

Edinburgh Research Explorer

Motion Planning for Multi-Contact Visual Servoing on Humanoid
Robots
Citation for published version:
Giraud-Esclasse, K, Fernbach, P, Buondonno, G, Mastalli, C & Stasse, O 2020, Motion Planning for Multi-
Contact Visual Servoing on Humanoid Robots. in 2020 IEEE/SICE International Symposium on System
Integration (SII). Institute of Electrical and Electronics Engineers (IEEE), pp. 156-163, 2020 IEEE/SICE
International Symposium on System Integration, Honolulu, Hawaii, United States, 12/01/20.
https://doi.org/10.1109/SII46433.2020.9026291

Digital Object Identifier (DOI):
10.1109/SII46433.2020.9026291

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2020 IEEE/SICE International Symposium on System Integration (SII)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1109/SII46433.2020.9026291
https://doi.org/10.1109/SII46433.2020.9026291
https://www.research.ed.ac.uk/en/publications/214eb35e-e0e1-4fc7-95ed-b11cf4a40d85

Motion Planning for Multi-Contact Visual Servoing
on Humanoid Robots

Kevin Giraud-Esclasse1, Pierre Fernbach1, Gabriele Buondonno1,
Carlos Mastalli1 and Olivier Stasse1

Abstract— This paper describes the implementation of a
motion generation pipeline motivated by vision for a TALOS
humanoid robot. From a starting configuration and given a set
of visual features and their desired values, the problem is to find
a motion which makes the robot reach the desired values of the
visual features. In order to achieve a feasible Gazebo simulation
with the targeted robot, we had to use a multicontact planner,
a Differential Dynamic Programming (DDP) algorithm, and a
stabilizer. The multicontact planner provides a set of contacts
and dynamically consistent trajectories for the Center-Of-
Mass (CoM) and the Center-Of-Pressure (CoP). It provides a
structure to initialize a DDP algorithm which, in turn, provides
a dynamically consistent trajectory for all the joints as it
integrates all the dynamics of the robot, together with rigid
contact models and the visual task. Tested on Gazebo the
resulting trajectory had to be stabilized with a state-of-the-art
algorithm to be successful.

I. INTRODUCTION

The aim of this work is to generate motions for a TALOS
humanoid robot starting from an initial configuration and
going to a final configuration such that a set of visual
features reach desired values. On flat floor and without
collision, the problem can be solved using Model Predictive
Control (MPC) on a Linear Inverted Pendulum [1], [2], [3],
[4] where footsteps, Center-of-Mass (CoM) and Center-of-
Pressure (CoP) trajectories are solved together provided a
desired velocity for the CoM. It is possible to use a visual
servoing task to compute the desired velocity. However this
desired velocity can not always be achieved due to the
constraints of the foot steps and the balance which are of
high priority. To have a coherent formulation, it is necessary
to have the visual tasks expressed in the MPC problem such
as in [5]. In any case the resulting CoM and CoP trajectories
are then provided to a local whole-body controller to perform
all the tasks including the visual one [6].

Following the outcome of the DRC, recent work have
been proposed to include also multiple contacts together with
vision [7]. The direct application is to be able to climb stairs
with potential industrial application. In [7], the main idea is
for a given set of contacts to generate a dynamically con-
sistant motion using a whole body instantaneous controller
and assuming a low level position control. Exteroceptive
feedback is provided by SLAM and not by visual servoing.

The strategy used in these approaches is to decouple the
entire problem in smaller sub-problems that could be handled

1 LAAS, CNRS, Toulouse, France.

Fig. 1: Result position of the robot after simulation with three
contacts and visual task. Talos’ right hand (frame represented
by a small red point) is equal with the target one. Center
of mass trajectories are displayed : each color represents a
phase corresponding to a contact change. Big green spheres
represent referenced features for the visual task, blue ones
for the output last position.

more efficiently as shown in figure 2. The sub-parts are often
structured as follows: contact planning to find feasible end
effector positions in the environment, centroidal trajectory
optimization to get the center of mass trajectory, and whole
body controller to generate the final joints trajectories to
apply on the robot.

