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Abstract— While deep learning enables real robots to per-
form complex tasks had been difficult to implement in the
past, the challenge is the enormous amount of trial-and-error
and motion teaching in a real environment. The manipulation
of moving objects, due to their dynamic properties, requires
learning a wide range of factors such as the object’s position,
movement speed, and grasping timing. We propose a data
augmentation method for enabling a robot to grasp moving
objects with different speeds and grasping timings at low cost.
Specifically, the robot is taught to grasp an object moving at
low speed using teleoperation, and multiple data with different
speeds and grasping timings are generated by down-sampling
and padding the robot sensor data in the time-series direction.
By learning multiple sensor data in a time series, the robot
can generate motions while adjusting the grasping timing for
unlearned movement speeds and sudden speed changes. We
have shown using a real robot that this data augmentation
method facilitates learning the relationship between object
position and velocity and enables the robot to perform robust
grasping motions for unlearned positions and objects with
dynamically changing positions and velocities.

I. INTRODUCTION

One of the challenging tasks for robots is moving-object
manipulation. For a robot to perform tasks that people
perform on a daily basis, such as picking up rolling objects,
picking up packages on a conveyor belt, and exchanging ob-
jects with people while moving, the robot needs to recognize
moving objects and predict their trajectories in real time.

In a limited environment such as a factory, the task of
grasping an object on a conveyor belt moving at a constant
speed can be easily performed by preparing the environment
for the robot. Object recognition using deep learning has
made it possible to recognize complex objects such as
multiple products, indefinite posture, and mixed products [1],
[2]. However, it is necessary to manually prepare correct
labels in advance for highly accurate object recognition. To
achieve robust and dynamic trajectory planning for object
positions and shapes, conventional robot-control technology
requires a high level of expertise and huge development
costs.

End-to-End robot-motion generation using deep learning
enables the simultaneous acquisition of diverse object recog-
nition and robust trajectory generation. The most attractive
feature of this approach is that it can significantly reduce
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the development process of the object model and robot
trajectory control, which previously had to be given by the
designer. Deep reinforcement learning enables the acquisition
of optimal behaviors that might not be conceived by humans
by learning actions that maximize rewards [3], [4], [5], [6]. In
particular, the motion generation using Transformer showed
that more than 700 tasks [7] and flexible object manipulations
[8] can be performed if a large amount of training data
is prepared in advance. However, this is difficult to apply
to real-time moving-object-manipulation tasks because of
the time required for inference during motion generation.
The learning-from-demonstration method, which generates
motions on the basis of human demonstration, requires
high-quality training data to acquire generalized motions.
Therefore, it is difficult for even skilled operators to teach
grasping motions for objects with high-speed movement.

In this paper, we proposes a data augmentation method
that realize manipulation of moving objects at low cost.
First, a robot is taught to grasp a moving object with
low speed at multiple positions using teleoperation, and
data augmentation is applied to the collected robot sensor
data. Specifically, multiple data with different speeds and
grasping timings are generated by applying down-sampling
and padding processing in the time-series direction. This
makes it possible to prepare training data for objects moving
at high speed without advanced motion teaching techniques
(which is difficult even for skilled operators). Next, using the
augmented sensor data, a motion generation model is time-
series trained to minimize the prediction error. By learning
from a variety of sensor data, the robot can generate motions
in real time even when the object’s position, movement
speed, and timing change dynamically. In addition, we
compared the task-success rate and internal representation
of (1) training only human-demonstration data (conventional
method) and (2) training augmented data (proposed method).
Experimental results indicate that the proposed method can
easily learn the relationship between object position and
velocity, and enable a real robot to perform grasping actions
robustly against untaught positions and dynamic position
changes.

