
Teaching and Learning Tools for Introductory
Programming in University Courses

José Figueiredo
Research Unit for Inland Development

Polytechnic of Guarda

Guarda, Portugal
jfig@ipg.pt

Francisco García-Peñalvo
Computer Science Department

Research Institute for Educational Sciences GRIAL

research group

University of Salamanca

Salamanca, Spain
fgarcia@usal.es

Abstract—Difficulties in teaching and learning introductory

programming have been studied over the years. The students'

difficulties lead to failure, lack of motivation, and abandonment

of courses. The problem is more significant in computer courses,

where learning programming is essential. Programming is

difficult and requires a lot of work from teachers and students.

Programming is a process of transforming a mental plan into a

computer program. The main goal of teaching programming is

for students to develop their skills to create computer programs

that solve real problems. There are several factors that can be

at the origin of the problem, such as the abstract concepts that

programming implies; the skills needed to solve problems; the

mental skills needed to decompose problems; many of the

students never had the opportunity to practice computational

thinking or programming; students must know the syntax,

semantics, and structure of a new unnatural language in a short

period of time. In this work, we present a set of strategies,

included in an application, with the objective of helping teachers

and students. Early identification of potential problems and

prompt response is critical to preventing student failure and

reducing dropout rates. This work also describes a predictive

machine learning (neural network) model of student failure

based on the student profile, which is built over the course of

programming lessons by continuously monitoring and

evaluating student activities.

Keywords—introductory programming, teaching

programming, learning programming, CS1, intelligent tutoring

system, neural networks, predict success

I. CONTEXT AND MOTIVATION

Over the many years dedicated to the initial teaching of
programming, the situations experienced are countless.
Learning and constant challenges, frustrations, and the most
diverse manifestations of difficulties on the part of students,
are the daily lives of all those who have the privilege of
teaching introductory programming.

Works on the problem of teaching and learning
programming difficulties have been a constant since the
appearance of the first programming languages. What are the
difficulties, what are the main factors, what are the
methodologies, what are the techniques or tools that most
influence the teaching and learning of programming, are some
of the most used themes in research and investigation works.
All of them with a single objective: to improve the teaching-
learning system. That is, make most students acquire the basic
concepts and techniques of creating and implementing
computer programs to solve problems. This is our main
motivation for the development of our work.

II. SATE-OF-THE-ART

Teaching and learning introductory programming courses
are a great challenge for everyone involved in the process. The
difficulties of teaching and learning programming are studied
since the appearance of the first programming languages [8, 9,
11, 27, 39]. Dedication and constant hard work are required
for success, regardless of the methods and techniques used.
Programming is a process of transforming a mental plane of
current terms into computer-compatible terms [24, 38]. When
teaching computer programming, the main objective is to
equip students with the skills needed to create computer
programs that can solve real-world problems. In this context,
programming requires very particular characteristics and
skills that students may find difficult to obtain, often in a short
period.

A wide variety of themes have been explored in order to
improve the teaching-learning process of programming. Some
works suggest that the constant practice of computational
thinking activities helps the development of useful skills for
learning programming [22, 30].

The analysis and diagnosis of compiler error messages are
one of the main topics addressed in recent years [1, 4–7, 33].

The use of automated assessment tools to provide
feedback to students is another common theme. Where the
main purpose of automated assessment is to compare
computing results using a fixed set of test cases [2, 19, 40].
Educational practices of data mining and machine learning
(AM) are concepts increasingly used in the computing field,
in order to monitor the entire teaching and learning process
and predict student success [3, 12, 21, 25, 28, 36].

The high failure rates in introductory programming
courses are another of the main problems identified in the
most diverse research works, like [29, 34, 37].

III. PROBLEM STATEMENT

A large percentage of students do not acquire basic skills
in introduction to programming. This problem results in high
failure rates, lack of motivation, and drop out of students in
the introductory programming curricular unit of the computer
science course.

On the other hand, due to many students, it is difficult for
teachers to have a correct perception of the knowledge and
difficulties of each student, and to intervene quickly with the
personalized help needed by each student.