To struggle against these complex challenges, a new solver
architecture is raising up in humanoid robotic field, the so
called DDP described in [8]. It has been used succesfully
for the DHRC in [9], and proposed also for humanoids
robots in [10]. In [11], the DDP is used to generate

Reachability planner Contacts Sequence Centroidal dynamics Whole body control

Fig. 2: Overall approach: The reachability planner takes a starting configuration (CS) and a goal configuration CG. The motion
planner described in section II provides a contact sequence, and a centroidal dynamics trajectory. The DDP described in
section III generates a whole body trajectory which is consistent with the contact dynamics and the complete model of the
robot.

whole body motions (corresponding to the third sub-part
previously mentioned), taking into account a part of the
most challenging issues such as the multi-contact and the
angular momentum equations. It was validated on the HRP-
2 humanoid robot. Compared to [12] the main difference
lies in the fact that contact models are neither convex nor
soft, they are directly provided by the multi-contact planner.
We apply the same strategy in this work. We pushed even
further as the multi-contact planner provides also a centroidal
dynamics (CoM/CoP) trajectory.

In this work we report our first tests in integrating a fast
multi-contact planner used to set a DDP problem which
in turns provides reference trajectories to a local whole
body instantaneous controller. It was tested in dynamical
simulation (Gazebo/ODE) on the TALOS humanoid robot.

In section II we briefly explain how the multi-contact
planner works. In Section III we give some reminders about
DDP algorithm and visual servoing elements to understand
how it can be integrated. Experiments and results are shown
respectively in Section IV and V using the robot Pyrene with
multi-contact and visual servoing tasks.

II. MULTICONTACT PLANNER

The complete architecture of the multi-contact planner pre-
sented in [13] is shown in figure 3. The following paragraphs
describe briefly each method of the architecture and refer the
interested reader to the papers introducing this methods.

A. Guide path

The first bloc of the figure 3 produces a rough guide
trajectory for the root of the robot. The method RB-RRT was
first proposed in [14] and then extended to a kinodynamic
version in [15]. This method plan a trajectory for the center
of a simplified model of the robot, using an heuristic based
on the reachability space of each limb. The goal of this
method is to plan a trajectory such that the robot can go from
the starting configuration to the goal configuration without
collision while maintaining contact with the environment
using limbs.

B. Contact sequence

Once this guide trajectory is found the second bloc of
the framework needs to find a sequence of feasible contacts.

The contact generation method presented in [14] produces
a sequence of whole body configurations in contact, such
that there is only one contact change between each adjacent
configuration. This method generates contact candidates us-
ing a set of configurations candidates built offline. It is able
to consider each limb separatly allowing fast exploration.
The reachable space of each limb is intersected with the
environment while the origin of the robot follows the guide
computed previously in order to find configuration candidates
close to the contact. Then, whole body configurations in
contact are found by inverse kinematics projection from this
candidates.

For every adjacent generated configuration in contact,
the algorithm has to check if there exists a motion that
connects these two configurations. This is decided by solving
a problem which is a convex reformulation of the multi-
contact centroidal dynamic trajectory generation problem
[16].

C. Centroidal trajectory
The centroidal trajectory is generated with the method

proposed in [17]. This method takes as input the sequence of
contacts and produces a centroidal trajectory satisfying the
centroidal dynamic constraints for the given contact points
and maximising a tailored cost function. This method can
generate centroidal trajectory for multi-contact scenario in
real-time thanks to a convex relaxation of the problem.

D. Validation
From the contact sequences it is possible to generate the

end-effectors trajectories imposing zero velocity and zero
acceleration at the start and at the end of the contacts. The
CoM trajectory is provided by the solution of the centroidal
dynamic problem presented in the previous paragraph. Con-
sidering a whole body controller (Kinematics or OSID),
it is possible to solve a problem tracking the trajectories
(CoM and end-effectors) in order to find the final articular
trajectories. From this the collision library FCL [18] checks if
the robot collides or not with the environment. The trajectory
is validated if not any collision is detected.