II. RELATED WORK

For the study of manipulating moving objects, there are
method that combine high-speed vision, rapid actuation,
and visual feedback. A method was proposed to process
images captured at 1000 fps through parallel processing
using an field-programmable gate array, enabling the de-
tection, recognition, tracking, as well as computation of
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Fig. 1. Overview of data augmentation method and motion generation model

moments and motion directions of the target object [9]. It
has thus become possible to recognize a rapidly moving ball
within 1 ms and adjust the motion based on its color. By
modifying the manipulator’s trajectory in accordance with
the ball’s movement every 1 ms, a batting task can be
performed [10][11]. However, because of the required high-
speed recognition and trajectory-planning processes, object
recognition is based on the color center of gravity using
dedicated hardware, which limits the number of recognizable
objects.

Machine-learning-based methods have been proposed for
object recognition and motion generation with generalization
performance. There is method of catching moving objects
in flight (balls, bottles, hammers, tennis rackets, etc.) by
programming-by-demonstration [12]. This method first uses
machine learning in advance to learn the trajectory pre-
diction and optimal grasping posture of the object. Next,
a human operator teaches the robot the graspable position
and orientation using direct teaching. The robot then learns
the optimal grasping posture and arm movement taught by
the human operator to grasp the tossed object. There are
also methods that use imitation learning and reinforcement
learning to interact with moving objects [13]. Optimizing
policies to quickly adapt to large/unexpected changes in the
object makes it possible to respond to different periodic
movements. However, the cost of collecting training data
is an issue (limited task) with all these methods, and the
realization of moving object grasping.

The authors propose ”deep predictive learning” which is
a cost-effective motion generation method for performing
complex tasks in real time[14]. In this method, a robot
is taught a desired motion several times in the real world
using teleoperation, and the model is trained using the robot
sensor data at that time. By training RNN (Recurrent Neural
Network) to minimize the prediction error of sensori-motor
information at the current and next time step, the motion
elements are modeled as attractors inside RNN. During
inference, the RNN’s attractor retraction action is used to
generate motions in real time to minimize the prediction
error, which makes it possible to realize various tasks such
as handling flexible objects and door-opening motions using
a real robot[15], [16], [17].

In this paper, we describe a data augmentation method for

cost-effective manipulation of moving objects using a motion
generation model that performs time series prediction. We
also show that the proposed method can perform grasping
actions robust to the position, speed, and timing of the
object by simply teaching multiple grasping actions of a
slow-moving object. Specifically, it is possible to manipulate
objects moving at high speeds, which is difficult to teach
manually. Note that this method can be applied to a wide
variety of learning algorithms and is not limited to deep
predictive learning.

III. PROPOSED METHOD
Fig. 1 shows an overview of the proposed method, which

consists of (a) a preprocessing function that expands data
from previously collected demonstration data and (b) a
motion generation model that generates motions in real time
using the robot’s visuomotor information. Details of each
component are described below.

A. Data Augmentation of Motion Speed and Phase

Fig. 2 shows an overview of the data augmentation pro-
cesses in which (a) velocity and (b) phase (phase of object
position and robot posture: timing) are changed with respect
to previously collected sensor data (original data). To explain
this data augmentation process clearly, a certain robot joint
angle is considered as a Sin wave. Note that other joint angles
and image data are processed in the same manner.

Fig. 2 (a1) shows the data augmentation of velocity, in
which the original data are down-sampled at a specific
sampling interval to generate time-series data with different
velocities. The black line in the figure is the original data,
and the blue and red lines are the data with 1.5 times and
2 times the velocity ratio, respectively. For example, taking
out 2 out of 3 steps of the original data yields the image
and joint angle data when the object moves at 1.5 times
the speed, and taking out 1 out of 2 steps of the original
data yields the image and joint angle data when the object
moves at twice the speed. Although augmenting the data by
up-sampling the robot joint angles using linear interpolation
or other methods is possible, the method of up-sampling the
images is an issue. Therefore, we teach a grasping motion of
an object moving at low speed and down-sample the data to
generate multiple time-series data with a higher speed than
the original data.



