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Abstract— In this paper, we propose a method for online
estimation of the robot’s posture. Our method uses von Mises
and Bingham distributions as probability distributions of joint
angles and 3D orientation, which are used in directional
statistics. We constructed a particle filter using these dis-
tributions and configured a system to estimate the robot’s
posture from various sensor information (e.g., joint encoders,
IMU sensors, and cameras). Furthermore, unlike tangent space
approximations, these distributions can handle global features
and represent sensor characteristics as observation noises. As
an application, we show that the yaw drift of a 6-axis IMU
sensor can be represented probabilistically to prevent adverse
effects on attitude estimation. For the estimation, we used
an approximate model that assumes the actual robot posture
can be reproduced by correcting the joint angles of a rigid
body model. In the experiment part, we tested the estimator’s
effectiveness by examining that the joint angles generated with
the approximate model can be estimated using the link pose
of the same model. We then applied the estimator to the
actual robot and confirmed that the gripper position could be
estimated, thereby verifying the validity of the approximate
model in our situation.

I. INTRODUCTION

In robot task realization, alignment of the body to the
target position and posture is fundamental. It requires that
the posture of the actual robot approximates well that of
the geometric model. However, to achieve a highly accurate
positioning, frequent maintenance of robots is required since
the robot’s positional accuracy deteriorates, for example,
due to aging. These costs are barriers to using robots in
environments where frequent maintenance is difficult, such as
living environments. In such environments, a robot system is
needed that does not require the geometric model and actual
robot posture to be very close.

If the pose difference between the actual robot and the
geometric model is allowed, it is necessary to estimate how
much the posture of the actual robot differs from the model.
In this paper, we propose a method for online estimation of
the actual robot’s posture using available sensor information
and propose a robot system that uses the estimator.

For the sequential estimation of states, it is common to
use Bayesian filters. Much research has been conducted on
the probabilistic approach to estimating a robot’s posture.
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Fig. 1. Example of Bingham distribution B(M,λ), where M = I4. This is
an example of the directional statistical distribution used in this paper. The
corresponding λ is shown in each figure. Details are described in Section II-
C

They are mainly based on visual information from the outer
camera. In [1], they proposed the method for estimating
self-posture from RGB-D images, considering the latency
of yielding depth images. In [2], they construct a mapping
from the robot’s observable features to the joint angle using
the fixed camera to estimate the robot’s joint angles. Instead
of visual information, a method that estimates joint angles
from IMU sensors is proposed in [3], in which the extended
Kalman filter (EKF) was adopted. In [4], the method for
estimating human pose from a camera and IMU sensors is
provided. More generally, the method to fuse multimodal
sensors is proposed in [5], which uses a neural network to
learn the dynamics model.

In general, estimating a pose, especially the orientation, is
difficult because the orientation lies in non-Euclidean space.
One way to apply a stochastic filter on such space is to
consider the tangent space at a point in the space so that
it can be locally assumed as Euclidean space and apply a
well-known filter theory, such as the Kalman filter [6], [7].
This approach can be considered a generalization of EKF.
Although the tangent space approximation considers only
the neighborhood of a certain point, it works well because
filtering updates state locally.

Another approach is to adopt probability distributions
using in directional statistics, such as von Mises distribution
and Bingham distribution. These have been introduced into
the fields of sensor fusion. A von Mises filter is used for
a system containing circular variables in its state [8], [9],
achieving higher accuracy than the traditional EKF. Bingham
distribution has also been employed for recursive filtering
[10], [11]. They have used the distribution mainly to achieve
high-performance filtering or overcome the discontinuity of
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Fig. 2. Some examples of von Mises distribution. Note that the left (θ =
−180) and right ends (θ = +180) of this figure are connected and looped.

quaternion parametrization [12], so the distribution often has
only a single mode (unimodal; see Fig. 1). Unlike the tangent
space approximation, these distributions can handle a global
property of probability density all over the space.

In our method, we adopt directional distributions as noise
distributions for the state variable. In particular, we apply
them to the observed noise to obtain a probabilistic rep-
resentation of the global characteristics of the sensor. As
an example of its application, this paper deals with the
yaw drift of an IMU sensor using not only a unimodal
Bingham distribution but also an axis-symmetric distribution
(symmetric; see Fig. 1).

