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Abstract—Difficulties in teaching and learning introductory 

programming have been studied over the years. The students' 

difficulties lead to failure, lack of motivation, and abandonment 

of courses. The problem is more significant in computer courses, 

where learning programming is essential. Programming is 

difficult and requires a lot of work from teachers and students. 

Programming is a process of transforming a mental plan into a 

computer program. The main goal of teaching programming is 

for students to develop their skills to create computer programs 

that solve real problems. There are several factors that can be 

at the origin of the problem, such as the abstract concepts that 

programming implies; the skills needed to solve problems; the 

mental skills needed to decompose problems; many of the 

students never had the opportunity to practice computational 

thinking or programming; students must know the syntax, 

semantics, and structure of a new unnatural language in a short 

period of time. In this work, we present a set of strategies, 

included in an application, with the objective of helping teachers 

and students. Early identification of potential problems and 

prompt response is critical to preventing student failure and 

reducing dropout rates. This work also describes a predictive 

machine learning (neural network) model of student failure 

based on the student profile, which is built over the course of 

programming lessons by continuously monitoring and 

evaluating student activities. 
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I. CONTEXT AND MOTIVATION

Over the many years dedicated to the initial teaching of 
programming, the situations experienced are countless. 
Learning and constant challenges, frustrations, and the most 
diverse manifestations of difficulties on the part of students, 
are the daily lives of all those who have the privilege of 
teaching introductory programming. 

Works on the problem of teaching and learning 
programming difficulties have been a constant since the 
appearance of the first programming languages. What are the 
difficulties, what are the main factors, what are the 
methodologies, what are the techniques or tools that most 
influence the teaching and learning of programming, are some 
of the most used themes in research and investigation works. 
All of them with a single objective: to improve the teaching-
learning system. That is, make most students acquire the basic 
concepts and techniques of creating and implementing 
computer programs to solve problems. This is our main 
motivation for the development of our work. 

II. SATE-OF-THE-ART

Teaching and learning introductory programming courses 
are a great challenge for everyone involved in the process. The 
difficulties of teaching and learning programming are studied 
since the appearance of the first programming languages [8, 9, 
11, 27, 39]. Dedication and constant hard work are required 
for success, regardless of the methods and techniques used. 
Programming is a process of transforming a mental plane of 
current terms into computer-compatible terms [24, 38]. When 
teaching computer programming, the main objective is to 
equip students with the skills needed to create computer 
programs that can solve real-world problems. In this context, 
programming requires very particular characteristics and 
skills that students may find difficult to obtain, often in a short 
period.  

A wide variety of themes have been explored in order to 
improve the teaching-learning process of programming. Some 
works suggest that the constant practice of computational 
thinking activities helps the development of useful skills for 
learning programming [22, 30].  

The analysis and diagnosis of compiler error messages are 
one of the main topics addressed in recent years [1, 4–7, 33]. 

The use of automated assessment tools to provide 
feedback to students is another common theme. Where the 
main purpose of automated assessment is to compare 
computing results using a fixed set of test cases [2, 19, 40]. 
Educational practices of data mining and machine learning 
(AM) are concepts increasingly used in the computing field, 
in order to monitor the entire teaching and learning process 
and predict student success [3, 12, 21, 25, 28, 36]. 

The high failure rates in introductory programming 
courses are another of the main problems identified in the 
most diverse research works, like [29, 34, 37]. 

III. PROBLEM STATEMENT

A large percentage of students do not acquire basic skills 
in introduction to programming. This problem results in high 
failure rates, lack of motivation, and drop out of students in 
the introductory programming curricular unit of the computer 
science course. 

On the other hand, due to many students, it is difficult for 
teachers to have a correct perception of the knowledge and 
difficulties of each student, and to intervene quickly with the 
personalized help needed by each student. 

In a short period of time, students have to acquire a set of 
unusual skills. They must learn the syntax and semantics of a 
programming language and finally create and organize the 
different elements to solve problems. In this teaching and 
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learning process, many hours of dedication and work are 
required from students and teachers. Therefore, the existence 
of a technological tool to support the teaching and learning 
process of initial programming is necessary. 

