
 

  

 

Aalborg Universitet

A Scalable and Unified Multi-Control Framework for KUKA LBR iiwa Collaborative
Robots

Serrano-Munoz, Antonio; Elguea-Aguinaco, Inigo; Chrysostomou, Dimitrios; Bogh, Simon;
Arana-Arexolaleiba, Nestor
Published in:
2023 IEEE/SICE International Symposium on System Integration, SII 2023

DOI (link to publication from Publisher):
10.1109/SII55687.2023.10039308

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2023

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Serrano-Munoz, A., Elguea-Aguinaco, I., Chrysostomou, D., Bogh, S., & Arana-Arexolaleiba, N. (2023). A
Scalable and Unified Multi-Control Framework for KUKA LBR iiwa Collaborative Robots. In 2023 IEEE/SICE
International Symposium on System Integration, SII 2023 Article 10039308 IEEE.
https://doi.org/10.1109/SII55687.2023.10039308

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/SII55687.2023.10039308
https://vbn.aau.dk/en/publications/18c8301f-af8a-4c1b-abb4-8a9c48753ede
https://doi.org/10.1109/SII55687.2023.10039308


A Scalable and Unified Multi-Control Framework for KUKA LBR iiwa
Collaborative Robots

Antonio Serrano-Muñoz1, Íñigo Elguea-Aguinaco2, Dimitris Chrysostomou3,
Simon Bøgh4 and Nestor Arana-Arexolaleiba5

Abstract— The trend towards industrialization and digital-
ization has led more and more companies to deploy robots
in their manufacturing facilities. In the field of collaborative
robotics, the KUKA LBR iiwa is one of the benchmark
robots. To communicate these robots with different components
and generate an interoperability infrastructure, the software
libraries provided by Robot Operating System are now widely
widespread. However, the latency that such communication
between devices often generates, diminishes the potential of
machine learning control techniques, such as reinforcement
learning, when the robot must react swiftly in an unstructured
environment. This paper presents a scalable and unified control
system that supports both Robot Operating System and direct
control and outperforms current control frameworks in terms
of exploiting the functionalities of the KUKA LBR iiwa.
The framework’s documentation can be found at https://
libiiwa.readthedocs.io and its source code is available
on GitHub at https://github.com/Toni-SM/libiiwa.

I. INTRODUCTION

The implementation of Industry 4.0 brought about a
paradigm shift in many areas, leading many companies to
invest in the automation and digitization of their manu-
facturing processes. Now, some time after the introduction
of this production model, far from stagnating, its overall
market value is expected to increase in the next years [1].
Collaborative robotics will be one of the markets expected
to register the highest growth. This growth will be driven
by multiple factors, such as high-precision work and the
increasing adoption of automation in the end-use industry,
reaching $1.71 billion by the end of the current year [2].

While automated processes are often complex to recon-
figure, collaborative robots can easily be reconfigured and
retrained for new tasks in production [3]. Notwithstanding,
this reconfiguration requires intuitive robot control interfaces
for simple programming and straighforward reachability.
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Fig. 1: An illustrative scenario of the components involved
in the framework.

Currently, Robot Operating System (ROS) [4] is the de
facto standard for software interoperability in robotics. It is
a set of software libraries that provides a communications in-
frastructure to connect components, enabling consistent data
exchange among different applications through a common
channel. Consequently, this communication infrastructure
facilitates the development of distributed computing systems,
covering the need for communication among the multiple
processes involved in a robotic system. It has been, for many
years, widely used for robot programming in academic and
research environments. However, for application-oriented
industrial environments, the ROS-Industrial [5] initiative or
the migration to ROS2 [6] is becoming highly relevant.
Unlike ROS, ROS2 bases its communication on the Data
Distribution Service (DDS) standard, offering advantages
such as a completely decentralized and distributed system,
support for different implementations or security mecha-
nisms of the DDS-Security Specification. These features
make ROS2 a communication system increasingly sought
after by companies seeking to use ROS for advanced robotics
projects and artificial intelligence.

However, in the field of artificial intelligence, specifically
in machine learning, there are techniques that demand direct
control. This is the case, for instance, of reinforcement
learning (RL), where an agent learns a control policy based
on its interaction with the environment. This control tech-



nique is currently employed in unstructured environments
where, occasionally, the response latency of the robot must
be low. Due to the communication structure proposed by
ROS and ROS2, its application in reinforcement learning,
for example, may be limited by higher response times. It
is therefore advisable to rely on direct control that leads
to lower response times in industrial applications where the
robot must act quickly [7] [8].