The detailed results are presented in Section IV. In ad-
dition, our method uses a particle filter for the following
reasons. First, it can easily handle nonlinear observation
noise via the likelihood function. Second, attitude estimation
is often multimodal, i.e., observations can be reproduced in
multiple ways, so it is generally unsuitable to use the method
which assumes a target as a single distribution, such as the
unscented Kalman filter (UKF).

II. PROBABILITY DISTRIBUTIONS

A. Multivariate Gaussian distribution

We define the m-variate Gaussian distribution as follows:

Nm(µ,Σ)(x)

=
1√

(2π)m detΣ
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
,

(1)

where x ∈ Rm, µ ∈ Rm, and Σ ∈ Rm×m is a symmetric
positive definite matrix. If a random variable X has the
distribution Nm(µ,Σ), we write

X ∼ Nm(µ,Σ). (2)

This notation “∼” will be used for other distributions.

B. von Mises distribution

We define the von Mises distribution as follows:

VM(κ, θ0)(x) =
1

2πI0(κ)
exp (κ cos(x− θ0)) , (3)

where x ∈ [−π, π), θ0 ∈ [−π, π), κ ∈ [0,∞). I0(·) is
the modified Bessel function of the first kind of order zero
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Fig. 3. Comparison between von Mises distribution and Gaussian distri-
bution. “Gaussian distribution” shown in the figure is the histogram of the
points (x mod 2π)−π, where x ∼ N (θ0, 1/

√
κ), θ0 = 3π/4. From the

top, κ = 10.0, 1.0, 0.20 respectively.

[13]. κ is the concentration parameter, and the distribution
becomes dense if κ is large and vice versa.

Fig. 2 shows some examples of the von Mises distribution.
Note that this distribution is cyclic: VM(κ, θ0)(x+ 2nπ) =
VM(κ, θ0)(x) for every integer n. Fig. 3 shows the density
function of von Mises distribution and the histogram of
sampled points from Gaussian distribution. For large κ, it
is known that the following holds [13].

VM(κ, θ0) ≈ N
(
θ0,

1√
κ

)
(4)

Crucially, one cannot estimate the mean of θ by simply
calculating the arithmetic mean of θ, which is represented
in Fig. 3 as “Naive Mean”. Instead, we must calculate [14]:

θ̄ = atan2(sin(θ), cos(θ)). (5)

This θ̄ is shown as “Circular Mean” in Fig. 3.
Since our system is based on the particle filter, we can

choose the von Mises distribution as the system distribution
instead of Gaussian. In this paper, we adopt von Mises
distribution for system distribution. We will get a closer look
in Section V-A

If xi ∼ VM(κi, θ0,i) independently for i = 1, . . . ,m and
x = (x1, . . . , xm)⊤, we write

x ∼
m︷ ︸︸ ︷

VM(κ1, θ0,1)(x1)× · · · × VM(κm, θ0,m)(xm) . (6)

C. Bingham distribution

The m-dimensional Bingham distribution is an antipodally
symmetric distribution over a unit sphere Sm = {x ∈
Rm+1 |x⊤x = 1}, and defined as follows [15]:

Bm(D,λ)(x) =
1

C(λ)
exp

(
x⊤D diag(λ)D⊤x

)
, (7)



where x ∈ Sm,λ ∈ Rm+1, and D ∈ R(m+1)×(m+1) is an
orthogonal matrix. diag(λ) is diagonal matrix whose diag-
onal components are λ. C(λ) is the normalizing constant.
Crucially, if we set 1m = (1, . . . , 1)︸ ︷︷ ︸

m

⊤, and c ∈ R, we get

Bm(D,λ+ c1m)(x) = Bm(D,λ)(x). (8)

Therefore, we can shift λ to set one of the components to
zero.

