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Indoor SLAM based on line observation
probability using a hand-drawn map
Keigo Akiba1*, Ryuki Suzuki1, Yonghoon Ji2, Sarthak Pathak3 and Kazunori Umeda3

Abstract

In this paper, we propose a novel method to build indoor map information by utilizing a hand-drawn map as

prior information is given. So far, previous studies using the hand-drawn map have been limited to robot pose

estimation and navigation. In our approach, finding the correspondence between the shape of the real

environment and the shape of the hand-drawn map is performed to build accurate map information. In

addition, even if the estimation of the robot pose on the hand-drawn map fails, our method can continue to

build the map by re-estimating the robot’s pose on the hand-drawn map based on the previous corresponding

information. In the simulations, we verified the accuracy of the built map using three hand-drawn maps.

Keywords: SLAM; Mobile robot; Hand-drawn map; Line observation

1 Introduction
The use of autonomous mobile robots to replace hu-
man workers is currently attracting attention. In re-
cent years, a remarkable shortage of manpower has
been caused by a decrease in the working population.
Therefore, the importance of these robots is expected
to continue to increase and automation by robots.
In our immediate surroundings, autonomous mobile
robots have been introduced in many indoor facili-
ties such as factories, shopping malls, and airports
for movement and guidance. Simultaneous localization
and mapping (SLAM) technology is indispensable for
the operation of autonomous mobile robots. SLAM
is a technology that generates a map of the environ-
ment for robot operation by simultaneously construct-
ing a map and estimating the robot pose. In order to
improve the accuracy of map building, several meth-
ods that utilize prior information have been proposed.
However, it is difficult to obtain detailed maps or prior
information with accurate dimensions in large-scale fa-
cilities such as airports. In general, floor maps posted
in facilities show the location of rooms and other fa-
cilities in an easy-to-understand layout; however, the
scale, shape, and aspect ratio are often incorrect, mak-
ing it difficult to use them as prior information. There-
fore, novel methods using prior information that is
available to everyone and highly versatile are required.
Machinaka et al. estimated the robot pose based on
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Google Maps as the prior information [1]. However,
this method requires time to prepare the prior infor-
mation and adjust the parameters which are tedious
tasks.
On the other hand, it is relatively easy to pre-

pare a hand-drawn map based on human prior knowl-
edge. Bahram et al. suggested Monte Carlo localiza-
tion (MCL) [2] that is possible on the hand-drawn map
in order to estimate not only the robot pose but also
the scale of the map at the same time [3]. Addition-
ally, many methods for operating autonomous mobile
robots using the hand-drawn map have been proposed
[4, 5, 6]. However, these methods are limited to the
navigation and localization of mobile robots on the
hand-drawn map, and no mapping has been imple-
mented.
In this respect, we propose a map building frame-

work for indoor use that calculates the probability of
line observation on the hand-drawn map and using it
for SLAM. Specifically, we estimate the robot pose us-
ing the error of straight lines in which lines in the real
environment correspond with lines on the hand-drawn
map, as shown in Fig. 1. In addition, we use the proba-
bility of line observation to re-estimate the robot pose.
As described above, the use of hand-drawn maps for
map building not only enables highly accurate map
building but also allows the environment to be under-
stood in advance. This has the advantage of automat-
ing all route planning and robot control performed by
humans during map construction.
The remainder of this paper is organized as follows.

Section II discusses the overall structure of the pro-
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posed framework for mapping with the hand-drawn
map, and calculations of the probability of line obser-
vation is explained in Section III. Section IV presents
the re-estimation of the robot pose on the hand-drawn
map with probability of line observation. Section V de-
scribes the method for the correcting the robot pose in
SLAM. Our proposed method and the simulation re-
sults are discussed in Section VI. Finally, Section VII
presents the conclusions of this article and future work.

2 Overview
The proposed method assumes a wheeled mobile robot
equipped with a laser range finder (LRF). The overall
process of the proposed framework is shown in Fig. 2.
The proposed method can be divided into two main
parts: the process on a hand-drawn map and the pro-
cess in the real environment.
The process on the hand-drawn map is as follows.

First, the straight lines are extracted from the hand-
drawn map by using the probabilistic Hough trans-
form. Next, we use the method by Bahram et al. [3]
to estimate the robot pose on the hand-drawn map.
It uses particles including map scale information as
state variables to estimate the robot pose and the scale
of the hand-drawn map at the same time. Then, we
apply ray tracing to acquire the pseudo-range data.
At this time, correspondences between straight lines
on the hand-drawn map and the range data are si-
multaneously calculated. This correspondence is cal-
culated by nearest neighbor search by Euclidean dis-
tance. Meanwhile, if the MCL on the hand-drawn map
[3] is not performed correctly, the recovery process to
re-estimate the robot pose on the hand-drawn map is
executed. When the estimated robot position reaches
a wall or other non-running area on the hand-drawn
map, this MCL cannot be performed correctly. The
detailed process is presented in Section IV.
The process in the real environment is as follows.