IV. RESEARCH OBJECTIVES 

This review aims to explore the literature on teaching and 
learning introduction to programming, especially in higher 
education, through the identification of publications of interest 
to the computing community. Also, the contributions of these 
publications and the evidence of research results. We defined 
the following research questions: 

RQ1. What teaching and learning problems of 
introductory programming in higher education have been 
the focus of literature? 

RQ2. What evidence was reported in addressing different 
introductory programming problems? 

RQ3. What methods are used to monitor the teaching and 
learning process of introductory programming? 

V. RESEARCH APPROACH AND METHODS 

After identifying the research problem and reviewing the 
literature, the next step is to make a preliminary choice of 
methodology. Considering some concepts about the 
perspective of quantitative research [28], such as it follows a 
positivistic epistemology which defends that there is an 
objective reality that can be expressed numerically, a 
representative sample allows the generalization of the results 
and, still, the quantitative perspective emphasizes studies that 
are experimental in nature, attaches importance to measures, 
and seeks relationships. About the research methodology, the 
type of action research recognized as a methodology that seeks 
to improve practices through change and learning from the 
consequences of these changes. It also allows the participation 
of all those involved. It develops in a spiral of cycles of 
planning, action, observation, and reflection. It is, therefore, a 
systematic learning process oriented towards action with the 
objective of reaching a certain end, requiring that it be 
submitted to the test, allowing to give a justification from the 
work, through a developed, proven, and scientifically 
examined argumentation. 

In the following subsections, they describe the work done 
to respond to our problems. 

A. Study group 

This study involves a group of students from an 
introductory programming course to programming 
(Introduction to Programming), in the last 3 years, students of 
the Computer Science course at the Polytechnic of Guarda 
(IPG), Portugal. In this course, the C language is used to teach 
basic programming concepts. The number of students per year 
is around 105 students on average. 

Our study group has very special characteristics. The 
computer course, IPG, is generally not the first choice of 
students; the average candidacy grade is between 10 and 12 
points; and, in the last 3 years, we have received students from 
Portuguese-speaking African countries (Portuguese: 
Portuguese Speaking African Countries; PALOP), with 
several problems in their general education. 

B. Data collection methods and tools 

Data collection is performed through the HTProgramming 
application, built for this purpose. Data are collected, 
preferably in the classroom, through individual activities 
performed by the student. The set of results obtained by each 
student will be used to build their profile. At the same time, 
the dataset is used to train a neural network, which will be used 
to predict the failure of each student. In table I we can see the 
variables/attributes that define the student's profile and dataset 
used in the neural network. 

TABLE I.  STUDENT PROFILE ATTRIBUTES COLLECTED USING 

HTPROGRAMMING. 

Attribute Description  

attendance attendance to classes 

student programming 
student profile; previous course; computer 
and programming knowledge 

spatial ability 
score in activities related to the detection of 
cognitive reasoning abilities and spatial 
visualization 

introductory concepts 
score in activities related to introductory 
programming concepts, like data types e 
identifiers, identify errors 

parson problems 
score in activities related to parson problems 
(basic programs in c, data input/output, 
sequential instructions) 

basic  
score in activities related to building simple 
programs in c, data input/output, output 
formatted, sequential instructions 

conditions 
score in activities related to building programs 
in c with conditional structures 

loops 
score in activities related to building programs 
in c with loops 

arrays 
score in activities related to building programs 
in c with arrays manipulation 

advanced 
score in activities related to building programs 
in c for problem-solving 

 

C. HTProgramming 

HTProgramming - Help To Programming, is an 
application that aims to help students and teachers throughout 
the teaching and initial learning process of programming. In 
Figure 1 we present the general scheme of the 
HTProgramming application. The application was developed 
in Java language, with the Netbeans IDE. The desktop 
applicationa interacts with a remote MySQL database, in a 
Hosting Smart Linux service. The application consists of two 
modules: the administration module and the student module, 
with access to a remote database. 

 

Fig. 1. General scheme of the application HTProgramming. 

The administration module is used by the teacher to 
control the entire teaching and learning process. The teacher 
has access to individual student data and the activities 
performed. The teacher also has the possibility of inserting 
new activities or changing existing ones. The application 
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automatically generates the data to be used in the predictive 
system. 