III. DDP AND VISUAL SERVOING

In this section we describe our visual servoing approach
under multi-contact events based on DDP. For that, we

RB-RRT Contact generator Inverse
kinematics

Centroidal dynamic
solver

Trajectory
validator

End effector
trajectory

Pinit
Pgoal

Vmax

env robot

q(t)
x(t)planning contactSequence

q(t)

x(t)

x(t)initGuess

[eff(t)]
q(t)

Fig. 3: Overview of the multi contact motion planner

first introduce our DDP algorithm tailored to mutiphase
rigid dynamics [11]. And later, we explain the visual task
formulation within our multi-contact DDP. This work is
based on the DDP solver implemented in Crocoddyl [19],
which computes efficiently the rigid body dynamics and its
derivatives using Pinocchio [20].

A. Differential dynamic programming

DDP belongs to the family of Optimal Control (OC)
and trajectory optimization [8]. It locally approximates the
optimal flow (feedback gains), and as a consequence, the
OC problem is splitted into simpler and smaller subproblems
(sparse structure). The DDP promises to handle whole-body
MPC on a humanoid thanks to its sparse structure [10].
However, the main drawback lies on the fact that it poorly
handles constraints.

Let’s consider a generic multi-contact OC problem as
follows:

X∗,U∗ = arg min
X,U

lT (xN) +

T−1∑
k=0

lk(xk,uk)

s. t. x0 = x̃0, (1)
xk+1 = fk(xk,uk),

where T is the given horizon, the state x = (q,v) lies in a
Lie manifold with q ∈ SE(3)×Rnj and v ∈ TxQ, x̃0 is the
initial condition, the system is underactuated u = (0, τ) with
τ are the torque commands, the discrete dynamics fk(·) de-
scribes different contact phases, and lk(xk,uk) describes the
different tasks (or running costs) and X = {x0,x1, · · · ,xT }
and U = {u0,u1, · · · ,uT−1} are the tuple of states and
controls along the defined horizon. Note that both – cost
and dynamics – often are time varying functions.

DDP breaks the dynamic problem into simpler subproblem
thanks to the “Bellman’s principle of optimality”. Indeed,
moving backward in time, the approximated value function
V (·) can be found by minimizing the local policy for a given

node, i.e.

Vk(δxk) = min
δuk

lk(δxk, δuk) + Vk+1(fk(δxk, δuk)), (2)

and this is locally approximated by a quadratic function
(a.k.a. as Gauss-Newton approximation) as follows:

δu∗k(δxk) = (3)

arg min
δuk

1

2

 1
δxk
δuk

T 0 qTxk
qTuk

qxk
qxxk

qxuk

quk
qTxuk

quuk

 1
δxk
δuk

 ,
where δx = x̄	 x is the deviation with respect to the local
linearization x̄ and belongs to the tangential space (∈ TxQ),
and the Jacobian and Hessian of the Hamiltonian are defined
as:

qxk
= lxk

+ fTxk
Vxk+1

,

quk
= luk

+ fTuk
Vxk+1

,

qxxk
= lxxk

+ fTxk
Vxxk+1

fxk
, (4)

qxuk
= lxuk

+ fTxk
Vxxk+1

fuk
,

quuk
= luuk

+ fTuk
Vxxk+1

fuk
.

We obtain the local policy by solving the Quadratic Pro-
gramming (QP) (3) as:

δu∗k(δxk) = kk + Kkδxk (5)

where kk = −q−1uuk
quk

and Kk = −q−1uuk
quxk

δx are the
feedforward and feedback terms, respectively. And for the
next node, we update the quadratic approximation of the
value function by injecting δu∗k expression into (3):

∆V (i) = −1

2
quk

q−1uuk
quk

Vxk
= qxk

− quk
q−1uuk

quxk
(6)

Vxxk
= qxxk

− quxk
q−1uuk

quxk

This backward pass allows us to compute the search
direction during the numerical optimization. Then DDP runs

a nonlinear rollout (a.k.a. forward pass) of the dynamics to
try the computed direction along a step length α, i.e.

x̂0 = x̃0

ûk = uk + αkk + Kk(x̂k 	 xk) (7)
x̂k+1 = fk(x̂k, ûk)

in which we perform a typical backtracking line search by
trying first the full step (α = 1).

The DDP solver iterates on these two phases – backward
and forward passes – until convergence to the result (gradient
approximately equals zero).