First, we extract straight lines using random sample
consensus (RANSAC) from the actual range data ob-
served by the LRF mounted on the robot. Then, we
calculate the correspondence between the straight lines
on the hand-drawn map and the straight lines observed
by the robot. After that, we calculate the observation
probabilities for each straight line by finding the cor-
respondence between the pseudo-range data and the
actual range data. A detailed description of the line ob-
servation probabilities is given in Section IV. Next, the
actual robot orientation and position are respectively
estimated based on straight lines and a scan match-
ing process. The detailed estimation methods are de-
scribed in Section IV. Finally, map building is per-
formed based on the estimated actual robot position
and orientation.

3 Hand-drawn map processing
This section presents MCL-based pose estimation pro-
cess of the robot on a hand-drawn map and the re-
estimation process when the estimated pose is cor-
rupted.

3.1 Monte Carlo localization in hand-drawn maps

MCL in hand-drawn maps is able to output the robot
pose xt and the scale st of the hand-drawn map at the
same time.The process can be divided into prediction,
updating, resampling, and estimation. There are some
differences in the likelihood calculations in the predic-
tion and updating processes, compared to conventional
MCL, as follows.

3.1.1 Prediction process

The prediction process shifts the distribution of par-
ticles based on the control input ut and the motion
model to obtain the state xt at the current time. In
addition, the scale st of the hand-drawn map is pre-
dicted. In this process, an uncertainty is applied to
each component of xi

t that follows a specific distribu-
tion. Each prediction step is expressed as follows.

x i
t = Fkx

i
t−1

+ si−1

t (ut +Gtw
i
t) (1)

where x
i
t is the state of the i -th particle. Fk is Matrix

of linear models for state transitions of the system , ut

is control input, and Gt is Matrix of a noise model for
time transitions.wi

t is its noise following a multivariate
normal distribution.

sit = sit−1
+ e1 (2)

where ei is noise of the i -th particle relative to the
scale of the hand-drawn map.

3.1.2 Update process

The update process takes into account the scale of
the hand-drawn map in the likelihood calculation. The

measurement model p(
zt

sit
| xt ) and likelihood calcu-

lation model are shown in Eq. (3). Unlike the gen-
eral likelihood calculation model, the scale st of the
hand-drawn map is taken into account for the mea-
sured values zt and the likelihood function g(p, µ, s).
Specifically, the likelihood is calculated by using each
distance value from ray tracing and observations mea-
surement to obtain a measurement model. Here, the
distance values from ray tracing consider the scale st.
In addition, in the linear observation probability ex-
plained in Chapter 4, the observation probability of
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a straight line is calculated by using the distance be-
tween each point of the pseudo-observation data by
ray tracing and the observation data in the real envi-
ronment for the likelihood function in Eq. (3).

p
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z t

sit
| x i

t

)

= p

(

z t−1

sit−1

| x i
t−1

)
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(3)

where µt(j) is distance (observations) and lit(j) is dis-
tance (ray-tracing). σ2

g is distance dispersion. g(p, µ, s)
is likelihood function at a distance of one ray.

3.2 Recovery from failure on hand-drawn map

When the MCL on the hand-drawn map [3] is not per-
formed well, it is possible to recover the robot pose
based on the straight lines considered to have been
observed in the previous frame (i.e., probability f (r)in
Eq. (4) exceeds the threshold). When the estimated
robot position reaches a wall or other non-running
area on the hand-drawn map, this MCL is not per-
formed correctly. The recovery process is divided into
two parts: the preprocessing of the hand-drawn map,
and the determination of the observation points to re-
distribute particles for MCL [3] based on observation
points.

In the pre-processing, candidate observation points
Ri are spread out at random. Then, we register the in-
dices of the lines on the hand-drawn map that can
be observed at each candidate observation point as
shown in Fig. 3. Here, black and gray areas represent
the walls (i.e., occupied areas) and unoccupied areas,
respectively. Yellow circles represent candidate obser-
vation points, and red arrows represent pseudo-range
data.

Next, in the process of determining observation
points, we calculate which line on the hand-drawn map
is being observed at each frame. This means that even
if the MCL [3] is not successful, the robot pose is likely
to be in the vicinity of the point where it can observe
the line on the hand-drawn map that is observed just
before. Therefore, we can recover the robot pose by
finding multiple observation points that can observe
the straight line on the hand-drawn map observed by
the robot in the previous frame, spreading particles
around these points, and executing MCL [3] again.