The Bingham distribution is suitable to represent the distri-
bution over unit quaternions due to its antipodally symmetric
property. We write the set of unit quaternions also as S3. We
can set

λ = (λ1, λ2, λ3, 0)
⊤, (9)

where λ1 ≤ λ2 ≤ λ3 ≤ 0, thanks to (8). If we set λ as (9), it
is convenient to adopt “xyzw” notation for quaternion instead
of “wxyz”, because the mode of the distribution becomes the
identity quaternion when we set M = I4. Here Im denotes
the m-dimensional identity matrix. Throughout this paper,
we adopt “xyzw” notation: that is, if we have a quaternion
q = w+ xi+ yj + zk, where i, j, k are imaginary units and
x, y, z ∈ R, we identify it with (x, y, z, w)⊤ ∈ S3 ⊂ R4.

Fig. 1 shows the distribution with various λs. One can
see that if the magnitude of the component in λ becomes
larger, then the distribution becomes more concentrated.
The Bingham distribution can represent an axis-symmetric
distribution, as shown in the bottom row of Fig. 1, which
plays an important role in attitude estimation using IMU
sensors. The estimation will be described in Section IV-D.

III. METHODOLOGY

A. Particle Filter

We abbreviate {xi | i = 1, . . . , t} to x1:t. The same applies
to y1:t. The system and observation equations are defined as
follows:

xt = ft(xt−1, vt), (10)
yt = ht(xt, wt), (11)

where vt is a system noise and wt is a observation noise.
This implies holding the Markov model as defined below.

xt ∼ p(xt|xt−1), yt ∼ p(yt|xt). (12)

Here the following Markov property holds.

p(xt|x1:t−1,y1:t−1) = p(xt|xt−1), (13)
p(yt|x1:t,y1:t−1) = p(yt|xt). (14)

Eq. (11) requires that every observation yt can be written
using xt explicitly. Under these assumptions, the sequential
filtering can be written as follows [16].

p(xt |y1:t−1) =

∫
p(xt |xt−1)p(xt−1 |y1:t−1)dxt−1, (15)

p(xt |y1:t) ∝ p(yt |xt)p(xt |y1:t−1). (16)
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Fig. 4. A diagram for explanation of an effective joint angle. We assume
that the deflection of links or joints can be represented by adjusting their
angles. In our situation, ut = (θ, φ)⊤ and xt = (θ̂, φ̂)⊤.

In particle filtering, the distribution p(xt−1 |y1:t−1) is
approximated by particles {x(i)

t−1 |t−1}
N
i=1 as follows.

p(xt−1 |y1:t−1) ≈
1

N

N∑

i=1

δ(xt−1 − x
(i)
t−1 |t−1), (17)

where N is the number of particles. Applying (10), the
filtered distribution can be calculated as:

p(xt |y1:t) =

N∑

i=1

β
(i)
t δ(xt − f(x

(i)
t−1 |t−1, vt)), (18)

where β
(i)
t =

ℓ
(i)
t|t−1(yt)

∑N
i=1 ℓ

(i)
t|t−1(yt)

. (19)

Here we abbreviate

ℓ
(i)
t|t−1(·) = p(· |x(i)

t |t−1). (20)

ℓ
(i)
t|t−1(yt) is usually called a likelihood function of yt. In

practice, it becomes too small to handle directly because
of underflow. Instead of direct calculation, it is stable to
compute log(ℓ

(i)
t|t−1(yt)) first, and then calculate

β
(i)
t =

exp[log(ℓ
(i)
t|t−1(yt))− log(ℓ

(M)
t|t−1(yt))]

∑N
i=1 exp[log(ℓ

(i)
t|t−1(yt))− log(ℓ

(M)
t|t−1(yt))]

, (21)

where M = argmaxNi=1 log(ℓ
(i)
t|t−1(yt)). In resampling, we

used the stratified resampling method [17].

B. Assumption in our Estimation

In our method, we assume that the posture of the actual
robot can be reproduced by correcting the joint angles of the
rigid model (we will use the words “geometric model” and
“kinematics model” in the same meaning). In other words,
as in Fig. 4, we consider that any differences in posture from
the rigid model caused by deflection of links or rattling of
joints of the actual robot can be absorbed by adjusting the
joint angles.