Fig. 2 (b1) shows the data augmentation for phase, in
which the original data are shifted in the positive/negative
direction on the time axis (delay amount: -10, -5, +5, +10
steps, etc.) to generate data with different grasping timing.
For example, by padding the data at time 0, phase-delayed
data are generated, and by trimming a certain width of
data from time 0, phase-advanced data are generated. These
different timing data are effective for adjusting the predicted
value of object position deviation (phase) and grasping
timing in the case of sudden speed change.

By combining the above two processes, it is possible to
generate a variety of data with different speeds and phases.
Fig. 2 (b1) is twice the speed of the original data, (b2) is 1.5
times the speed of the original data, and (b3) is the original
data. The figure also shows an example of generating nine
types of training data from the original data by changing
three types of phases for each type of data.

Fig. 2. Examples of data augmentation of speed and phase

B. Motion Generation Model

Fig. 1 (b) shows the motion generation model used in this
paper. This model learns end-to-end time-series relationships
of visuomotor information when the robot interacts with the
environment. The training data are not labeled with correct
answers, and the model is trained to predict the robot state
of the next step as an input to the current robot state. This
time-series learning eliminates the need for detailed design
of a physical model of the environment, which is required in
conventional robotics. The model used in this paper consists
of a Convolutional Neural Network (CNN) that extracts
image features and a Long Short-Term Memory (LSTM)
that performs time-series predictive learning. In this paper,
LSTM is used for time-series learning, but other time-series
learning models can be used, such as GRU[18], MTRNN[19]
and Transformer[20]. Since the high-dimensional raw image
data it acquired by the robot contain a large amount of un-
necessary information for the robot task, such as background
images, the CNN is used to extract the image features ft that
are important for the task. The extracted image features ft
and robot joint angle at are combined in the concat layer

and input to LSTM to output (predict) the robot joint angle
ât+1 at the next time step. During task execution, visual and
motion information of the robot is sequentially input to the
model, and the output (predicted) joint angles are used as
motion command values to control the motors. This enables
the robot to generate movements in real time in accordance
with to the position and movement speed of objects. The
MSE (Mean Squared Error) is used for the loss function
and Adam (Adaptive Moment Estimation) is used for the
optimization algorithm[21].

IV. EXPERIMENTS
A. Hardware

Fig. 3 (a) shows the experimental setup consisting of a
conveyor belt, robot arms (leader and follower), camera,
and target object (red cylinder). Note that the conveyor belt
is completely independent of the robot arms and control
PC, and no speed information is exchanged. The robot arm
consists of a 4 degree of freedom (DoF) and a 1-DOF
gripper, and a Dynamixel XM430 servo motor is used for
each joint. The leader arm is operated by a human operator
and its motion is transmitted to the follower arm to teach the
motion. A stereo camera (ZED mini) is mounted on top of
the conveyor belt to measure the states of the moving object
and robot arms.

Fig. 3. Experimental task

B. Task and Dataset

We set up an experimental setting with the task of grasping
an object moving from left to right on a conveyor belt. The
robot is taught to (1) reach out its arm when the object
approaches, (2) grasp the object, and (3) return to the initial
position. To further verify generalization performance, we
evaluated whether the robot can generate grasping motions



even with untaught movement speeds, positions, and un-
taught objects.

Fig. 3 (b) shows an overview of teaching motion. The
robot is taught to grasp the moving object at three different
initial positions (marked with circles). The speed of the
conveyor belt is set to 50 rpm, which is the lowest setting,
and the robot is taught to grasp the moving object once at
each position using teleoperation. Camera images (64 × 128-
pixels) and joint angles (5-DoF) are collected at a sampling
rate of 10 Hz for 14 seconds (140 steps). Using the proposed
method, a total of 27 time-series data sets are generated at the
three grasping positions, combining three different velocity
ratios (1.0, 1.5, and 2x) and three different delay amounts (0,
+10, and +20[step]). Note that the data with a speed ratio
of 1.0 and delay of 0 steps are the same as the original
data. For the evaluation data, 4 types of time-series data
are generated by combining the untaught speed ratios (1.25
and 1.75 times) and delay amounts (+5 and +15 steps). To
verify the effectiveness of the proposed method, we manually
collected 27 types of data under the same conditions as the
augmented data.