In a short period of time, students have to acquire a set of
unusual skills. They must learn the syntax and semantics of a
programming language and finally create and organize the
different elements to solve problems. In this teaching and

J. Figueiredo and F. J. García-Peñalvo, "Teaching and Learning Tools for Introductory Programming in University Courses," in Proceedings of the 2021

International Symposium on Computers in Education (SIIE) (23-24 September 2021, Málaga, Spain), A. Balderas, A. J. Mendes and J. M. Dodero, Eds., USA:

IEEE, 2021. doi: 10.1109/SIIE53363.2021.9583623.

PO
ST

learning process, many hours of dedication and work are
required from students and teachers. Therefore, the existence
of a technological tool to support the teaching and learning
process of initial programming is necessary.

IV. RESEARCH OBJECTIVES

This review aims to explore the literature on teaching and
learning introduction to programming, especially in higher
education, through the identification of publications of interest
to the computing community. Also, the contributions of these
publications and the evidence of research results. We defined
the following research questions:

RQ1. What teaching and learning problems of
introductory programming in higher education have been
the focus of literature?

RQ2. What evidence was reported in addressing different
introductory programming problems?

RQ3. What methods are used to monitor the teaching and
learning process of introductory programming?

V. RESEARCH APPROACH AND METHODS

After identifying the research problem and reviewing the
literature, the next step is to make a preliminary choice of
methodology. Considering some concepts about the
perspective of quantitative research [28], such as it follows a
positivistic epistemology which defends that there is an
objective reality that can be expressed numerically, a
representative sample allows the generalization of the results
and, still, the quantitative perspective emphasizes studies that
are experimental in nature, attaches importance to measures,
and seeks relationships. About the research methodology, the
type of action research recognized as a methodology that seeks
to improve practices through change and learning from the
consequences of these changes. It also allows the participation
of all those involved. It develops in a spiral of cycles of
planning, action, observation, and reflection. It is, therefore, a
systematic learning process oriented towards action with the
objective of reaching a certain end, requiring that it be
submitted to the test, allowing to give a justification from the
work, through a developed, proven, and scientifically
examined argumentation.

In the following subsections, they describe the work done
to respond to our problems.

A. Study group

This study involves a group of students from an
introductory programming course to programming
(Introduction to Programming), in the last 3 years, students of
the Computer Science course at the Polytechnic of Guarda
(IPG), Portugal. In this course, the C language is used to teach
basic programming concepts. The number of students per year
is around 105 students on average.

Our study group has very special characteristics. The
computer course, IPG, is generally not the first choice of
students; the average candidacy grade is between 10 and 12
points; and, in the last 3 years, we have received students from
Portuguese-speaking African countries (Portuguese:
Portuguese Speaking African Countries; PALOP), with
several problems in their general education.

B. Data collection methods and tools

Data collection is performed through the HTProgramming
application, built for this purpose. Data are collected,
preferably in the classroom, through individual activities
performed by the student. The set of results obtained by each
student will be used to build their profile. At the same time,
the dataset is used to train a neural network, which will be used
to predict the failure of each student. In table I we can see the
variables/attributes that define the student's profile and dataset
used in the neural network.

TABLE I. STUDENT PROFILE ATTRIBUTES COLLECTED USING

HTPROGRAMMING.

Attribute Description

attendance attendance to classes

student programming
student profile; previous course; computer
and programming knowledge

spatial ability
score in activities related to the detection of
cognitive reasoning abilities and spatial
visualization

introductory concepts
score in activities related to introductory
programming concepts, like data types e
identifiers, identify errors

parson problems
score in activities related to parson problems
(basic programs in c, data input/output,
sequential instructions)

basic
score in activities related to building simple
programs in c, data input/output, output
formatted, sequential instructions

conditions
score in activities related to building programs
in c with conditional structures

loops
score in activities related to building programs
in c with loops

arrays
score in activities related to building programs
in c with arrays manipulation

advanced
score in activities related to building programs
in c for problem-solving

C. HTProgramming

HTProgramming - Help To Programming, is an
application that aims to help students and teachers throughout
the teaching and initial learning process of programming. In
Figure 1 we present the general scheme of the
HTProgramming application. The application was developed
in Java language, with the Netbeans IDE. The desktop
applicationa interacts with a remote MySQL database, in a
Hosting Smart Linux service. The application consists of two
modules: the administration module and the student module,
with access to a remote database.

Fig. 1. General scheme of the application HTProgramming.

The administration module is used by the teacher to
control the entire teaching and learning process. The teacher
has access to individual student data and the activities
performed. The teacher also has the possibility of inserting
new activities or changing existing ones. The application

PO
ST

automatically generates the data to be used in the predictive
system.