Under this assumption, we take the joint angles of the
rigid body model as the state vector. We predict the positions
and orientations of each link by calculating from the rigid
body model and then modify only the joint angles to be
consistent with those of the corresponding links estimated
from observed sensor information. Here we call this joint



angle the effective joint angle and write it as θeff. We write
the reference joint angle as θref. Using this notation, we can
abstractly formulate our settings as follows.

Posture
(
θref;Actual

)
= Posture

(
θeff;Rigid

)
, (22)

where the first entry of Posture is a joint angle, and the
second is a robot we are considering.

C. Likelihood Functions for Directional Statistical Distribu-
tions

In the context of filtering, for notational simplicity, θref is
rewritten as ut and θeff as xt. Letting yt be a tuple yt =

(ut,pt, qt), the likelihood function ℓ
(i)
t|t−1(yt) can be written

as follows.

ℓ
(i)
t|t−1(yt) = ℓ

(i)
t|t−1(ut) · ℓ(i)t|t−1(pt) · ℓ(i)t|t−1(qt). (23)

Here we assume that ut, pt, and qt are conditional indepen-
dent given x

(i)
t |t−1.

Before describing each component in (23), we define some
notation. Rot : SE(3) → S3 denotes a function that returns
the quaternion of the input’s rotation part. Note that the
quaternion q and −q represent the same rotation. To make
Rot well-defined, we choose the output quaternion with the
non-negative scalar part. Similarly, Pos : SE(3) → R3

denotes a function that returns the position of the given
6D pose. Written in mathematical formula, for T ∈ SE(3)
satisfying T (x) = Rx + t (R ∈ SO(3), t ∈ R3) for all
x ∈ R3, then

Pos(T ) = t, Rot(T ) = q, (24)

where q = (x, y, z, w)⊤ ∈ S3 is the quaternion that satisfies
w ≥ 0 and the following equation.

R =



1− 2y2 − 2z2 −2wz + 2xy 2wy + 2xz
2wz + 2xy 1− 2x2 − 2z2 −2wx+ 2yz
−2wy + 2xz 2wx+ 2yz 1− 2x2 − 2y2


.

(25)
We write the pose of the frame at given joint angles xt ∈

[−π, π)m as {F ;xt} ∈ SE(3). Let FP (resp. FQ) be a
set of the links whose position (resp. orientation) is to be
observed. For example, if we choose links {EE} to observe
position and {L1}, {L2} to observe rotation, then FP =
{{EE}}, FQ = {{L1}, {L2}}. In this notation, likelihood
functions of pt and qt are defined as follow.

ℓ
(i)
t|t−1(pt) =

∏

{F}∈FP

N 3(0, Rw)(p
{F}
t − Pos({F ;x

(i)
t |t−1})),

(26)

ℓ
(i)
t|t−1(qt) =

∏

{F}∈FQ

B3(I4,λw)(q
{F}
t ⊙ Rot({F ;x

(i)
t |t−1})

−1),

(27)

where p
{F}
t and q

{F}
t are the position and the orientation,

respectively, of the frame {F}. Here ⊙ denotes the product
of quaternions. If FP = ∅, we define ℓ

(i)
t|t−1(pt) = 1.

Similarly, if FQ = ∅ then ℓ
(i)
t|t−1(qt) = 1.
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Fig. 5. Overview of our system. Each color corresponds to the each values
or parameters. The area surrounded by the red dashed line in the upper
right corner of the figure is a detailed explanation of the components of
LL-Module. “obsv.” = observed, “func.” = function, “distr.” = distribution.

We assume that the joint angles of the actual robot are
close to the reference joint angles ut. To reflect this assump-
tion, we define the likelihood function of ut as follows.

ℓ
(i)
t|t−1(ut) =

m∏

j=1

VM(κw, 0)(ut⟨j⟩ − x
(i)
t |t−1⟨j⟩), (28)

where ut⟨j⟩ and x
(i)
t |t−1⟨j⟩ denotes the j-th joint’s reference

angle and estimated angle, respectively.