In this paper, a new scalable cross-platform multi-control
framework for KUKA LBR iiwa collaborative robots is
described. The interface not only unifies and enables control
and communication through ROS and ROS2, but allows
direct control for those applications where minimum control
frequency is required through a scalable, simple and well-
documented Application Programming Interface (API) as
sketched in Fig. 1.

A. KUKA LBR iiwa Collaborative Robot

The KUKA LBR iiwa1 is a seven-degree-of-freedom serial
manipulator with force/torque sensors along each axis. This
sensory distribution allows both position and impedance con-
trol, achieving compliant behavior in force-sensitive tasks.
The robot joints can be programmed individually or through
the Cartesian system, enabling both point-to-point motion
and linear movements to a target position. The KUKA LBR
iiwa can be programmed via multiple software/hardware
interfaces. These include Standard and Servo, both software
interfaces, and Fast Response Interface (FRI), a hardware in-
terface. The main difference between these control interfaces
is their motion update intervals.

For programming, the robot has its own control software,
KUKA Sunrise.OS, which runs JAVA code on the KUKA
Sunrise Cabinet control hardware. All sensory data or infor-
mation related to the current task is only available locally in
the robot’s control system or on the KUKA Smartpad.

B. Original contribution

To the authors’ knowledge, the proposed implementa-
tion is the first framework that brings together the most
relevant control workflows within the robotics community
for KUKA LBR iiwa robots, being able to perform direct
control both from the Sunrise cabinet itself and from an
external computer. The API and communication protocol
are directly and easily scalable to different programming
languages, which accelerates the deployment of diverse and
advanced conventional and collaborative robotic applications.
It also allows to configure and leverage the extensive ca-
pabilities and features available in the manipulator. Lastly,
the framework is supported by a user-friendly and detailed
documentation that provides end-to-end guidance, accessible
to a wide variety of people from different backgrounds.

II. RELATED WORKS

At present, there are not many specific frameworks for the
KUKA LBR iiwa. Moreover, due to the heterogeneous scope

1www.kuka.com/en-de/products/robot-systems/
industrial-robots/lbr-iiwa

of their use, the existing ones have been built according to
their own domain.

Among the most significant are the implementations of
iiwa stack [9] [10] and KUKA-IIWA-API [11] , both devel-
oped for ROS. The former only provides a smartservo control
and a limited implementation of the FollowJointTrajectory
ROS control action service [12] communication protocol.
This skips sending feedback on the incremental progress
of a defined target goal. The latter only allows standard,
discontinuous and blocking motion execution. In addition,
both frameworks provide a subset of features within the
availability offered by the KUKA LBR iiwa.

Regarding ROS2-based frameworks, iiwa ros2 [13] stands
out. It is a standalone version similar to iiwa ros [14] for
ROS. Both provide a stack of files and configurations over
the FRI protocol for position, velocity and torque control.
However, for their use, the installation of a specific KUKA
hardware interface is required.

For direct control of the robot from an API, the KUKA
Sunrise Toolbox for Matlab [15] allows the KUKA LBR
iiwa to be controlled via an external computer using Matlab.
On top of this implementation, the IiwaPy and IiwaPy3
packages [16], from the same authors, offer direct control
through Python programming. Yet, their functionalities are
limited to only one type of motion and lack basic intuitive
documentation.

The iiwapy [17], an independent implementation but shar-
ing the same name as the one described above, enables to
control the robot from a Python API. However this module
does not allow the direct control of the robot, since its
implementation is built on top of the iiwa stack, using the
ROS Python API to communicate with the latter.

This paper, therefore, presents a new scalable and unified
cross-platform framework that not only supports ROS and
ROS2 control, but also direct control and exploits a wide
variety of features available in the KUKA LBR iiwa, namely
control interface and mode, and motion and execution types,
outperforming the state-of-the-art frameworks in terms of
robot functionality.

III. SCALABLE AND UNIFIED MULTI-CONTROL
FRAMEWORK

This section describes the proposed framework in more
detail, with emphasis on its architecture and integrated con-
trol workflows.

A. Framework Architecture

The Fig. 2 shows the architecture of the implemented
framework. It is divided into three main blocks (where each
block represents a physical device) as described below, from
the bottom to the top block.

1) KUKA LBR iiwa: The sensitive lightweight robotic
manipulator, which is in contact with and modifies the
environment.



