
DoShiCo challenge:
Domain Shift in Control prediction

Klaas Kelchtermans∗ and Tinne Tuytelaars∗

Abstract— Training deep neural network policies end-to-end
for real-world applications so far requires big demonstration
datasets in the real world or big sets consisting of a large variety
of realistic and closely related 3D CAD models. These real or
virtual data should, moreover, have very similar characteris-
tics to the conditions expected at test time. These stringent
requirements and the time consuming data collection processes
that they entail, are currently the most important impediment
that keeps deep reinforcement learning from being deployed
in real-world applications. Therefore, in this work we advocate
an alternative approach, where instead of avoiding any domain
shift by carefully selecting the training data, the goal is to
learn a policy that can cope with it. To this end, we propose
the DoShiCo challenge: to train a model in very basic synthetic
environments, far from realistic, in a way that it can be applied
in more realistic environments as well as take the control
decisions on real-world data. In particular, we focus on the task
of collision avoidance for drones. We created a set of simulated
environments that can be used as benchmark and implemented
a baseline method, exploiting depth prediction as an auxiliary
task to help overcome the domain shift. Even though the policy
is trained in very basic environments, it can learn to fly without
collisions in a very different realistic simulated environment. Of
course several benchmarks for reinforcement learning already
exist - but they never include a large domain shift. On the
other hand, several benchmarks in computer vision focus on
the domain shift, but they take the form of a static datasets
instead of simulated environments. In this work we claim that it
is crucial to take the two challenges together in one benchmark.

I. INTRODUCTION

Reinforcement Learning (RL) is gaining more and more
interest due to the strong representational power of deep
neural networks (DNNs) [1], [2], [3], [4], [5]. Where
RL used to be a field of low dimensional discrete state-
spaces to learn policies succeeding at basic games like tic
tac toe [6], DNN policies have shown to perform more
and more complex tasks on high dimensional [4] and even
partially observable state-spaces like first-person views [7]
and autonomous driving [8] . It is however remarkable that
the number of success stories in the form of real-world appli-
cations remains low (but see [9], [10] for notable exceptions).
In this work we want to take an important step towards the
use of deep reinforcement learning (DRL) algorithms in real-
world applications by explaining current impediments as well
as defining a novel benchmark to stimulate research in this
direction.

Using RL algorithms to train DNN policies in the real
world is highly impractical due to several reasons. The first

*The authors are with KU Leuven, ESAT-PSI, imec, Belgium. first-
name.lastname@esat.kuleuven.be

and most obvious one is the fact that most algorithms are
to be trained on-policy as they are based on trial-and-error.
For tasks like autonomous navigation, this means that a
suboptimal policy will be steering the robot or drone, leading
to possibly fatal crashes and rather unhappy researchers.

A second reason is the large amount of training experi-
ences that is required. Even if your algorithm could train
from an offline dataset, it would require numerous hours of
demonstrating the same task over and over again. In [11],
it is shown that collecting a dataset of 11,500 crashes of a
drone allows training a policy to avoid obstacles, though it is
clear that this strategy is not an option for many applications.

Moreover, there are other reasons, like the exploitation of
parallelism, the possibility to reset the robot to a certain state
and facilitating the reproduction of results, that make training
DNN policies most feasible in simulated environments.

This, however, introduces a novel problem when testing
the policy in the real world. Namely, the simulation and
the real world will never look or act exactly alike. This is
referred to as a domain shift between the input at training
and test time. There have been several attempts to deal
with this issue, though none of them seems to head in
a promising direction: researchers have tried to make the
simulated environment photo-realistic [12], or to introduce
such a large variance over simulated environments in order
to generalize to the real world [9], or lastly to augment the
training data with domain shift techniques so it looks more
and more like the real world [13]. These techniques seem to
come with a lot of overhead if we want to apply them to more
specific tasks, e.g. autonomous surveillance of a particular
building site or autonomous inspection of a windmill. Instead
of putting effort in data collection or in building simulated
environments for each specific task, i.e. trying to minimize
the discrepancy between train and test conditions, it is worth
exploring alternative strategies, that can effectively cope with
this domain shift.