D. Likelihood-Based Pose Estimation System

Fig. 5 shows the overview of our system. The loop at
the bottom of the image corresponds to particle filtering.
The initial particles x

(i)
0|0 ∈ [−π, π)m are generated for i =

1, . . . , N , that obey the following distribution.

x
(i)
0|0 ∼

m︷ ︸︸ ︷
VM(κ0, 0)× · · · × VM(κ0, 0) = VM(κ0, 0)

m.
(29)

Here κ0 is a common constant. We set κ0 = 0.1 here.
We empirically found that the filtering succeeded for any
κ0 < 10.0. One can sample them using such as Scipy’s
scipy.stats.vonmises.

With the dynamics model, a particle of one-step evolved
joint angles x(i)

t|t−1 (which in our setup corresponds to an ef-
fective joint angle) can be calculated. We call these particles
“predicted particles”. The posture of the rigid robot model
corresponding to each particle x

(i)
t|t−1 is calculated with the

kinematics model. For each of these calculations, the pose of
each link {F ;x

(i)
t|t−1}, where {F} ∈ FP ∪FQ, is computed.

These are used as “predicted values” to compare with the
values observed from the actual sensors. When matching the
predictions with the observed values, information about the
observed noise is also needed, which is given as a “sensor
model” together with the “observation function”.

The part of the likelihood function required for particle
resampling is shown as an “LL-Module”. The details are



depicted in the area enclosed by the red dashed line. The
observation function is needed to reshape the predicted
values if they do not directly correspond to the observed
sensor values. There is a conditional branch here depending
on whether the sensor information is observable. If sensor
information is unavailable (e.g., hidden marker), then the
corresponding log-likelihood is set to zero. In this way, the
estimator is prevented from stopping its operation if some
sensors are not observed.

IV. EXPERIMENTS

A. Our Settings

In our experiments, we assume that the joint states are
constant, i.e., quasi-static motion. In other words, using the
notation in (10),

f(xt, vt) = xt + vt (30)

where vt ∼ VM(κv, 0)
m. The value of κv we set in our

experiments is shown in Table I.

B. Simulation Study

1) Simulating bent body: We simulate the body deflection
by adding offset angles to the joint reference angles. This
corresponds to the case where our assumptions described
in Section III-B are guaranteed to be correct. If we set the
generalized gravity at reference joint angles θref as g(θref),
effective joint angles are calculated as follows

θeff = θref + k · g(θref) (31)

where k is a proportional constant. Considering that the
resulting posture is not too close to the reference, we set
k = 0.033 here. The resulting posture is more bent than our
actual robot. In our implementation, the generalized gravity
torque is calculated by Pinocchio [18].

2) Simulation Fusion result: We fuse the virtual sensor
data in various combinations to see how the estimation
changes with the given data. Fig. 6 shows some examples
of combinations. Fig. 7 shows the posture corresponding
to the reference angle shown in Fig. 6. Specific discussion
for each result is shown in the figure with red text. In
this simulation, we set the parameter as shown in Table I.
These parameters are common with actual robot experiments
(except grasp_point, which is not used for estimation but
for groundtruth of the gripper position).

C. Estimating Gripper Position From Estimated Effective
Joint Angles

Next, we check that our filter also works for cases where
our assumptions do not necessarily hold. We confirmed the
validity of our assumption by comparing the estimated effec-
tive joint angles with the actual gripper positions observed
from an external camera. We put the AR markers on the
robot’s hand and base link for giving the reference.

Fig. 8 shows the estimation result with the actual robot.
The corresponding posture is indicated at the top of the
image. When the robot’s posture is vertical and not affected
much by gravity, the gripper position estimated directly from

TABLE I
HYPERPARAMETERS FOR ESTIMATION FOR THE ACTUAL ROBOT. EACH

DISTRIBUTION ARE ORIGIN-CENTERED: M = I4 IF BINGHAM, µ = 0 IF

GAUSSIAN, θ0 = 0 IF VON MISES.

name distribution value
link2_pitch_joint Bingham λ = [−800,−800, 0, 0]
link3_pitch_joint Bingham λ = [−800,−800, 0, 0]
grasp_point (EE) Gaussian Σ = diag([0.01, 0.01, 0.01])
reference joint angles von Mises κw = 15.0

system noise von Mises κv = 5.0
number of particles - N = 2048

the joint encoders shows good approximation performance.
As the robot’s posture approaches horizontal, the effect of
gravity-induced deflection increases, and the position error
estimated directly from the geometric model (Naive FK)
also increases. Importantly, the accuracy of the estimation
was better for the values incorporating the IMU sensor than
for the values estimated only from the joint encoder. This
suggests that our approximation method, which corrects only
the joint angles, is valid in our problem setting, even for the
actual robot.