B. Handling tasks and constraints

A task is usually formulated as a regulator:

hi,task(xi,ui) = s∗task − stask(xi) (8)

where s∗task is a desired value vector for a feature and
stask(xi) the value vector of this feature according to
state xi. As one wants to minimize this value such that
limt→+ infh(x, u) = 0, the task at each node is implemented
as a penalty:

li(xi,ui) =
∑

j∈Tasks

wi,jhi,j(xi,ui) (9)

with wi,j the weight assigned at time
i to task j. In our case Tasks ⊆
{CoM,RHSE(3), RFSE(3), LFSE(3), EE

eeName
se(3) , V T}

with CoM the task tracking the Center-of-Mass, RHSE(3)

the task tracking the right hand pose, RFSE(3) the task
tracking the right foot pose, LFSE(3) the task tracking the
left foot pose, EEeeNamese(3) the task tracking an end effector
velocity wich sould be null during the impact, eeName
is the name of the end effector (RH for right hand for
instance), V T the visual task expressed in the image plan.

C. Handling dynamical constraints

Althought this basic formulation of DDP does not handle
constraints it is possible to integrate them in the cost function
using Lagrangian relaxation. Thus [11] modified the problem
formulation to enforce contacts. The dynamic of robot is
expressed as follows :

Mν̇ = Sτ − b+ Jcλ (10)

with M the inertial matrix, ν̇ the derivative of the state
velocity, S the selection matrix corresponding to the actuated
degrees of freedom (dof) , τ the vector of torques of
actuated joints and b the bias term consitting in coriolis
and gravitationnal effects. Jcλ is the term expressing the
external forces at joint level. Jc is the stacked Jacobian
corresponding to application points, λ is homogeneous is the
positive value of the force applied to the application point, on
the force application direction. In the formulation this term
is viewed as the dual variables. To constraint the dynamic
of the contact, [11] express null acceleration at the contact
point by :

˙(Jcvc) = 0

⇔
Jcv̇c = −J̇cv (11)

With 11 and 10, using Gauss principle, KKT conditions
are given by : [

M JTc
Jc 0

] [
ν̇
−λ

]
=

[
Sτ − b

J̇cv

]
(12)

To take into account the dual variable in the resolution of
the problem, dynamic equation is augmented as follows :

xi+1 = f(xi,ui)

λi = g(xi,ui) (13)

where g is the dual solution of 12. The action-value function
Q and the cost l are now depending on λ. Making the
assumption that second derivative of the dynamic f are
zero as ILQR algorithm does, but taking into account the
derivative of the cost l by λ, the new equations of the second
order approximation are :

Qx = lx + fTx V
′
x + gTx lλ (14)

Qu = lu + fTu V
′
x + gTu lλ (15)

Qxx = lxx + fTx V
′
xxfx + gTx lλλgx (16)

Quu = luu + fTu V
′
xxfu + gTu lλλgu (17)

Qux = lux + fTu V
′
xxfx + gTu lλλgx (18)

This method takes into account the contact constraints
in the dynamic level and prevent the solver to allocate
ressources to manage these constraints during solving run.
Since the main principles underlying DDP are exposed
in this paragraph, visual servoing is briefly presented in
the next paragraph in order to derive its integration and
implementation.

D. Visual servoing

As the DDP algorithm needs residuals (or regulators)
and derivatives of the tasks, this paragraph describe the
formulation of visual task and its derivatives.

Giving the type of sensor / camera, the formulation of
a visual task can differ. If the sensor provides depth infor-
mation, the approach is called Point-Based Visual Servoing
(PBVS). The formulation of that kind of task lies in SE(3)
space. If the camera does not provide depth information (or
if that data is not trustful due to errors, bias, noise), one will
use the Image Based Visual Servoing (IBVS). This approach
is detailed here.

Let us first consider the desired features s∗ and the actual
features s. These last could refer to perceived information
from camera or calculated by a simulator. The features can be
points of interests, moments or more complex visual features.
For sake of simplicity this study consider the simpler case
of points.