4 Line observation probability
In this method, the following equation for calculat-
ing the probability f (r) of the existence of each line
is used to determine whether each line on the hand-
drawn map has been observed.

f(r) =
1

√

2πσ2
g

exp

{

−
(ri − sli)

2

2σ2

}

(4)

where ri and li are the i -th points of the actual range
data and the pseudo-range data from the robot pose on
the hand-drawn map, respectively. Index i denotes the
order of the corresponding range data. σ is the uncer-
tainty of the LRF. s is the scale of the hand-drawn map
estimated in each frame. The correspondence between
the actual range data and the pseudo-range data is
obtained as the index of the range data. When the ob-
servation probability in Eq. (4) exceeds the threshold,
the straight line is considered to have been observed.

5 Sequential SLAM by pose correction
With the observed lines on the hand-drawn map and
the lines observed in the real environment, the follow-
ing equation is used to correct the robot orientation.

θ =
1

N

M
∑

i−1

(θki
− θi) (5)

where θ is the amount of correction for the robot in the
rotation, and ki is the index of the line on the hand-
drawn map corresponding to the i -th observation line.
M is the number of lines for which correspondence
has been calculated. Next, the robot position is also
corrected by the iterative closest point (ICP) [7] which
is a well-known scan matching process. The amount of
movement in the translational is calculated as the sum
of the squares of the distances between the range data
E, as follows.

E = min

N
∑

i−1

∥

∥nT
(

y
ui
− (x i +T )

)
∥

∥

2

(6)

where x and y are the range data measured in the pre-
vious frame (i.e., the target range data) and the cur-
rent frame (i.e., the source range data) respectively.
n is the normal vector. N and ui are the number of
points in the source range data and the index of the
source range data corresponding to the i -th point in
the target range data, respectively. T is the vector of
translational components of the transformation ma-
trix.
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6 Experimental Evaluation
6.1 Experiment Conditions

To verify our method, we conducted simulations in the
environment shown in Fig.4 (a) and Fig.5 (a). Hand-
drawn maps were easily created using the Windows
10 built-in software “Paint.” We defined one pixel in
created hand-drawn maps as 10 cm. The maximum
range distance of the virtual LRF was set to 50 m,
and the error of the virtual encoder was defined by
using a normally distributed random number.
Fig.4 (b) shows the hand-drawn maps used in this

simulation (Fig. 4(a)). In hand-drawn map A, curves
are conspicuous because of the messy drawing. On the
other hand, the hand-drawn map B has a discrep-
ancy in the horizontal ratio of the shape on the left as
compared to the simulation environment. Hand-drawn
map C also has discrepancies in the horizontal ratio of
the left shape and the vertical ratio of the path leading
to the upper region.
The hand-drawn maps used in the experiment with

the environment in Fig. 5(a) are shown in Figs. 5(b).
Compared to the environment in Fig. 4(a), a more
complex, vast, and the real indoor environment was
assumed. The hand-drawn map shown in Fig. 5 (b)
has deviations in the horizontal proportions of the up-
per left road and the vertical proportions of the road
leading from near the center to the lower side.

6.2 Simulation results

In the simulations, we evaluated the accuracy of our
sequential SLAM process in comparison with SLAM
by odometry and conventional ICP. Figures 6 7 show
the constructed maps. Tables 1 2 show the average
deviation of the constructed maps from the true values.
In simulations 1 and 2, the errors exceeded 1 m when
the hand-drawn maps were not used. On the other
hand, when hand-drawn maps were used, the error was
around 0.3 m in both cases. These results show that
the use of hand-drawn maps can greatly reduce the
error.
First, we describe the experiment in the environment

shown in Fig. 4 (a). In the case of using hand-drawn
map A and hand-drawn map B, maps were built with-
out the failure of MCL [3]. However, in the case of us-
ing the hand-drawn map C, the MCL [3] broke down
in the middle region because the aspect ratio of the
corridor on the hand-drawn map differs greatly; thus,
the recovery process described in Section IV was per-
formed as shown in Fig. 8. Here, the green line repre-
sents the line exceeding the threshold of the observa-
tion probability. Red points are particles for the MCL
process.
As a result, a reliable map was built by our proposed

framework using the hand-drawn map. Note that a

previous study [4] mentioned that robot pose estima-
tion cannot be done correctly when the aspect ratio
of the real environment and the hand-drawn map is
significantly different. On the other hand, when hand-
drawn map B was used, the MCL [3] did not break
down, although there was a large discrepancy in the as-
pect ratio as shown in Fig. 6(c). This is because there
is no significant difference in the aspect ratio of the
map, although the size of the entire map is different.

Next, we describe the experiment in the environment
shown in Fig. 5 (a). As shown in Fig.7 (b), (c), and (d),
highly accurate map building was achieved for both
hand-drawn maps shown in Fig.5 (b). Although the
size and aspect ratio of each hand-drawn map differed
in some areas, there were no significant differences.