The student module is used by students taking the course.
After identifying the student before the application, the
student has at their disposal a set of activities directly related
to the contents covered during the introduction to
programming. In each activity performed, the student receives
immediate feedback, scores obtained, suggestions for reading
or reviewing, or even suggestions for new activities, and their
profile is updated.

D. Activities performed

To answer our problem, we created a set of activities to be
carried out by the student, to build their learning profile. As
described above, these results are used to build the predictive
model of student failure based on a Neural Network, described
in more detail in [15]. In the following subsections, we briefly
describe the activities performed.

1) Students characterization.
We start with the characterization of each student. We

question some personal data, such as age or city of origin.
Next, we want to know what your area of study in secondary
education is and how you assess your knowledge of
programming and informatics in general.

2) Paper folding
Paper folding, particularly punch holes, is often used to

investigate spatial visualization skills [26], a skill directly
associated with programming. In this type of exercise,
students should imagine that they are folding and unfolding
paper. The figures on the left, in Figure 2, represent a square
piece of paper being folded, and the last of these figures has
one or two small circles drawn to show where the paper has
been punched. The figure on the right shows the location of
the holes when the paper is unfolded.

Fig. 2. Examples Punched Holes, adapted from REF.

3) Parson Problems
According to [10, 13, 31], one way to learn and practice an

introduction to programming is to use Parson's Problems.
Parson's problems are programming instructions in which the
student must select, order, and indent code fragments. These
tasks are great for the early stage of learning programming
because students don't make syntax errors. In Figure 3, we can
see an example of the Parson Problem.

Fig. 3. Parson problem example.

4) Introductory concepts
Activities are related to introductory programming

concepts, in the C language, such as data types, names and
identifiers, and error identification. These types of activities
are MCQ (Multiple Choice Question). In Figure 4 we can see
an example.

Fig. 4. Multiple Choice Question for introductory concepts example.

5) Coding Activities
In coding activities, students write code in C language,

responding to suggested activities. Using the IDE (Integrated
Development Environment) that they wish, they submit their
proposed resolution in the application. The application runs
the program with a set of verification tests, which results in a
score. In Figure 5 we present an example of a basic activity
and an advanced one in Figure 6, with the respective test cases.
This set of activities is divided into:

a) Basic: activities related to building simple programs
in c, data input/output, formatted output, sequential
instructions.

b) Conditions: construction of programs with
conditional structures.

c) Loops: building programs using for, while, do-while
loops.

d) Arrays: activities related to building programs with
matrix manipulation.

e) Advanced: problem solving using knowledge
acquired in language c.

Fig. 5. Basic activity example, with test cases.

VI. RESULTS TO DATE

The HTProgramming application is the result of several
years of experience and works with students. With this
application, we are close to achieving a very useful tool for the
initial teaching and learning process of programming.

To date, the results obtained are encouraging. However,
the latest results obtained are compromised by the pandemic
situation we are going through. The results obtained by the

PO
ST

HTProgramming application are well organized and in detail.
The teacher has at his disposal a set of data that help him to
monitor all student activity. For example, in Figure 7 the
leader board, and in Figure 8 the individual results of each
student.

Fig. 6. Advanced activity example, with test cases.

Table II shows the results of the last 3 academic years,
highlighting the high number of students who passed the last
academic year, 61 students, which corresponds to a percentage
of 54.4%. This value is quite different, for the better, from the
values of previous years. The main justification for this value
was the online assessment motivated by the pandemic
situation, which allowed a greater number of students to
perform the assessment and less control in the students' tests.
For the use of the predictive model, only students attending
classes and recording activities in the HTProgramming
application were considered, that is, 64 students. In relation to
the total number of students enrolled, in the academic year
2020-2021, there is a percentage of 57.1%, of these students
the number of approved students was 43, which is equivalent
to a percentage of 38.4%.

This application includes a predictive Neural Network
(NN) model of student failure based on student profiles
collected during classes. For the last year, Figure 9 presents
the resulting NN model confusion matrix in the test dataset. In
addition, Table III presents the performance of the model on
the test data.