In computer vision, several benchmarks exist that focus on
the domain shift for different tasks like image segmentation
and depth prediction [14], [15], [16]. We argue however that
for the setting of control prediction or policy training, it is
crucial to evaluate and preferably train in an online fashion.
This is due to the non-i.i.d. (independent and identically
distributed) nature of sequential decision processes. If a
mistake is made at a certain point in time, a compound
error over time will lead to very different outcomes. In that
sense, evaluating solely on a static dataset can never fully
represent the on-policy performance. In this work we propose
a challenge in the form of train and test environments instead

ar
X

iv
:1

71
0.

09
86

0v
2 

 [
cs

.R
O

] 
 1

2 
A

pr
 2

01
8



Fig. 1. DoShiCo Challenge: train a neural control network end-to-end on three sets of very basic simulated environments (train in ”Canyon”, ”Forest”
and ”Sandbox”), so that it can fly in a more realistic environment (validate in ”ESAT”) as well as take control decisions on real-world data (test on the
”Almost-Collision dataset”)

of static data.
On the other hand within the RL community, benchmarks

exist that compare different DRL training algorithms like
THOR [17], VIZDOOM [18], OpenAI [19], CARLA [20],
TORCS [21], Udacity [8], etc. However, they never incorpo-
rate a large domain shift. To the knowledge of the authors,
there does not exist a benchmark that combines the two
challenges: solving a Partially-Observable Markov Decision
Process (POMDP) by training a DNN policy end-to-end,
together with the domain adaptation to the real-world. By
introducing this challenge of training DNN policies end-to-
end, we believe we can boost this research field, taking DRL
algorithms to the next step towards real-world applications.

This requires policies that can generalize to previously un-
seen conditions, perform well over a wide action range while
at the same time being insensitive to irrelevant differences,
all learned in an end-to-end fashion. In the case of obstacle
avoidance, this could be realized by exploiting visual cues
such as relative pose and depth and by learning invariance to
color or texture. Note that the question whether this policy
is trained in a supervised fashion or in a reinforced fashion
remains open, i.e. the benchmark can be used for both.

Building on the above observations, we make two con-
tributions. First, we propose a domain shift challenge for
control prediction (DoShiCo) that can serve as a benchmark
for comparing different training strategies. Given three sets
of very basic simulated environments, instances of which can
be generated randomly during training, the goal is to train a
DNN policy end-to-end for the task of collision avoidance
so that it can generalize to previously unseen and more
realistic conditions, as captured by our synthetic yet more
realistic validation environment and real-world test data (see
Figure 1). To avoid the issue with online control in a real-
world setting, a classification task using a dataset of ’almost
collisions’ is provided as a proxy for flying in the real world.

Second, we evaluate a two baselines in this setting, build-
ing on a MobileNet [22] pretrained on ImageNet [23]. In
an attempt to train the control end-to-end without losing the
robustness to varying imaging conditions and without overfit-
ting to the basic simulated environments, we demonstrate the
benefit of an auxiliary task [24]. The use of auxiliary tasks
helps the extracted features to focus on the information that
is relevant for the task which makes the learning less prone to

fitting toward irrelevant features only visible in the training
environments. In particular, we demonstrate how auxiliary
depth prediction can reduce the impact of the domain shift
and we show that our model succeeds in flying in the more
realistic simulated validation world although it was trained
solely on a mix of very basic environments.

In order to use DoShiCo as a benchmark, we integrated the
full setting of ROS, Gazebo and Tensorflow in a Docker and
Singularity image. All the code, 3D environments and the
best trained checkpoints of the model are publicly available
to ensure reproducibility of the results1.