The error of the task is then :

e = s− s∗ (19)

In our case, s∗ is considered as fixed, not depending on the
time. The error e is also considered as the residual of the
cost l defined by :

l =
1

2
‖e‖2 (20)

The model commonly used is a first order motion model:

ė = Levc (21)

where vc is the velocity of the camera in the camera
frame, and Le is the interaction matrix. This matrix can be
considered as the features Jacobian By derivating the position
of one feature in the 3D space, [21] has shown Le can be
written as follow :

Le =

[−1
Z 0 x

Z xy −(1 + x2) y
0 −1

Z
y
Z 1 + y2 −xy −x

]
(22)

Now, let’s call Jc the Jacobian of the camera in the camera
frame, and q̇ the velocity of the degrees of freedom (DoF)
Combining the well known expression vc = Jcq̇ with (21),
we find :

ė = LeJcq̇ (23)

Contrary to the common visual servoing command law
that enforces the exponential decrease by writting this re-
lation: ė = −λe, DDP needs the derivative of the task
with respect to the state x and the control u as expressed
in (4). As mentioned earlier, the state is composed by the
robot configuration q and its joint-space velocity q̇, and its
Jacobians are:

∂e

∂

[
q
q̇

] =
[
02×nq , LeJc

]
(24)

∂e

∂u
= 02×nq−6 (25)

The Hessian of the visual task (i.e. lxx, lxu and luu) are
zeros.
All the elements are gathered to implement the visual task
in the DDP algorithm. Let’s now explain the experimental
conditions and tasks we have created for this work.

IV. SIMULATIONS AND EXPERIMENTS

In this section we describe the situation of the robot and
the tasks it has to manage, the software architecture used
to generated appropriate motion and the results obtained in
simulation and then on the real robot.

A. Simulation setup

In our setup, Talos begins in an initial double support
standing configuration. It should reach a contact surface (like
a table) to create a third contact in order to bend sufficiently
while maintaining balance to be able to see a target in its field
of view. Then, keeping the three contacts, it should visual
servo the target with predefined desired features positions in
the image plane. The main goal here is to be able to see an
object while the posture needs a third (or more) contact.

(a) (b) (c)
Fig. 4: Sequence of configuration in contact produced by
the contact planner. In (a) and (b) only the two feet are in
contact, in (c) both feet and the right hand are in contact.

Figure 4 shows the output of the contact planner: a
sequence of three configurations in contact, with one contact
change between each configurations.

In Crocoddyl, for each time step the dynamic and the
cost of the problem are redefined so that tasks can be
independently managed following a predetermined time line
given from the previous stages, namely the contact planner
and the centroidal trajectory generation method. In that way,
our time line is divided as follow:

• First phase set of tasks : {CoM}. A first phase to
make the robot center of mass goes down and on the
right to be above the next foot of support. The CoM
trajectory is followed through a task added in the cost
function (through Lagrangian relaxation). The posture
is regularized around the initial position (figure 4-a).
Contacts are enforced on both feet in Eq.12.

• Second phase set of tasks :
{CoM,LFSE(3), RHSE(3)}. The second phase
enforces only the right foot on the ground while a task
is provided on the position of the left foot (SE(3)
task). This task is roughly constructed by interpolating
the position of foot between initial and final position,
with an offset of 10cm along the vertical axis. We see
here that even the reference for the foot position suffers
from discontinuities, DDP can provide feasible foot
trajectories for the foot. For collision avoidance reasons,
a SE(3) task for the hand with relatively low weight is
provided (staying as the same place). The last point of
this phase is one time step before the contact creation
between the flying feet and the ground. Here the set
of tasks is {CoM,RFSE(3), RHSE(3), EE

LF
se(3)}. It is

augmented by an impact model that enforces again the
double contact of the feet and manages the different
tasks weights to improve the contact. For example,
regulation and SE(3) task weights are increased,
EEse(3) task for the flying foot is provided with high
cost on null velocity reference. From this point, the
position is regulated around the second configuration
given by the planner (figure 4-b).

• Third tasks set is {CoM,RHSE(3)}. Third phase is
made similarly as the first one. We only bring a new
SE(3) task for the right hand, referenced by an inter-

polation between the hand position at the beginning of
this phase and the contact point position provided by the
contact-planner. The final point is managed as creation
contact point like previously, enforcing three contacts.
At this point tasks set is {CoM,RHSE(3), EE

RH
se(3)}.