Table IV presents the results of an analysis of the causes
and effects of the different variables collected. We used the
Correlation Coefficient of Pearson between each of the
variables and the final results of learning. The interpretation
of the correlation results [32] was based on the rules in table
V. According to the results obtained, the coding activities are
those that have a correlation coefficient classified as moderate
or very high correlation.

VII. DISSERTATION STATUS

Our work is dependent on obtaining student data and the
data collection tool. On the other hand, the curricular unit is
an integral part of the curricular plan of the Computer
Engineering course, in the 1st year and in the 1st semester, so
if something does not happen as expected, we must wait until
next year for the experience to be carried out.

Fig. 7. Example of presentation of results by HTProgramming -
leaderboard.

Fig. 8. Example of presentation of results by activity of each student.

TABLE II. TOTAL STUDENTS PER ACADEMIC YEAR AND NUMBER OF

APPROVED.

Academic

year

Total

students

Students

approved

2018 - 2019 85 30 (35,3%)

2019 - 2020 119 20 (16,8%)

2020 - 2021 112 61 (54,4%)

Fig. 9. Confusion matrix of the NN model for predicting student success in
the dataset.

The results shown are the values obtained in the first use
of the application. It is important to mention that the
unthinkable outbreak of COVID-19 had a strong impact on

PO
ST

our lives and on the normal functioning of the teaching and
learning process [20]. All the work developed was designed
for a classroom and face-to-face environment. Somehow the
results were compromised. However, the appearance of this
pandemic, in which most of the context of the classes was in
hybrid or blended teaching modality, led us to reflect [20, 23]
and feel the need to adapt our teaching and learning model to
this type of teaching.

TABLE III. PERFORMANCE OF THE NN PREDICTIVE MODEL FOR

STUDENT FAILURE.

Metrics Results

Accuracy 95,00%

Precision 85,71%

Recall 92,31%

F-score 92,86%

TABLE IV. CORRELATION COEFFICIENT OF PEARSON (VARIABLES VS

FINAL RESULTS AND INTERPRETATION.

Variable

Correlation

Coefficient of

Pearson

(Variable and

Final Result)

Interpretation

attendance 0,19 Negligible correlation
student programming 0,31 Low positive correlation
spatial ability 0,11 Negligible correlation
introductory concepts 0,29 Negligible correlation
parson problems 0,49 Low positive correlation
basic 0,67 Moderate positive correlation
conditions 0,55 Moderate positive correlation
loops 0,56 Moderate positive correlation
arrays 0,93 Very high positive correlation
advanced 0,92 Very high positive correlation

TABLE V. RULES FOR INTERPRETING THE SIZE OF A CORRELATION

COEFFICIENT.

Size of Correlation Interpretation

0.9 to 1.0 Very high positive correlation
0.7 to 0.9 High positive correlation
0.5 to 0.7 Moderate positive correlation
0.3 to 0.5 Low positive correlation

0.0 to 0.3 Negligible correlation

In general, we believe that our model of teaching and
learning introductory programming meets our goals. We need
to review the set of coding activities and respective test cases.
Technical improvements to the HTProgramming application
prototype are also needed.

VIII. CURRENT AND EXPECTED CONTRIBUTIONS

We consider our work an important contribution to the
problem of teaching and early learning in programming. The
dynamic and constant analysis of students, based on the
construction of the student's profile, will allow the student to
be evaluated at every moment of their learning path and to act
immediately. On the other hand, the proposed predictive
Neural Network model of student failure will be a good
method of early detection of students with greater difficulties.

Over the last few years, we have contributed to reporting
and publishing our research work in the area. We started with
some work in computational thinking, and the inclusion of
activities before the introductory course on programming [14,
18, 35]. Then we started the study with the experience of

constantly monitoring the student throughout the teaching and
learning process [17], passing using gamification techniques
to increase student motivation [16]. Finally, the use of
automatic means for recording and assisting in the teaching
and learning process of introductory programming.

ACKNOWLEDGMENT

This work is part of the PhD program in Informatics
Engineering at the University of Salamanca, with the
provisional title of "Learning Strategies and Learning
Programming in University Students". Having as director
Professor Francisco José García-Peñalvo.

REFERENCES

[1] Ahmed, U.Z. et al. 2018. Compilation error repair: For the student
programs, from the student programs. Proceedings - International
Conference on Software Engineering (May 2018), 78–87.

[2] Aldriye, H. et al. 2019. Automated Grading Systems for Programming
Assignments: A Literature Review.