The remainder of this paper is organized as follows. First,
in section II, we start with a short background, defining
monocular obstacle avoidance in an RL setting. Second, in
section III, we describe the related work. Next, we give the
details of the DoShiCo challenge (Section IV) and details
on our baseline models (Section V). In Section VI, the
experimental results are discussed. Section VII concludes the
paper together with a discussion.

II. BACKGROUND

In the general RL setting, an agent interacts with the
environment according to a policy, π, which maps the
currently observed state st to an action at = π(st). The
environment brings the agent to a next state st+1 according
to the dynamics of the environment T (st+1|st, at) with a
corresponding reward rt+1. The goal is then to find good
parameters for this policy, maximizing the cumulative reward
in the longterm [25].

Most of the RL algorithms are based on the Markov
property. In this case, the information provided in the state
should be enough to select an optimal action. Such problems
are referred to as Markov Decision Processes (MDPs). In
most applications, however, this assumption does not hold.
In those cases, the process is seen as an MDP but the agents
observation is not the full state. These problems are referred
to as partially observable MDPs (POMDP).

As mentioned in the intro, in state-of-the-art RL methods,
states have shifted from low dimensional game specific
variables to high dimensional raw images, and further to
partially observable states for example in first-person views.

1kkelchte.github.io/doshico



In the DoShiCo challenge the observed state is represented
by the current view of a drone. The action is the applied yaw
turn while flying at a fixed speed.

III. RELATED WORK

Learning to control

When it comes to autonomous navigation directly from
high dimensional camera input, a first family of solutions
relies on geometric techniques for simultaneously mapping
and localizing the agent (SLAM). Besides the extra compu-
tational power, these algorithms often suffer from a lack of
features to track [26]. In a similar spirit yet more robust,
Gupta et al. [27] have recently demonstrated how a joint
neural architecture, called a CMP (Cognitive Mapping and
Planning), can effectively learn to map and plan jointly
trained in an end-to-end fashion.

More related to our work, yet avoiding the end-to-end
complexity and bypassing the domain shift issue, there are
some works that rely on depth estimation as an intermediate
step. Michels et al. [1] predict depth and then train a
controller in simulation with reinforcement learning. In [28]
depth is estimated from single images using a CNN, as
in [29], and then used to avoid obstacles with a behavior
arbitration algorithm [30]. For the task of obstacle avoidance
this might be a valid solution. There are however different
and more complex tasks for which depth estimation does
not provide enough information. In those settings end-to-end
training is required in order to extract higher level features.

Moreover, Levine et al. [3] demonstrated that training
end-to-end results in more stable and efficient learning.
Pomerleau [31] successfully trained a single layer network
end-to-end with apprenticeship learning for the task of road
following. Lecun et al. [32] trained a CNN to predict the
steering angle of a small car based on stereo input from an
offline dataset. In more recent work, Ross et al. [33] train
an SVM (Support Vector Machine) iteratively with imitation
learning in a forest. Giusti et al. [34] train a deep neural
network end-to-end for following trails in a forest from a
large offline dataset gathered manually.

These are all examples demonstrating the promising path
of end-to-end image-based control prediction networks.

Dealing with the virtual-real domain shift

All control models previously mentioned are trained in an
environment that is close to the test environment. However,
as indicated above, for many real-world applications this
is unfeasible. There have been some preliminary attempts
to cope for instance with different weather conditions [35],
[20]. In the recent work [36] of Li et al., they succeed at
generalizing over different game parameters in a Cart-Pole
game (cart mass and pole length). The step from simulation
to the real world entails however a much bigger domain shift.
In computer vision, several methods for domain adaptation
have been proposed (see [37] for a recent survey), but mostly
in rather artificial setups and, to the best of our knowledge,
never in the context of control prediction networks.

Fig. 2. Top-down view of the training (top) and validation (bottom)
environments with an example trajectory.