Fig. 3 (c) shows the target objects, which were selected
from the daily items provided in the YCB dataset[22] that
the robot can grasp.

V. RESULTS AND DISCUSSION
A. Moving-object Grasping Task

Table I lists the task-success rates when the conveyor
belt moved at constant and variable speeds. Success in this
experiment was defined as being able to grasp the moving
object properly, and 10 trials were performed for each of the
experimental conditions. In the constant-speed experiment,
a total of five patterns were tested: learned speeds of 50,
75, and 100 rpm and untaught speeds of 68 and 88 rpm.
In the variable-speed experiment, a total of three patterns
were tested: 50 to 100 rpm, 100 to 50 rpm, and random. In
Table I, rows (a) and (b) show the task-success rates of the
conventional method when 27 types of data were collected
manually for object-grasping motions with different positions
and speeds, and rows (c) and (d) show the task-success
rate of the proposed method when 3 types of data were
collected manually for moving-object grasping (50 rpm) with
different initial positions (3 types) and increased to 27 types
of data with the proposed method. Table I rows (a) and
(c) show the task-success rates at the teaching position (C
in Fig. 3(b)) with the conventional and proposed methods,
respectively, and both methods had a task-success rate of
100% with exceptions. Table I rows (b) and (d) show the
task-success rates at the untaught position (B in Fig. 3(b))
with the conventional and proposed methods, respectively.
The proposed method had a task-success rate of 100%, while
the conventional method’s was 0%. Similar task-success rates
were obtained for other object positions (A, D, and E in Fig.
3(b)), with 100% task-success rate for taught positions for
both methods and 0% task-success rate for untaught positions
with the conventional method. The conventional method
reached near the object, but in many cases failed in the task

because it could not generate movements with appropriate
grasping timings. Fig. 4 shows a failure scene with the
conventional method, where the speed of the conveyor belt
was changed from (a) 50 to 100 rpm and (b) 100 to 50
rpm. From (a), the object had already passed by when the
robot’s gripper closed. In (b), the object had not yet reached
the grasping position when the gripper closed. Therefore, the
conventional method failed in the task due to the fact that
the grasping timing could not be adjusted properly at the
untaught position.

Fig. 4. Task-failure scene with conventional method

B. Internal Representation Analysis

To investigate the reason for the difference in task-success
rates at untaught positions, we visualized the internal state
of the LSTMs of the conventional and proposed methods
using offline analysis. The offline analysis consists of the
following three steps: (1) generate a total of nine patterns
with three types of velocity data (50, 75, and 100 rpm) at
each of the three teaching positions using data augmentation.
(2) Input nine patterns of time-series data to each motion-
generation model and save the state [number of data times
sequence length times 50 dimensions] of the LSTM at each
time. (3) Compress the internal state of the LSTM into three
dimensions using principal component analysis and plot them
in three-dimensional space. This procedure provides a visual
understanding of how the internal state of the LSTM has
transitioned at each time point, i.e., how the sensorimotor
information is structured (see details in [14]). Fig. 5 shows
the internal representation (attractor) of the LSTMs of (a)
the proposed method and (b) conventional method. The
rightmost part is the legend of the figure, where the markers’
shapes indicate the movement speed and their colors indicate
the teaching positions. Each point moves (transitions) from
the starting point ”S” as the time series progresses. Fig. 5(a)
shows that the points overlap immediately after the start of
motion, the attractors gradually separate into the shape of
the markers (movement speed), and the colors (position) are
aligned in blue, red, and green, indicating that information on
position and speed has been learned (self-organized) within
the LSTM.