[3] Altabrawee, H. et al. 2019. Predicting Students’ Performance Using
Machine Learning Techniques. JOURNAL OF UNIVERSITY OF
BABYLON for Pure and Applied Sciences. 27, 1 (Apr. 2019), 194–
205. DOI:https://doi.org/10.29196/jubpas.v27i1.2108.

[4] Becker, B.A. 2016. A new metric to quantify repeated compiler errors
for novice programmers. Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE (Jul. 2016), 296–
301.

[5] Becker, B.A. et al. 2019. Compiler error messages considered
unhelpful: The landscape of text-based programming error message
research. Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE (Dec. 2019), 177–210.

[6] Becker, B.A. et al. 2018. Fix the first, ignore the rest: Dealing with
multiple compiler error messages. SIGCSE 2018 - Proceedings of the
49th ACM Technical Symposium on Computer Science Education
(Feb. 2018), 634–639.

[7] Becker, B.A. et al. 2018. The effects of enhanced compiler error
messages on a syntax error debugging test. SIGCSE 2018 - Proceedings
of the 49th ACM Technical Symposium on Computer Science
Education (Feb. 2018), 640–645.

[8] Bennedsen, J. and Caspersen, M.E. 2019. Failure Rates in Introductory
Programming: 12 Years Later. ACM Inroads. 10, 2 (2019), 30–36.
DOI:https://doi.org/10.1145/3324888.

[9] Bennedsen, J. and Caspersen, M.E. 2007. Failure rates in introductory
programming. ACM SIGCSE Bulletin. 39, 2 (Jun. 2007), 32–36.
DOI:https://doi.org/10.1145/1272848.1272879.

[10] Denny, P. et al. 2008. Evaluating a new exam question: Parsons
problems. Proceedings of the fourth international workshop on
Computing education research. (2008), 113–124.
DOI:https://doi.org/10.1145/1404520.1404532.

[11] Difficulties in learning programming: Views of students: 2012.
https://www.researchgate.net/publication/267338258_Difficulties_in_
learning_programming_Views_of_students. Accessed: 2019-05-16.

[12] Enughwure, A.A. and Ogbise, M.E. 2020. Application of Machine
Learning Methods to Predict Student Performance: A Systematic
Literature Review. International Research Journal of Engineering and
Technology. (2020).

[13] Ericson, B.J. 2014. Adaptive Parsons Problems with Discourse Rules.
Icer ’14. (2014), 145–146.
DOI:https://doi.org/10.1145/2632320.2632324.

[14] Figueiredo, J. et al. 2016. Ne-course for learning programming.
Proceedings of the Fourth International Conference on Technological
Ecosystems for Enhancing Multiculturality - TEEM ’16 (New York,
New York, USA, 2016), 549–553.

[15] Figueiredo, J. et al. 2019. Predicting Student Failure in an Introductory
Programming Course with Multiple Back-Propagation. Proceedings of
the Seventh International Conference on Technological Ecosystems for
Enhancing Multiculturality - TEEM’19 (New York, New York, USA,
2019), 44–49.

[16] Figueiredo, J. and García-peñalvo, F.J. 2020. Increasing student
motivation in computer programming with gamification. 2020 IEEE
Global Engineering Education Conference (EDUCON) (Porto, 2020),
997–1000.

PO
ST

[17] Figueiredo, J. and García-Peñalvo, F.J. 2018. Building Skills in
Introductory Programming. Proceedings of the Sixth International
Conference on Technological Ecosystems for Enhancing
Multiculturality - TEEM’18 (New York, New York, USA, 2018), 46–
50.

[18] Figueiredo, J. and García-Peñalvo, F.J. 2017. Improving
Computational Thinking Using Follow and Give Instructions.
Proceedings of the 5th International Conference on Technological
Ecosystems for Enhancing Multiculturality - TEEM 2017 (New York,
New York, USA, 2017), 1–7.

[19] Gao, J. et al. 2016. Automated feedback framework for introductory
programming courses. Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE (Jul. 2016), 53–
58.

[20] García-Peñalvo, F. et al. 2020. La evaluación online en la educación
superior en tiempos de la COVID-19. Education in the Knowledge
Society (EKS). 21, (2020). DOI:https://doi.org/10.14201/eks.23013.