Finally, the idea of using auxiliary tasks for our baseline
model stems from Multi-Task Learning (MTL). In computer
vision, MTL has been demonstrated to improve the perfor-
mance of one task by sharing the network with other tasks
– for instance object detection together with classification
and segmentation [38]. Mirowski et al. [39] demonstrate
the use of depth prediction as an auxiliary task in order to
learn a deep neural agent to navigate and localize itself in a
simulated maze. They demonstrate a positive impact on data
efficiency and performance, however they did not research
the domain shift.

IV. THE DOSHICO CHALLENGE

The DoShiCo challenge contains of training a DNN policy
end-to-end for the task of obstacle avoidance with drones.
Based on the high-dimensional RGB input from the current
view of the drone, the policy needs to predict the action, in
this case the applied yaw turn while flying at a fixed speed.
The policy is trained in very basic simulated environments,
chosen specifically to train features relevant for obstacle
avoidance. After this, the policy is evaluated online in a very
different and more realistic simulated environment and offline
on a small dataset of real-world videos.

The DNN agent should be initialized from scratch or with
imagenet-pretrained weights. Pretraining the neural network
with intermediate representations, like depth maps, separates
the two challenges and is therefore not allowed. The policy
should be trained end-to-end. The challenge does not restrict
the training time or the architecture of the network.

A Mix of Basic Training Environments: Canyons, Forests and
Sandboxes

Snapshots of the type of environments are shown in Figure
1. Top-down views can be seen in Figure 2. One type
of training environments is a canyon that bends randomly,
inspired by [40]. The goal is to fly more than 45m through
the canyon at a constant speed of 1.3m/s without colliding
with the walls. From the same work, we copied the idea of
a forest with cylinders placed on random spots in which the
goal is to cross 45m without collision. The third environment



is called the Sandbox. It is a box of 20x20m with walls
in varying colors and a number of different objects spread
around. We picked 13 basic objects with different shapes
found on the Gazebo model server [41]. In the sandbox the
agent needs to get further than 7m from the starting position
without collision. In each environment the agent is spawned
at location (0, 0). The environments are made on the fly.

The three training environments intuitively help to learn
a different type of behavior. In the canyon, the agent learns
to focus on perspective lines relevant for wall- and corridor-
following. In the forests, the agent learns to avoid moving
vertical lines relevant for general obstacle avoidance. The
sandboxes ensure a healthy invariance towards a variety of
shapes and visual features.

More realistic validation environment: ESAT

The network is evaluated online in the ESAT environment.
We build a lookalike model of our corridor at the electrical
engineering department ESAT. It is important to test on-
line in order to know how well the agent has solved the
POMDP. The policy is tested through the ESAT corridor in
2 directions. Successful example flights are depicted in the
top-down view of Figure 2.

Real-world test data: Almost-Collision dataset

Collision avoidance on a real drone performed by different
policies is hard to compare correctly. Real-world experiments
are influenced by many external factors such as battery state,
propeller state, on board electronics, etc.. A drone might
crash in one test, deteriorating all consecutive flights.

Alternatively using an imitation loss from a demonstration
flight by a pilot is biased towards the specific flying behavior
of the pilot which is unfair for comparing one policy to
another.

In order to compare collision avoidance in a fair and
quantitative way on real-world data, we made a small dataset
containing sequences of images of situations in which only
one control is suitable: straight, left or right turn. We make
sure that collision is very nearby in all trajectories, without
actually crashing. This conveniently resulted in the Almost-
Collision dataset.

We recorded data on seven different locations that differ
a lot in visible features. Snapshots are shown in Figure 3.
The trajectories are tagged with different visible cues. These
cues are a type of feature specific to this type of collision:
perspective lines, vertical lines and strange shapes.

The image sequences are around 3 to 5 seconds at 20fps.
They are labeled with the control required to avoid col-
lision. Over the seven locations a total of 25 trajectories
are collected with an equal amount of left and right target
controls with the exception of one trajectory with straight
as target control. The total size is around 1600 frames.
For classification, the predicted angular velocity in yaw is
discretized with thresholds ±0.3 for left, straight and right.