On the other hand, near the upper left corner in Fig.
5 (a), the robot pose on the hand-drawn map some-
times advanced into the inaccessible area, as shown in
Fig. 9. In such a narrow area, even a slight deviation
in the estimation of the robot pose on the hand-drawn
map would cause the robot to move into inaccessible
areas. In addition, if the pathway is wide and there are
only a few observation lines on one side of the path-
way, as shown in Fig. 5 (a), the re-estimation will not
be accurate, and the method will fail. Therefore, if the
area for robot operation in the real environment is nar-
row, we should draw a larger area on the hand-drawn
map in that location. That way, there are fewer cases
where the robot moves into the inaccessible area. Ac-
tually, the accessible area near the upper left turn is
depicted widely in Fig. 5 (b), and (d). There were no
cases where the robot moved into an inaccessible area
when changing direction. From the above discussion,
if the hand-drawn map is intentionally drawn with a
wider running area, it was found that the system is
less likely to fail.

From the above results, our proposed method is able
to effectively make use of information contained in
hand-drawn maps to achieve accurate SLAM. In par-
ticular, it achieved map construction with high accu-
racy in both the simple environment of simulation1
and the complex environment of simulation2. In ad-
dition, when the self-position estimation in the hand-
written map was not successful, the re-estimation pro-
cess corrected the error, demonstrating the high ro-
bustness of the system. In summary, we were able
to demonstrate the high practicality of hand-drawn
maps.

7 Conclusion
In this study, we proposed a novel SLAM scheme for
indoor use based on the hand-drawn map by matching
line information. In the simulations, we were able to
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build maps with higher accuracy by using hand-drawn
maps.
By using hand-drawn maps, which can be created by

anyone and easily used as prior information, a highly
versatile map construction method was realized. In
particular, the practicality of hand-drawn maps was
demonstrated by achieving highly accurate map con-
struction in an environment similar to an actual, com-
plex indoor environment.
In the future, we will start to develop a system that

automatically builds a map of the real environment
by obtaining the trajectory from the hand-drawn map
using our proposed approach.
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Figure 1 Our proposed method.

Figure 2 Outline of the method.

Figure 3 Determination of observation points. (a) Indices of
lines; (b) Observation points.

Figure 4 Simulation environment and hand-drawn maps. (a)
Simulation environment1; (b) Hand-drawn maps for
simulation.

Figure 5 Simulation environment and hand-drawn maps. (a)
Simulation environment2; (b) Hand-drawn maps for
simulation.

Figure 6 The determination of observation points. (a) True
map; (b) Result of Hand-drawn map A; (c) Result of
Hand-drawn map B; (d) Result of Hand-drawn map C; (e)
Result of ICP-SLAM; (f) Result of odometry.

Figure 7 The determination of observation points. (a) True
map; (b) Result of Hand-drawn map D; (c) Result of
Hand-drawn map E; (d) Result of Hand-drawn map F; (e)
Result of ICP-SLAM; (f) Result of odometry.

Figure 8 Recovery from failure. (a Determination of observed
straight line; (b) Particle redistribution; (c) Recovery by MCL
[3].

Figure 9 Moving into a non-running area. (a) Hand-drawn
map; (b) Actual environment.

Table 1 Recognition rate for each position of simulation1.

Methods Measurement error [m]

Odometry 6.157
ICP-SLAM 2.720

Hand-drawn map A 0.270
Hand-drawn map B 0.297
Hand-drawn map C 0.300

Table 2 Recognition rate for each position of simulation2.

Methods Measurement error [m]

Odometry 1.102
ICP-SLAM 2.165

Hand-drawn map D 0.334
Hand-drawn map E 0.331
Hand-drawn map F 0.341



Figures

Figure 1

Our proposed method.

Figure 2

Outline of the method.



Figure 3

Determination of observation points. (a) Indices of lines; (b) Observation points.

Figure 4

Simulation environment and hand-drawn maps. (a) Simulation environment1; (b) Hand-drawn maps for
simulation.



Figure 5

Simulation environment and hand-drawn maps. (a) Simulation environment2; (b) Hand-drawn maps for
simulation.



Figure 6

The determination of observation points. (a) True map; (b) Result of Hand-drawn map A; (c) Result of
Hand-drawn map B; (d) Result of Hand-drawn map C; (e) Result of ICP-SLAM; (f) Result of odometry.



Figure 7

The determination of observation points. (a) True map; (b) Result of Hand-drawn map D; (c) Result of
Hand-drawn map E; (d) Result of Hand-drawn map F; (e) Result of ICP-SLAM; (f) Result of odometry.

Figure 8

Recovery from failure. (a Determination of observed straight line; (b) Particle redistribution; (c) Recovery
by MCL [3].



Figure 9

Moving into a non-running area. (a) Hand-drawn map; (b) Actual environment.