The student module is used by students taking the course. 
After identifying the student before the application, the 
student has at their disposal a set of activities directly related 
to the contents covered during the introduction to 
programming. In each activity performed, the student receives 
immediate feedback, scores obtained, suggestions for reading 
or reviewing, or even suggestions for new activities, and their 
profile is updated. 

D. Activities performed 

To answer our problem, we created a set of activities to be 
carried out by the student, to build their learning profile. As 
described above, these results are used to build the predictive 
model of student failure based on a Neural Network, described 
in more detail in [15]. In the following subsections, we briefly 
describe the activities performed. 

1) Students characterization.  
We start with the characterization of each student. We 

question some personal data, such as age or city of origin. 
Next, we want to know what your area of study in secondary 
education is and how you assess your knowledge of 
programming and informatics in general.  

2) Paper folding 
Paper folding, particularly punch holes, is often used to 

investigate spatial visualization skills [26], a skill directly 
associated with programming. In this type of exercise, 
students should imagine that they are folding and unfolding 
paper. The figures on the left, in Figure 2, represent a square 
piece of paper being folded, and the last of these figures has 
one or two small circles drawn to show where the paper has 
been punched. The figure on the right shows the location of 
the holes when the paper is unfolded. 

 

Fig. 2. Examples Punched Holes, adapted from REF. 

3) Parson Problems 
According to [10, 13, 31], one way to learn and practice an 

introduction to programming is to use Parson's Problems. 
Parson's problems are programming instructions in which the 
student must select, order, and indent code fragments. These 
tasks are great for the early stage of learning programming 
because students don't make syntax errors. In Figure 3, we can 
see an example of the Parson Problem. 

 

Fig. 3. Parson problem example. 

4) Introductory concepts 
Activities are related to introductory programming 

concepts, in the C language, such as data types, names and 
identifiers, and error identification. These types of activities 
are MCQ (Multiple Choice Question). In Figure 4 we can see 
an example. 

 

Fig. 4. Multiple Choice Question for introductory concepts example. 

5) Coding Activities 
In coding activities, students write code in C language, 

responding to suggested activities. Using the IDE (Integrated 
Development Environment) that they wish, they submit their 
proposed resolution in the application. The application runs 
the program with a set of verification tests, which results in a 
score. In Figure 5 we present an example of a basic activity 
and an advanced one in Figure 6, with the respective test cases. 
This set of activities is divided into: 

a) Basic: activities related to building simple programs 
in c, data input/output, formatted output, sequential 
instructions. 

b) Conditions: construction of programs with 
conditional structures. 

c) Loops: building programs using for, while, do-while 
loops. 

d) Arrays: activities related to building programs with 
matrix manipulation. 

e) Advanced: problem solving using knowledge 
acquired in language c. 

 
Fig. 5. Basic activity example, with test cases. 

VI. RESULTS TO DATE 

The HTProgramming application is the result of several 
years of experience and works with students. With this 
application, we are close to achieving a very useful tool for the 
initial teaching and learning process of programming. 

To date, the results obtained are encouraging. However, 
the latest results obtained are compromised by the pandemic 
situation we are going through. The results obtained by the 
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HTProgramming application are well organized and in detail. 
The teacher has at his disposal a set of data that help him to 
monitor all student activity. For example, in Figure 7 the 
leader board, and in Figure 8 the individual results of each 
student. 

 
Fig. 6. Advanced activity example, with test cases. 

Table II shows the results of the last 3 academic years, 
highlighting the high number of students who passed the last 
academic year, 61 students, which corresponds to a percentage 
of 54.4%. This value is quite different, for the better, from the 
values of previous years. The main justification for this value 
was the online assessment motivated by the pandemic 
situation, which allowed a greater number of students to 
perform the assessment and less control in the students' tests. 
For the use of the predictive model, only students attending 
classes and recording activities in the HTProgramming 
application were considered, that is, 64 students. In relation to 
the total number of students enrolled, in the academic year 
2020-2021, there is a percentage of 57.1%, of these students 
the number of approved students was 43, which is equivalent 
to a percentage of 38.4%. 

This application includes a predictive Neural Network 
(NN) model of student failure based on student profiles 
collected during classes. For the last year, Figure 9 presents 
the resulting NN model confusion matrix in the test dataset. In 
addition, Table III presents the performance of the model on 
the test data. 