Evaluation

In order to evaluate a model on the DoShiCo challenge
it is important to see first how well the model has solved

Fig. 3. Snapshots from the seven different locations of the Almost-Collision
dataset. The yellow arrow indicates the target direction. Different trajectories
have different visual cues to indicate the approaching collision.

the POMDP in the three training environments online. The
second evaluation is also online in the ESAT environment
for which it needs to cope with a primal domain shift. This
second criteria is the most important one as it combines
the difficulty of a domain shift together with the on-policy
POMDP setting. The final criteria is an indication for the use
of this agent in a real-world obstacle avoidance scenario.

During our experiments we encountered very high vari-
ance in the online results of policies trained with different
seeding. This made it hard to compare different setups
as well as hyperparameters. Jaderberg et al. [24] compare
performances of the top 3 policies picked from 50 policies
trained with different hyperparameters. We found that plot-
ting the performance expressed as a percentage of the ranked
population allows a proper comparison.

V. BASELINE MODEL

Here, we describe our training strategy as well as the
architectures of the models used in our experiments. Note
that the DoShiCo challenge does not provide any restrictions
on how the policy is trained.

Training strategy

Our baseline model is trained in a straightforward imi-
tation learning way, namely behavioral cloning. This means
that the data is collected by flying a number of times through
the simulated training environments. This was automated
with a heuristic based on groundtruth depth provided by the
simulated environment. The policy is trained on this data in
a supervised fashion, minimizing the difference between the
estimated control and the control applied by the heuristic.
The heuristic collects data of 100 flights in each of the three
types of training environments.



Fig. 4. The architecture of the policy. The figure is best seen in color. The
yellow parts are 0.25-MobileNets that share weights over three consecutive
frames. The circle represents the concatenation of the extracted features.
The green part is the control prediction that consists of two fully connected
layers. The orange part represents the auxiliary depth prediction layers.

TABLE I
ONLINE PERFORMANCE IN SIMULATION

Average distance [m]
TOP 5 TOP 3 TOP 1

NAUX AUXD NAUX AUXD NAUX AUXD
Canyon 43.96 38.41 42.33 43.08 38.05 41.79

Forest 45.99 50.24 42.90 48.48 48.67 51.35
Sandbox 7.03 8.62 6.98 9.11 9.22 8.09

ESAT 47.03 57.63 50.08 61.66 60.25 71.69

Architectures: NAUX & AUXD

The architecture of the baseline model is shown in Fig-
ure 4. The base network is called NAUX (for ”No Auxiliary
task”) and contains a feature extracting part (yellow) and two
fully-connected layers for control (green). In order to give
the neural network a sense of time, the network takes three
consecutive frames as input. Each frame is fed to a feature
extracting part with shared weights, with the architecture of
mobilenet-0.25 [22]. The weights of the mobilenet-0.25 are
initialized from a model pretrained on Imagenet [23]. The
features are concatenated (black circle) and fed to the control
prediction part (green). The control part has a fully connected
hidden layer with 50 nodes with ReLu activation and an
output layer with no activation function. The control output
is a continuous value of the angular velocity in yaw.

The network with auxiliary depth prediction is further
referred to as AUXD. It is build on top of NAUX. The
extracted features of the last frame are fed to two fully
connected layers that predict a depth frame of 55x74, based
on the work of Eigen et al. [29] (see Figure 4).

VI. EXPERIMENTAL RESULTS

The performance is measured as the average collision-
free distance traveled by the policy online over 10 runs in
the ESAT environment. The population over 50 policies is
visible in Figure 5. Please note that the evaluation on the
more realistic ESAT environment entails a primal domain

Fig. 5. The variance of the on-policy performance as distance [m] traveled
in the ESAT validation environment over the percentage of the population
of policies. The red and blue lines correspond to the NAUX and AUXD
architectures.

shift which augments the variance over the different trained
policies.