• Fourth tasks set is {CoM}. Final phase is regulated
around the next position from the contact planner (figure
4-c). CoM task is kept and the three contacts enforced.
The final point is regulated around the last planner
position and includes the visual task. For this point set
tasks is {CoM,V T}. Even if it seems to appear lately
in the time line, it does not make a noticeable difference
in the resulting motion. The DDP propagates the image
plane based non linear visual error on previous time
steps, hence the motion is smooth and the task is
solved up to the concurrent tasks solutions. The visual
task is made from targets that are 3D space points
and projected on the image plane of the camera by a
pin-hole model. We need at least four points to avoid
multiples possible solutions to place the camera with
respect to the points and the references. In figure 1 the
green balls are the references, the blue ones are how
they are positioned at the end of the motion.

The DDP algorithm is shown to converge on tasks ex-
pressing a walking pattern with null initialisation of the
problem (command and state over the time line). But in
our case, the impact on the hand and the three contacts
enforced did not allow to find a convergence without any
good initialization (warm-start). The motion found is made
iteratively by warm-starting the previous parts of the motion
and letting null initialization for the next. For instance, in our
case, the motion until the flying foot touching the ground
was generated by solving the first phase alone with null
initial guess, until time t = TfootTakeOff , and then solve
the problem for first and second phase together, warmstarting
from t = 0 to t = TfootTakeOff with previous solution while
initilization from t = TfootTakeOff to t = TfootLanding
was null. Another heuristic was used to help the solver to
converge: the posture regulation weight has been set higher
during the complete sequence convergence research, then
turned lower to avoid high velocity motion during phase
transitions.

Unfortunately, collision avoidance is currently not imple-
mented in the DDP algorithm. To generate a motion able
to be tried on the robot, we checked the bounds limits
violation and self-collision for each time step. For that
purpose we used the tools provided by the Humanoid Path
Planner framework [22]. However, if we found out that the
motion produced by the DDP violate one of this constraints,
we cannot directly add the constraint to the formulation of
the problem in order to produce a valid motion. We found
an iterative heuristic to avoid this issue: knowing that the
reference configurations given by the planner are valid and
away from these bounds, we increased the weight of the
postural task for the corresponding joints. In case of joint
limit violation, we increased only the weight corresponding

for that joint in postural task (regularization task). If an
autocollision appeared, all the joints of the kinematics chain
from that body to the torso have been involved.

To that point, DDP algorithm generates the references for
the next algorithm blocs: joint trajectories, feet trajectories
and dynamic whole body CoM trajectory. To be consistent
with the next section, we have to notice here that the CoM
reference trajectory taking as input in the DDP algorithm is
discretized at 100hz. The output is then naturally discretized
at 100Hz too. The next bloc of code needs 1kHz as input,
so then the trajectories were interpolated with the cubic
mode of scipy interpolation, except joint trajectories that
were interpolated in linear manner after the output. Until
this point, all the verification were handled in the viewer
gepetto-viewer.

B. Control architecture

The motors of the robot are position-controlled. Rather
than just sending the reference joint trajectory to the motors,
we employ a stabilizing control scheme in order to improve
the stability all along the motion. Note that the motion
generated by the DDP alone did not work with the Gazebo
simulator. This stabilization was necessary to make the
simulation successfull.

The DDP output is first decomposed into separate kine-
matic tasks, which are then sent to the hierarchical inverse-
kinematics solver, namely the Stack of Tasks [23]. The tasks
are, in decreasing order of priority:
• Pose of each foot
• Center of Mass position
• Upper body posture
• Waist orientation

It is important to notice that the order of priority of the tasks
is crucial, as each task is projected in the null space of the
previous one.

The dynamic stabilization is based on the Zero Moment
Point (ZMP). We are applying the ZMP control by CoM
acceleration strategy [24] as described in [25]. First, the
current CoM position and velocity are estimated from joint
sensors readings. Then, a commanded ZMP reference is
computed based on the deviation between the desired CoM
and the estimated value. Further feedback is obtained from
the force sensors in order to estimate the current ZMP.
Finally, the CoM reference is corrected so to achieve the
desired ZMP. The stabilizer can be integrated seamlessly in
the hierarchical inverse kinematics architecture, by simply
replacing the desired CoM reference with the adjusted one.