During the experiment, there was a situation where the
robot accidentally collided with the desk, which is shown
in Fig. 8. Even at this moment, our estimates work well,
suggesting that they are robust to disturbances. Further
investigation of the robustness to external disturbances is the
subject of future work.

D. Estimating Effective Joint Angles from IMU

Intuitively, we might expect that we can extract the ef-
fective joint angles by calculating the difference between
the orientation of the joint’s parent and child links. Here
we compute the estimated effective joint angle by replacing
the joint angles calculated from the IMU measurement for
the second and third components of the joint encoder’s
measurement. The value from the joint encoder is used in
the first and fourth components: the first is used because
the 6-axis IMU sensor cannot measure the yaw direction
without drift, and the fourth is used because the gripper is
not equipped with an IMU sensor. We called this process a
direct fusion. We set this as a baseline of the fusion result.

The IMU sensor data are filtered by applying Madgwick
filter [19] without magnetic option. In the direct fusion, we
processed as follows:

1) Yield the estimated orientation from the IMU sensor
by filtering.

2) Calculate the appropriate Euler parameter for each
orientation to extract the yaw component.

3) Set the yaw rotation to 0 in order to cancel the drift.
4) Calculate back quaternions from the yaw-canceled

parameters.
5) Calculate the difference of angles of two quaternions

and adopt the result as “effective joint angle”.

In 2), we have two orders of the Euler parameter to
extract the yaw component: ’xyz’ and ’yxz’. Due to the
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Fig. 6. Some fusion results using our method with simulation. The legend and the limits of x-axis and y-axis are the same for each figure. The robot’s
reference postures are shown in Fig. 7. CI = confidence interval, EE = end effector.
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Fig. 7. The transition of the reference posture in the simulation shown
in Fig. 6. Joint names, link names, and the placement of sensors are also
shown.

gimbal lock, the estimation will fail if we choose inappro-
priate order of parameters. In 5), we compute the angle
of link2 pitch joint by calculating the difference be-
tween the IMU sensor result and the identity quaternion.

Fig. 9 shows the result of the direct fusion and our method.
In direct estimation, ’xyz’ is failed in the beginning because
the yaw component also appeared in x component, not only
z, due to the coincidence of the x and z rotation. Our
method can achieve equivalence performance, while direct
fusion requires careful calculation by hand. In addition, ours
can involve additional information other than IMUs into the
estimation without additional implementation.

E. Probabilistic Representation of IMU drift

To see the effect of introducing directional statistical
distributions, we present a method for yaw drift suppression
of IMU sensors using an axisymmetric Bingham distribution.
A magnetic sensor is often used for observing the yaw
direction, but it is difficult to use here because the sensors
in the robot are surrounded by the equipment generating
noisy electromagnetic fields. We use the 6-axis IMU sensor
to estimate the links’ orientation, although it has a yaw

drift. Our method solves this drifting problem by using the
axis-symmetric distribution as the observation noise. Fig. 10
shows the fusion results and implies the symmetric distri-
bution can absorb the yaw drift. This is because likelihoods
are the same with any quaternion around the z-axis, so the
system uses other information, such as the reference angle.

Our implementation uses the Madgwick filter to estimate
the yaw direction from the IMU sensor. The yaw direction
can be estimated to some extent from the information on
angular velocity, which can be obtained from the gyro sensor,
around the direction of gravity, but that information is also
dropped. Further discussion is needed to use this information
wisely. Instead of estimating the yaw direction from the gyro
sensor, if any other information about the yaw direction is
available, such as the gripper position, the effective joint
angle can be estimated that is consistent with this additional
information (see the fusion result of link1_yaw_joint
in column 1 and 2 of Fig. 6).