The blue line is the ranked performance of the NAUX
networks trained without auxiliary depth. The red line defines
the AUXD networks trained with depth prediction. It is
clearly visible how the use of auxiliary depth improves the
general online performance on the validation environment.

Table I shows the performance averaged over the top 5, top
3 and best policies. The policies are selected based on their
average distance traveled online in the ESAT environment.
The first three rows are the online performances of both
NAUX and AUXD policies tested in new generated environ-
ments similar to the training environment. The performances
are expressed as average collision-free distance.

Evaluating the performance on environments similar to
the training environments is the common practice in training
deep neural control. It is clear how, both with and without
auxiliary depth, the policies can already succeed a large
number of times. In other words, it has learned to succeed
at avoiding collisions in the basic environments. Training on
longer and more data with possibly intermediate on-policy
iterations or larger networks could improve these numbers
further but that is not the goal of this work.

As Figure 5 implied, the auxiliary depth has a consistent
positive impact on the validation performance. This positive
impact is less present in environments similar to the training
environment which confirms the believe that the auxiliary
task helps to regularize over a domain shift.

The step to the real world comes with an extra domain
shift. The best policies are quantitatively evaluated on the
Almost-Collision dataset. The results are shown in table II.
The top rows show the results per location and with an
overall average taken with equal weight for each location.
The bottom rows show the results per type of visual cue
with an overall average taken with equal weight for each
visual cue. The best accuracy between NAUX and AUXD
is put in bold if the difference is significant (greater than
5%). The improvement is less distinct with auxiliary depth
on real world data. Although the average top 5 and top 3



TABLE II
ACCURACIES ON THE ALMOST-COLLISION DATASET [%]

NA ∼ NAUX AND AD ∼ AUXD

TOP 5 TOP 3 TOP 1
NA AD NA AD NA AD

ESAT real 35 64 28 80 27 73
Corridor 1 40 57 38 61 40 60
Corridor 2 53 39 51 45 49 21

Office 76 99 78 100 100 100
Cafeteria 29 25 30 26 42 34

Garage 50 62 45 56 46 58
Night 77 63 72 71 76 59

Avg. Loc. 51 58 49 63 54 58
Strange 46 54 45 57 52 60

Perspective 46 49 43 53 46 44
Vertical 70 72 68 76 66 73

Avg. Cue 54 58 52 62 55 59

performances indicate a positive trend towards the use of
auxiliary depth.

VII. DISCUSSION AND CONCLUSION

The ability of neural networks to be trained in simulation
and still perform robustly in the real world is a major
challenge for applying deep neural control in real-world
applications. A lack of benchmarks that combines the online
evaluation environment with a domain shift, makes it hard
to compare different methods.

You could argue that the general task of obstacle avoidance
is already solved once you can predict proper depth maps
over different domains as intermediate features. This is true,
however the goal of DoShiCo is not to solve monocular
obstacle avoidance. The goal is to find ways of training
DRL policies in such way that they generalize over different
domains. In many real-world applications it might not be
convenient to find informative intermediate representations
that can be trained separately.

As a baseline we propose a model that successfully uses
auxiliary depth prediction learned in a behavioral cloning
fashion. Our model succeeds at taking the dummy domain
shift from the basic mixed environments to the ESAT vali-
dation environment. Though the performance on real-world
data still has to be improved.

As many questions remain unanswered: 1. Is it best to
train a model with imitation learning or fully reinforced when
looking at such a large domain shift? 2. How can different
architectures help to generalize over different domains while
still allowing end-to-end training? 3. What is the influence of
a discrete versus continuous action-space on the generaliza-
tion ability? Further study will have to demystify the training
of image-based DNN policies. By proposing the DoShiCo
challenge, we want to boost this research field, taking RL a
step further towards the real-world.

ACKNOWLEDGEMENTS

This work was supported by the CAMETRON research
project of the KU Leuven (GOA).