Fig. 5(b) is the internal representation of the conventional
method, which is separated by speed (marker shape) in the
first half of the start and by position (marker color) in the
second half, and the information of speed and position are



TABLE I
SUCCESS RATE OF SPEED CHANGE TASK [%]

Fixed Speed [rpm] Variable Speed [rpm]
50 68 75 88 100 50 to 100 100 to 50 Random

(a) Conventional w/ taught position 100 100 100 100 100 100 80 100
(b) Conventional w/ untaught position 0 0 0 0 0 0 0 0
(c) Proposed w/ taught position 100 100 100 100 100 100 100 100
(d) Proposed w/ untaught position 100 100 100 100 100 100 100 100

Fig. 5. Internal representation analysis of LSTMs

Fig. 6. Robustness evaluation for untaught objects and situations



mixed and structured inside the LSTM. The proposed method
can generate training data with consistent velocity and timing
by data augmentation. The conventional method’s manual
data collection leads to errors in trajectory and timing,
preventing separate learning of velocity and position in the
LSTM, resulting in a low task-success rate due to varying ac-
celeration, deceleration, and arm posture. Thus, generalizing
using only human-taught motion data is challenging.

C. Disturbance Task

Since the proposed method can enable a robot to grasp
objects with a high task-success rate at both taught and un-
trained positions, we evaluated the robustness of the proposed
method when the object position is suddenly changed as a
disturbance task.

Fig. 6(a) shows the experimental results. Just before the
grasped object arrived in front of the robot, the human
operator changed the object position using the reaching tool.
When the robot recognized that the object was gone, it
returned to the initial posture and waited for the object
to come again. Note that the robot was not taught the
action of returning to the initial posture but was able to
generate autonomous actions on the basis of the sensor
information (object position) to enable continuous work. In
the supplemental video, the human operator changes the
object position multiple times as the object comes in front
of the robot. The robot can continue generating grasping
motions repeatedly until the object is grasped. The above
results indicate that the robot can generate robust motions
even when the position of the object to be grasped suddenly
changes.

D. Untaught Object-grasping Task

Figs. 6(b) and (c) show the results of grasping-motion
generation when the untaught object was moved at the
untaught speed (88 rpm). The robot was able to grasp the
objects properly, although the color, size, and shape of the
objects were different. However, as described in Section V-F,
the blue container and silver can, which are different in hue
from the training object, did not generate a reaching motion.
This indicates that the motion-generation model recognizes
objects of red hue as the object to be grasped.

E. Dynamic Moving-object Grasping Task

Up to this point, we have discussed moving in a ”constant
direction”. We now discuss the task-success rate when the
position (A-E in Fig. 3(b)) and speed of the object change
”dynamically” by rolling the target object on the conveyor
belt.

Fig. 6(d) shows a red ball rolling perpendicularly to the
direction of the conveyor belt, and the robot was able to
properly grasp the object as it bounced back from the wall.
The supplementary video shows that the robot succeeded in
the task 5 out of 6 times, generating motions by adjusting
the position, velocity, and grasping timing of the object. This
task is very difficult for the robot because it needs to take into
account both the position and velocity of the target object

at the same time. Therefore, the conventional method could
not enable the robot to grasp the object ”even once” in this
experimental task due to its low robustness against untaught
positions. The proposed method, however, could generate
grasping motions with a high task-success rate for untaught
speeds and positions. Therefore, we believe that the proposed
method can generate motions robustly even for objects with
dynamically changing positions.