[21] Gil, P.D. et al. 2020. A data-driven approach to predict first-year
students’ academic success in higher education institutions. Education
and Information Technologies. (Mar. 2020).
DOI:https://doi.org/10.1007/s10639-020-10346-6.

[22] González-González, C.S. 2019. State of the art in the teaching of
computational thinking and programming in childhood education.
Education in the Knowledge Society 20.

[23] González, A.-B. et al. 2013. Experimental Evaluation of the Impact of
B-Learning Methodologies on Engineering Students in Spain. Comput.
Hum. Behav. 29, 2 (2013), 370–377.
DOI:https://doi.org/10.1016/j.chb.2012.02.003.

[24] Hoc, J.-M. and Nguyen-Xuan, A. 1990. Language Semantics, Mental
Models and Analogy. J.-M. Hoc, T. R. G. Green, R. Samurçay, & D. J.
Gilmore (Eds.), Psychology of Programming. (1990), 139–156.

[25] Ihantola, P. et al. 2015. Educational data mining and learning analytics
in programming: Literature review and case studies. ITiCSE-WGP
2015 - Proceedings of the 2015 ITiCSE Conference on Working Group
Reports (Jul. 2015), 41–63.

[26] Jaeger, A.J. et al. 2015. What Does the Punched Holes Task Measure?
(2015).

[27] Jenkins, T. 2002. On the Difficulty of Learning to Program. Language.
4, (2002), 53–58. DOI:https://doi.org/10.1109/ISIT.2013.6620675.

[28] Liao, S.N. et al. 2019. A Robust Machine Learning Technique to
Predict Low-performing Students. ACM Transactions on Computing
Education. 19, 3 (2019), 1–19. DOI:https://doi.org/10.1145/3277569.

[29] Lindoo, E. 2018. Back to the Basics in an Effort to Improve Student
Retention in Intro to Programming Classes. J. Comput. Sci. Coll. 34, 2
(2018), 72–79.

[30] Montes-León, H. et al. 2020. Mejora del Pensamiento Computacional
en Estudiantes de Secundaria con Tareas Unplugged. Education in the
Knowledge Society 21. (2020).
DOI:https://doi.org/10.14201/eks.23002.

[31] Morrison, B.B. et al. 2016. Subgoals Help Students Solve Parsons
Problems. Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. (2016), 42–47.
DOI:https://doi.org/10.1145/2839509.2844617.

[32] Mukaka, M.M. 2012. Statistics Corner: A guide to appropriate use of
Correlation coefficient in medical research.

[33] Prather, J. et al. 2017. On novices’ interaction with compiler error
messages: A human factors approach. ICER 2017 - Proceedings of the
2017 ACM Conference on International Computing Education
Research (2017).

[34] Queirós, R. 2019. PROud-A gamification framework based on
programming exercises usage data. Information (Switzerland). 10, 2
(2019), 1–14. DOI:https://doi.org/10.3390/info10020054.

[35] Quitério Figueiredo, J.A. 2017. How to Improve Computational
Thinking: a Case Study. Education in the Knowledge Society. (2017).

[36] Rastrollo-Guerrero, J.L. et al. 2020. Analyzing and Predicting
Students’ Performance by Means of Machine Learning: A Review.
Applied Sciences. 10, 3 (Feb. 2020), 1042.
DOI:https://doi.org/10.3390/app10031042.

[37] Rojas-López, A. and García-Peñalvo, F.J. 2019. Personalized
Education for a Programming Course in Higher Education. Innovative
Trends in Flipped Teaching and Adaptive Learning. M.L. Sein-
Echaluce et al., eds. IGI Global. 203–227.

[38] Sleeman, D. 1986. The challenges of teaching computer programming.
Communications of the ACM. 29, 9 (Sep. 1986), 840–841.
DOI:https://doi.org/10.1145/6592.214913.

[39] Watson, C. and Li, F.W.B. 2014. Failure Rates in Introductory
Programming Revisited. Proceedings of the 2014 Conference on
Innovation & Technology in Computer Science Education (New
York, NY, USA, 2014), 39–44.

[40] Zampirolli, F.A. et al. 2018. Evaluation process for an introductory
programming course using blended learning in engineering education.
Computer Applications in Engineering Education. 26, 6 (Nov. 2018),
2210–2222. DOI:https://doi.org/10.1002/cae.22029.

PO
ST