Fig. 2: Architecture of the proposed framework divided into
nested blocks according to the physical devices involved and
the features and capabilities of the robot, as well as the APIs
and control workflows provided.

2) KUKA Sunrise Cabinet: The robotic manipulator’s
controller workstation which has specific software, hardware
and interfaces for controlling the latter. KUKA Sunrise.OS
is the operating system of the cabinet which offers toolboxes
and libraries programmed in JAVA to read and modify the
robot state.

One of the components implemented in this work (libiiwa
- JAVA API) defines an interface that uses the KUKA
Sunrise.OS libraries to access most of the specific features
and capabilities of this manipulator in a simple and clear way.
The API allows communication and control from external
stations via TCP/IP protocol. In addition, it can be used to
quickly develop applications executed from the cabinet itself.
The following features and capabilities of the robot can be
configured and used through the libiiwa - JAVA API:

• Execution type: Defines how the movements of the
robot will be executed by the internal real-time con-
troller. The synchronous type executes a motion com-
mand after the current motion has been completed,
blocking the program flow. The asynchronous type
executes a motion command without interrupting the
program.

• Motion type: Defines the types of movements to be
performed by the robot to go from one pose in space to
another. The types supported by the implemented API
are: point to point (PTP), linear (LIN), linear relative to
its current position (LIN REL) and circular (CIRC).

• Control mode: Defines which controller can be used to
operate the robot. The API allows to operate in position
and impedance control mode, the latter in its different
variants for Cartesian and joint control space.

• Control interface: Defines which interface will be used
to operate the robot controllers. The API allows to select

between the two software interfaces: standard and servo
(or servoing). The latter is a real-time soft interface and
requires the presence of some KUKA specific libraries
in the cabinet.

3) Workstation: An external computer that functions as
an access interface to the operator, to other external control
programs such as learned or designed control policies, or to
ROS/ROS2 environments, for example.

External access or control workflows rely on a component
of the library (libiiwa - Python API) programmed in Python
that communicates, via TCP/IP, with its pair mentioned
above (libiiwa - JAVA API). The supported control work-
flows are described in the following subsection.

B. Control Workflows

At the time of writing, the following workflows are
supported by the developed scalable and unified multi-control
framework.

1) Direct Control: The robot can be manipulated directly
through the available APIs. The JAVA API can be used only
for the development of applications inside the cabinet. This
API also extends a communication interface that allows ex-
ternal handling in any programming language that interprets
and follows the defined protocol described in Fig. 3.

The API programmed in Python, a programming lan-
guage popular among data scientists, artificial intelligence
and machine learning specialists and roboticists, enables
control from external workstations or devices connected to
the cabinet.

2) ROS & ROS2: On top of the Python API, a node has
been developed, for both ROS and ROS2, that allows the
integration of the framework (and the manipulator) with a
distributed ROS environment.

This node implements subscription topics for manipulating
the robot in Cartesian and joint control space as well as
publication topics for exporting sensor information such as
the position, velocity and torque of the joints, the Cartesian
pose of the end-effector and the force and torque measured

Fig. 3: Communication protocol. Communication is always
initialized from the external workstation which sends a
command request and receives the robot status from the
cabinet. The request is formed by a command code (1) and
its respective arguments (7). The robot status is formed by
the command status (1), the last error code (1), the position
(7), velocity (7) and torque (7) of the joints and the Cartesian
position (3), orientation (3), force (7) and torque (3).



in that frame, for example. Also, it implements ROS services
to configure and use the features and capabilities described
above.

Furthermore, the node implements the ROS Control’s
FollowJointTrajectory action service used by MoveIt [18], a
very popular motion planning and manipulation framework
for kinematics, control and navigation, to access the robot’s
low level controllers. For both ROS and ROS2 versions of
the node, the topic and service names, execution frequency
and other parameters can be modified from the roslaunch
files provided.

C. Control frequency and latency times

According to KUKA’s reference for the LBR iiwa, the
recommended destination setting interval should be greater
than 100 milliseconds (10 Hz) for the standard interface and
greater than 20 milliseconds (50 Hz) for the servo interface.

The Fig. 4 shows the mean and standard deviation of the
round-trip latency time (including command execution) over
10000 samples for the standard and servo control interfaces.

Fig. 4: Round-trip latency time (mean and standard deviation
over 10000 samples) in milliseconds for the Python API
methods. Methods for setting and configuring operation
modes, parameters, constants and limits are grouped under
the “set parameter(s)” label.

These values are much smaller than the recommended
limits (over 30% and 50%, in the worst case, for standard
mode and servo mode respectively), which ensures adequate
control.