F. Limitations

We discuss three limitations with the proposed method.
The first limitation is the grasping of irregularly moving
objects. Fig. 6(e) shows the results of rolling an apple,
an irregularly shaped object, as an experimental task for
grasping a dynamically moving object. Unlike a ball, which
moves in a straight line, an apple moves by swaying back and
forth and from side to side, making it difficult to predict its
exact movement path. Therefore, although the robot reached
near the object, it could not grasp it properly due to subtle
differences in hand position and height. This problem can be
mitigated by shortening the control cycle, but this is not a
fundamental solution. However, we believe that this problem
can be solved by introducing uncertainty into our motion-
generation model. This model was trained to minimize the
error in the predicted joint angles with respect to the taught
data, thus does not take into account uncertainty in the object
behavior and joint angles. Therefore, we believe that it is
possible to grasp irregularly shaped objects by generating
movements to minimize the prediction variance using a
stochastic recurrent neural network [23], which also predicts
the variance between the predicted joint angles and predicted
object position.

The second limitation is the grasping of an object that has
a very different hue from the taught object (red). Fig. 6(f)
shows the results of moving a silver cylindrical can as an
untaught-object grasping task. The robot did not recognize
the object as the object to be grasped because of its very
different hue from the object to be taught (red), thus it
did not move at all. When a red object (apple) was placed
after the silver cylindrical can, the robot grasped it properly
suggesting that it recognized the object on the basis of color
information. Although this feature is beneficial because the
robot grasps the taught object and ignores other objects, the
robot needs to explicitly learn the target object. We believe
that this problem can be solved by introducing a spatial-
attention mechanism [16] that explicitly extracts the location
information of the object from the image information by
learning black and white image information and learning data
in which the hue of the image is changed.

The third limitation is that the proposed method is only
effective for motion-generation models that learn time-series
information. In this paper, we showed that an LSTM can
handle untaught velocities by learning the object’s position
and movement speed as internal representations from the
training data. We further discuss the results of applying our
method to a motion-generation model without time-series
learning. The training data are the same those mentioned in



Section IV-B. Fig. 7(a) is an overview of the model generally
used in reinforcement learning [3], which predicts the action
ât+1 at the next time step from the image it at time t and the
robot’s state at. Fig. 7(b) shows the internal representation of
the test data input to the model, and the output of the neuron
layer just before the action prediction (red box in Fig. 7(a))
is visualized by principal component analysis. The legend
in the figure is the same as that in Fig. 5, where the color
of the marker indicates the object position and the marker
indicates the movement speed. From the results of principal
component analysis, it is possible to predict the motion from
the image in accordance with the object position (color of the
marker) since each object position (color of the marker) can
be self-organized. However, the lack of self-organization by
speed (all marker shapes overlap) suggests that the model
may not be able to properly learn the object’s movement
speed. When this model was applied to a real robot, the
robot was unable to grasp the moving object. The reason for
this is that it is difficult for such a motion-generation model
to predict the moving speed of an object from a one-time
image it. To solve this problem, the model can be improved
to predict the action at+1 at the next time step from the
images it−1 and it of the past few steps, as in the time-
delay neural network [24].

Fig. 7. Internal representation of motion generation model without RNN

VI. CONCLUSION

Conventional moving-object manipulation using machine
learning requires learning of all factors such as the position,
movement speed, and grasping timing of the target object,
and collecting huge amounts of training data and conducting
trial and error in the real world have been challenges. By ap-
plying the proposed data-augmentation method to the robot-
sensor data obtained when a moving-object grasping motion
was taught one time per teaching position using teleopera-
tion, we confirmed that the robot can appropriately generate
grasping motions for untaught speeds and sudden changes
in position and speed. Although it is difficult for even an
expert to teach grasping motions at high speed, the proposed
method can enable a robot to grasp an object moving at

high speed simply by teaching grasping motions at low speed
and augmenting the data. Since the acceleration/deceleration
timing and posture of the robot arm are different each time, it
is difficult to generalize the conventional method using only a
data set of motions taught by a human in accordance with the
speed, etc. Our method has high generalization performance
because it can learn consistent speed and timing (phase) data.
In this study, we only used simple object grasping as an
example, but we will verify the effectiveness of the proposed
method for more complex tasks such as catching a ball or
handing an object to another person.
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