V. RESULTS

We will now describe the results of this work. The DDP
algorithm took several minutes for the sum of all phases,
knowing that the motion lasts almost 9 seconds. The code is
currently written in python and a work to implement a c++
version is ongoing, we expect an increase of performance
from this futur implementation. A first stage of simulation
was made in a viewer called Gepetto-viewer. The algorithm
is based on a weighted optimization process so errors of

Fig. 5: Left: The robot is touching the table too early. Right:
After a little bound and slide, the hand and the robot reach
desired positions

some tasks could remain. For instance, visual task with the
relatively low weight suffers from several centimeters of
errors for all the four points as it can be seen in 1 with big
cyan and green spheres in front of the robot. The trajectories
of the center of mass and the reference are also displayed,
only one trajectory is visible because points are too close
to be distinguished. Even if these two trajectories are very
close, they are not perfectly equivalent for two reasons.
Firstly, the task of the CoM struggles against other task and
regularization during the optimization process. Secondly the
DDP takes the complete dynamic of the system into account,
contrary to the previous stages. So then, the DDP behaves
as a dynamic filter without another calculation layer like in
[1].
Concerning the simulation in a simulator, the motion was
tested in Gazebo in the same way it would be tested on the
real robot : Stack of Tasks controller, stabilizer and ROS
architecture. The environment of simulation is a fixed plan
positioned at 75cm from the ground. As shown in figure
5-Left the robot is first touching the table before having
a little leap forward of the right gripper until final stable
position displayed in figure 5-Right. This motion of the hand
on the table is not expected and may be due to a lack of a
SE(3) hand task provided directly in stack of task controller.
With the input reference configuration given to the DDP, the
results shown in 6 indicate that the forces on the right gripper
are around 50N at the end of the motion with 250 in peack
on z axis.

300 350 400 450 500 550 600 650

0

100

200

Fig. 6: Blue, orange and green curves are respectively x, y
and z forces on contact hand, got from simulation. Bounds
are recognizable on z forces going to 0 after first contact
with the table. Values are expressed in Newtons.

VI. CONCLUSION

We have generated a multicontact motion motivated by
vision. The multicontact planner provides a feasible CoM
trajectory to be followed and reference postures of phases
corresponding to contact changes, used as input for the
DDP algorithm. Allowing to solve non linear problems, it
computes the complete dynamics of the robot and acts as
a dynamic filter on the previous inputs. It also embeds the
contact formulation directly in the dynamics.

By expressing its derivatives on state and control in the
image plan, a visual task is integrated in the DDP to drive
the motion to the target. The outputs of this algorithm,
namely the joints and end effector trajectories are then sent
to the stabilizer to be played in a Gazebo simulation through
the Stack of Tasks hierarchical controller. The simulation
shows a slight unexpected sliding of the hand on the table,
nonetheless data show that force peaks are not prohibitive to
play such a motion on the robot. We consider playing this
motion on the real robot with appropriate experimental setup
very soon.

REFERENCES

[1] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and
P. Souères, “A reactive walking pattern generator based on nonlinear
model predictive control,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 10–17, 2017.

[2] M. Missura, “Analytic and learned footstep control for robust bipedal
walking,” Ph.D. dissertation, Bonn University, 2016.

[3] K. Imanishi and T. Sugihara, “Autonomous biped stepping control
based on the LIPM potential,” in IEEE/RAS Int. Conf. on Humanoid
Robotics (ICHR), 2018.

[4] A. Hildebrandt, D. Wahrmann, R. Wittmann, D. Rixen, and
T. Buschmann, “Real-time pattern generation among obstacles for
biped robots,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2015.

[5] M. Garcia, O. Stasse, and J.-B. Hayet, “Vision-driven walking pattern
generation for humanoid reactive walking,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2014, pp.
216–221.

[6] D. J. Agravante, A. Cherubini, A. Bussy, P. Gergondet, and A. Khed-
dar, “Collaborative human-humanoid carrying using vision and haptic
sensing,” in IEEE/RAS Int. Conf. on Robotics and Automation (ICRA),
2014.

[7] A. Tanguy, P. Gergondet, A. Comport, and A. Kheddar, “Closed-loop
rgb-d slam multi-contact control for humanoid robots,” in IEEE Int.
Symposium on System Integrations (SII), 2016.

