance and Fi,j denote the the feature matrix
at each time step where i ∈ [t, T ] and j is the number
of features. Time depending weights can thus be found by
finding the eigenvector related to the biggest eigenvalue of
covw(Fi,j) for each time step t.

This was only tested with four viapoints, and the result is
shown in Figure 9. It is shown that the line is smooth and
solves the problem with the hook and approaches the goal.
However, it does not reach the peaks of the expert trajectory,
i.e. table edge and hook top. A reason for this could be that



a time depending weighting increases the complexity of the
reward function.

For all the generated tests the methods had difficulty
capturing the exact human behaviour. The believed reason for
this is a combination of a large search space and the weights
assigned to the features via inverse reinforcement learning.

Fig. 9. An expert trajectory along with learned trajectories for 4 viapoints
using time-step wise PCA weighting.

VI. CONCLUSION

One of the problems with reinforcement learning is that
the reward function has to be engineered; this is what
inverse reinforcement learning tries to solve. Nonetheless,
the problem is then just shifted to designing and selection
of features, which was also shown to be a just as hard and
tedious task. The designing with viapoints showed that it
did not create the best result, at least with linear inverse
reinforcement learning and quadratic programming.

Our second approaches with PCA weighting showed a
potential use with some visual better performance than
the linear inverse reinforcement learning and apprenticeship
learning. However, it was still not on the level of the expert,
visually.

With this paper, we showed that it is possible to gather
expert data and use it to solve a use case with inverse
reinforcement learning methods. Nonetheless, it still has its
caveats with not being of the same standard of the expert.
For future work, efforts should be put into actually using
meat and picking and placing it. Moreover, since the PCA
weighting did show some potential, it should be further
researched to investigate its potential.
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