V. DISCUSSION

A. Varying Hyperparameters

The hyperparameters used in our experiments are shown
in Table I. We researched the influence of the choice of
parameters.

1) Initial distribution: It has little effect on results.
2) System noise: The estimation becomes very noisy for

small κ. Too large κ may lead particles to degenerate.
3) The number of particles: The calculation becomes

faster for smaller N , but too small N would lead to
degenerated particles. N ≥ 256 is required for our
case.
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Fig. 8. Result of the filtering experiments. The figures in the top row are the robot postures with the estimated joint angles (upper row) and the joint
reference angles (lower row). The middle and bottom rows describe the error of the end effector (EE) from the observed position (the middle row) and
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assumption still hold for the actual robot.

−15 −10 −5 0 5 10 15
Elapsed Time from T1 [s]

−200

0

200

400

600

800

1000

Z-
Va

lu
e 

of
 E

nd
-E

ffe
ct

or
 [m

m
]

Direct Estimate (xyz)
Direct Estimate (yxz)
Observed Value

−15 −10 −5 0 5 10 15
Elapsed Time from T1 [s]

0

20

40

60

80

100

120

En
d-

Ef
fe

ct
or

 P
os

iti
on

 E
rro

r [
m

m
]

Our Method
Direct Estimate (xyz)
Direct Estimate (yxz)
Joint Encoder

Fig. 9. The results of direct fusion from IMU sensors on the actual robot.
The top rows show z components of the end-effector position estimated
with direct fusion. The bottom row shows the reference joint angles sent to
the robot. The fusion collapses if the order of the Euler parameter is not
carefully chosen due to the gimbal lock (see T < 0). In T > 0, the direct
fusion and our result yield similar values (the middle row), which implies
that our fuser can import IMU sensor data correctly.

4) Bingham distribution’s λ for links: The larger the
Bingham parameters’ magnitude is, the more concen-
trated the joint2’s and joint3’s distributions are.

5) Gaussian distribution’s covariance for EE: The
denser the distribution is, the denser the estimated
joint1’s distribution is. This seems to be because the
end effector’s x, y position is determined mainly by
yaw direction.

0 100 200 300 400 500
Time [s]

−180

−120

−60

0

60

120

180

Es
tim

at
ed
 Jo
in
t A

ng
le
 [d

eg
]

link1_yaw_joint
link2_ itch_joint
link3_ itch_joint
link4_ itch_joint

0 100 200 300 400 500
Time [s]

−180

−120

−60

0

60

120

180

Es
tim

at
ed
 Jo
in
t A

ng
le
 [d

eg
]

link1_yaw_joint
link2_ itch_joint
link3_ itch_joint
link4_ itch_joint

Yaw Drift

Unimodal

Symmetric

Observation Noise

Remove Affect of Drift

Fig. 10. Comparison of the results with using unimodal and axis-symmetric
distribution for observation noise of the IMUs.

6) von Mises distribution’s κ for reference angles: The
larger the κ is, the wider the 95% confidence intervals
are. The estimation itself is not heavily affected, but
too small κ, say 1.0, makes the estimation noisy.

Finally, assuming joint angles obey Gaussian distribution,
we have the same result as when we adopt von Mises
distribution. However, von Mises distribution must be used
when calculating the mean or variance of angles (see (5)).

B. Limitation of our method

Since this method is based on a particle filter, it can be
easily applied to a wide variety of robots. On the other



hand, as the characteristics of particle filters, the problem
of degeneration becomes non-negligible if the dimension
of the state becomes larger. To estimate much more body
parameters for auto-calibration, we must solve this problem
by using the knowledge of the latest filter theory.

VI. CONCLUSION

This paper proposed a method for online estimation of
self-body posture with directional statistical distributions. It
can import various sensory data into the estimation without
additional implementations. As an application of the method,
we estimated the gripper position using an actual robot
and evaluated the results of direct observation with an AR
marker. In the future, we will improve the method to apply
to dynamic motions and auto-calibration.
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