D. Documentation

One of the relevant points of the proposed implementation
is its detailed and user-friendly documentation. The docu-
mentation is written using reStructuredText and hosted online
by Read the Docs under the url https://libiiwa.
readthedocs.io.

The documentation covers the installation and start-up
steps of the library and details of the JAVA and Python APIs.
For the ROS/ROS2 control workflow, released packages and
details of the protocols and messages involved are provided.
For all of them code snippets in the respective programming
languages and command line call examples are included.

E. Baseline Comparison

The Table I shows a comparison of the proposed frame-
work with respect to the most relevant existing implementa-
tions. The comparison is made on the basis of the LBR iiwa
features and capabilities and the control workflows described
above.

As shown in the table, our implementation covers most
of the various features and capabilities of KUKA LBR
iiwa robots. This makes it possible to develop robotics
applications that span different levels, from basic to more
complex and involving different control workflows. In addi-
tion, it enables the robot’s capabilities to be exploited to new
domains and tasks.

IV. LEVERAGING MULTI-CONTROL FRAMEWORK

To prove the functionality of the proposed multi-control
framework, two show cases, both for control through ROS
and ROS2 via command-line interface, Python scripting and
MoveIt, as well as a direct control to operate the robot using
a RL control policy, are described below. Supplementary
material (videos and code snippets) on the experimental
results is available in the framework’s documentation.

A. ROS and ROS2

For the command-line interface, the rostopic and ros2
topic tools, from ROS and ROS2 respectively, are used to
operate the manipulator in Cartesian and joint space. For the
configuration of the different features and capabilities of the
robot, the tools rosservice and ros2 service, from ROS and
ROS2 respectively, are employed.

Regarding control from Python scripting, the same com-
mands are invoked using Python’s rospy and rclpy libraries,
for ROS and ROS2, respectively. For more information and
code snippets and examples see the framework’s documen-
tation.

In the case of MoveIt, the implementation of the Fol-
lowJointTrajectory action service is tested through its RViz
plugin that allows to create start and destination goal states
for the robot interactively, test several motion planners and
visualize the result.

B. Direct Control

The framework is also used to support 3D reaching
experiments in which the KUKA LBR iiwa is commanded
by a RL policy. This machine learning control technique
allows a robot to autonomously discover optimal behavior
through trial-and-error interactions with its environment.
This interaction between the agent and its environment is
formalized as a Markov Decision Process (MDP), which
defines sequential decision making as a semi-random process
and according to which the agent acts.

In the testing scenario, the robot is required to move from
an initial to a target position. Subsequently, the formulation
of the state, actions and reward for the RL agent training in
simulation is defined.



TABLE I: Comparison of the framework developed in this work with other related frameworks/libraries.

Framework / library Execution type Motion type Control mode Control interface Control workflow
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libiiwa (our) * * * * * * * * * * * * * * *
iiwa stack * * * * * * * * * * *

KUKA-IIWA-API * * * * * * * * *
iiwa ros * *

iiwa ros2 * *
KUKA Sunrise Toolbox for Matlab * * * * * * * * * * *

iiwaPy/iiwaPy3 * * * * * * * * * * *
- Control mode abbreviations: Position (P), Joint impedance (JI), Cartesian impedance (CI), Cartesian sine impedance (CSI).
- Shaded cells do not apply to the marked fields.

State Space: s = [q, q̇, pt], where q and q̇ are joint
positions and their derivative, respectively, and pt is the target
position.

Action Space: a = [∆q]
Reward Function: r = −d(pee, pt), where d(pee, pt) is

the Euclidean distance between the end-effector Cartesian
position, pee, and the target Cartesian position, pt.

V. CONCLUSIONS

This paper presents a new framework for the control
of KUKA LBR iiwa collaborative robots through different
workflows. These workflows include both the standardized
ROS and ROS2 software libraries for software interoperabil-
ity in robotics, as well as direct control for those artificial
intelligence applications that require low latency. The pro-
posed interface outperforms current approaches in terms of
functionality, accessibility to robot control and integration.

In order to demonstrate the functionality and operability
of the proposed communication framework, experiments are
carried out and the results are reported in the framework’s
documentation.

The authors expect that this work can support the robotics
community in the future development of new applications of
the KUKA LBR iiwa, thus leveraging all the functionalities
that this robot offers. In addition, they expect that the
current schema can be adapted or used as a reference for
the implementation of control frameworks for other robotic
manipulators.
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