Table IV presents the results of an analysis of the causes 
and effects of the different variables collected. We used the 
Correlation Coefficient of Pearson between each of the 
variables and the final results of learning. The interpretation 
of the correlation results [32] was based on the rules in table 
V. According to the results obtained, the coding activities are 
those that have a correlation coefficient classified as moderate 
or very high correlation. 

VII. DISSERTATION STATUS 

Our work is dependent on obtaining student data and the 
data collection tool. On the other hand, the curricular unit is 
an integral part of the curricular plan of the Computer 
Engineering course, in the 1st year and in the 1st semester, so 
if something does not happen as expected, we must wait until 
next year for the experience to be carried out. 

 

Fig. 7. Example of presentation of results by HTProgramming - 
leaderboard. 

 

Fig. 8. Example of presentation of results by activity of each student. 

TABLE II.  TOTAL STUDENTS PER ACADEMIC YEAR AND NUMBER OF 

APPROVED. 

Academic 

year 

Total 

students 

Students 

approved 

2018 - 2019 85 30 (35,3%) 

2019 - 2020 119 20 (16,8%) 

2020 - 2021 112 61 (54,4%) 

 

 

Fig. 9. Confusion matrix of the NN model for predicting student success in 
the dataset. 

The results shown are the values obtained in the first use 
of the application. It is important to mention that the 
unthinkable outbreak of COVID-19 had a strong impact on 
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our lives and on the normal functioning of the teaching and 
learning process [20]. All the work developed was designed 
for a classroom and face-to-face environment. Somehow the 
results were compromised. However, the appearance of this 
pandemic, in which most of the context of the classes was in 
hybrid or blended teaching modality, led us to reflect [20, 23] 
and feel the need to adapt our teaching and learning model to 
this type of teaching. 

TABLE III.  PERFORMANCE OF THE NN PREDICTIVE MODEL FOR 

STUDENT FAILURE. 

Metrics Results 

Accuracy 95,00% 

Precision 85,71% 

Recall 92,31% 

F-score 92,86% 

 

TABLE IV.  CORRELATION COEFFICIENT OF PEARSON (VARIABLES VS 

FINAL RESULTS AND INTERPRETATION. 

Variable 

Correlation 

Coefficient of 

Pearson 

(Variable and 

Final Result) 

Interpretation 

attendance 0,19 Negligible correlation 
student programming 0,31 Low positive correlation 
spatial ability 0,11 Negligible correlation 
introductory concepts 0,29 Negligible correlation 
parson problems 0,49 Low positive correlation 
basic  0,67 Moderate positive correlation 
conditions 0,55 Moderate positive correlation 
loops 0,56 Moderate positive correlation 
arrays 0,93 Very high positive correlation 
advanced 0,92 Very high positive correlation 

TABLE V.  RULES FOR INTERPRETING THE SIZE OF A CORRELATION 

COEFFICIENT. 

Size of Correlation Interpretation 

0.9 to 1.0 Very high positive correlation 
0.7 to 0.9 High positive correlation 
0.5 to 0.7 Moderate positive correlation 
0.3 to 0.5 Low positive correlation 

0.0 to 0.3 Negligible correlation 

 

In general, we believe that our model of teaching and 
learning introductory programming meets our goals. We need 
to review the set of coding activities and respective test cases. 
Technical improvements to the HTProgramming application 
prototype are also needed. 

VIII. CURRENT AND EXPECTED CONTRIBUTIONS 

We consider our work an important contribution to the 
problem of teaching and early learning in programming. The 
dynamic and constant analysis of students, based on the 
construction of the student's profile, will allow the student to 
be evaluated at every moment of their learning path and to act 
immediately. On the other hand, the proposed predictive 
Neural Network model of student failure will be a good 
method of early detection of students with greater difficulties. 

Over the last few years, we have contributed to reporting 
and publishing our research work in the area. We started with 
some work in computational thinking, and the inclusion of 
activities before the introductory course on programming [14, 
18, 35]. Then we started the study with the experience of 

constantly monitoring the student throughout the teaching and 
learning process [17], passing using gamification techniques 
to increase student motivation [16]. Finally, the use of 
automatic means for recording and assisting in the teaching 
and learning process of introductory programming. 
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