[8] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” International Journal
of Control, vol. 3, no. 1, pp. 85–95, 1966.

[9] A. Yamaguchi and C. Atkeson, “Differential dynamic programming
with temporally decomposed dynamics,” in IEEE/RAS Int. Conf. on
Humanoid Robotics (ICHR), 2015.

[10] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov, “An
integrated system for real-time model predictive control of humanoid
robots,” in IEEE/RAS Int. Conf. on Humanoid Robotics (ICHR), 2013.

[11] R. Budhiraja, J. Carpentier, C. Mastalli, and N. Mansard, “Differential
dynamic programming for multi-phase rigid contact dynamics,” in
2018 IEEE-RAS 18th International Conference on Humanoid Robots
(Humanoids). IEEE, Nov 2018, pp. 1–9.

[12] I. Mordatch, J. M. Wang, E. Todorov, and V. Koltun, “Animating
human lower limbs using contact-invariant optimization,” ACM Trans.
Graph., vol. 32, no. 6, 2013.

[13] P. Fernbach, S. Tonneau, O. Stasse, J. Carpentier, and M. Taı̈x,
“C-CROC: Continuous and Convex Resolution of Centroidal dynamic
trajectories for legged robots in multi-contact scenarios,” 2019,
submitted. [Online]. Available: https://hal.laas.fr/hal-01894869

[14] S. Tonneau, A. Del Prete, J. Pettr, C. Park, D. Manocha, and
N. Mansard, “An efficient acyclic contact planner for multiped robots,”
IEEE Transactions on Robotics, vol. 34, no. 3, pp. 586–601, 2018.

[15] P. Fernbach, S. Tonneau, A. D. Prete, and M. Taı̈x, “A kinodynamic
steering-method for legged multi-contact locomotion,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Sept 2017, pp. 3701–3707.

[16] P. Fernbach, S. Tonneau, and M. Taı̈x, “Croc: Convex resolution
of centroidal dynamics trajectories to provide a feasibility criterion
for the multi contact planning problem,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018.

[17] B. Ponton, A. Herzog, A. Del Prete, S. Schaal, and L. Righetti, “On
time optimization of centroidal momentum dynamics,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 1–7.

[18] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for
collision and proximity queries,” in Proc. IEEE ICRA, Minneapolis
(MN), USA, May 2012, pp. 3859–3866.

[19] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, S. Vijayakumar, and N. Mansard, “Crocod-
dyl: An Efficient and Versatile Framework for Multi-Contact Optimal
Control,” 2019.

[20] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The Pinocchio C++ library – A fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE International Symposium on System
Integrations (SII), 2019.

[21] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic
approaches,” IEEE Robotics & Automation Magazine, vol. 13, no. 4,
pp. 82–90, 2006.

[22] J. Mirabel, S. Tonneau, P. Fernbach, A.-K. Seppälä, M. Campana,
N. Mansard, and F. Lamiraux, “Hpp: A new software for constrained
motion planning,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 383–389.

[23] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile gen-
eralized inverted kinematics implementation for collaborative working
humanoid robots: The stack of tasks,” in 2009 International Confer-
ence on Advanced Robotics. IEEE, 2009, pp. 1–6.

[24] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction
to Humanoid Robotics, ser. Springer Tracts in Advanced Robotics.
Springer Berlin Heidelberg, 2014, vol. 101.

[25] S. Caron, A. Kheddar, and O. Tempier, “Stair climbing
stabilization of the HRP-4 humanoid robot using whole-
body admittance control,” in IEEE International Conference
on Robotics and Automation, May 2019. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01875387

https://hal.laas.fr/hal-01894869
https://hal.archives-ouvertes.fr/hal-01875387

	I Introduction
	II Multicontact planner
	II-A Guide path
	II-B Contact sequence
	II-C Centroidal trajectory
	II-D Validation

	III DDP and visual servoing
	III-A Differential dynamic programming
	III-B Handling tasks and constraints
	III-C Handling dynamical constraints
	III-D Visual servoing

	IV Simulations and experiments
	IV-A Simulation setup
	IV-B Control architecture

	V Results
	VI Conclusion
	References