REFERENCES

[1] J. Michels, A. Saxena, and A. Y. Ng, “High Speed Obstacle Avoidance
using Monocular Vision and Reinforcement Learning,” ICML, no. 22,
2005.

[2] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An Application of
Reinforcement Learning to Aerobatic Helicopter Flight,” NIPS, 2006.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training of
Deep Visuomotor Policies,” Journal of Machine Learning Research,
vol. 17, pp. 1–40, 2016.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforce-
ment Learning,” NIPS Deep Learning Workshop, 2013.

[5] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous Methods for Deep
Reinforcement Learning,” ICML, 2 2016.

[6] D. Michie, “Experiments on the mechanisation of game learning. 1.
characterization of the model and its parameters,” Computer Journal,
vol. 1, p. 232263, 1963.

[7] D. Wierstra, A. Forster, J. Peters, and J. Schmidhuber, “Recurrent
policy gradients,” Logic Journal of IGPL, vol. 18, pp. 620–634, 10
2010.

[8] Udacity, “Open Source Self-Driving Car,” 2018.
[9] F. Sadeghi and S. Levine, “(CAD)ˆ2RL: Real Single-Image Flight

without a Single Real Image,” Robotics: Science and Systems(RSS),
2017.

[10] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-
supervised Deep Reinforcement Learning with Generalized Compu-
tation Graphs for Robot Navigation,” International Conference on
Robotics and Applications(ICRA), 2018.

[11] D. Gandhi, L. Pinto, and A. Gupta, “Learning to Fly by Crashing,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3948–3955, 2017.

[12] S. R. Richter, V. Vineet, S. Roth, V. Koltun, and T. Darmstadt, “Playing
for Data: Ground Truth from Computer Games,” ECCV, no. 14, 2016.

[13] J. Yoo, Y. Hong, and S. Yoon, “Autonomous UAV Navigation with
Domain Adaptation,” CORR, 2017.

[14] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite,” CVPR, 2012.

[15] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset
for Semantic Urban Scene Understanding,” 4 2016.

[16] X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, and K. Saenko,
“VisDA: The Visual Domain Adaptation Challenge,” 2017.

[17] M. Roozbeh and K. Eric, “THOR Challenge,” 2017.
[18] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski,

“ViZDoom: A Doom-based AI research platform for visual rein-
forcement learning,” in 2016 IEEE Conference on Computational
Intelligence and Games (CIG), pp. 1–8, IEEE, 9 2016.

[19] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” 6 2016.

[20] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” 11 2017.

[21] B. Wymann, C. Dimitrakakis, A. Sumner, E. Espié, and C. Guionneau,
“TORCS: The open racing car simulator,” 2015.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications,” Arxiv
1704.04861, 2017.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision, vol. 115, pp. 211–252, 12
2015.

[24] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo,
D. Silver, K. Kavukcuoglu, and D. London, “Reinforcement Learning
with Unsupervised Auxiliary Tasks,” ICLR, 2017.

[25] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. 2017.

[26] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,”
arXiv:1607.02565, 7 2016.

[27] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik,
“Cognitive Mapping and Planning for Visual Navigation,” CVPR,
2017.



[28] P. Chakravarty, K. Kelchtermans, T. Roussel, S. Wellens, T. Tuytelaars,
and L. V. Eycken, “CNN-based Single Image Obstacle Avoidance on
a Quadrotor,” ICRA, 2017.

[29] D. Eigen, C. Puhrsch, and R. Fergus, “Depth Map Prediction from a
Single Image using a Multi-Scale Deep Network,” NIPS, 6 2014.

[30] P. Althaus and H. I. Christensen, “Behaviour Coordination for Nav-
igation in Office Environments,” Intelligent Robots and Systems
IEEE/RSJ, 2002.

[31] D. A. Pomerleau, “Rapidly Adapting Artificial Neural Networks for
Autonomous Navigation,” NIPS, 1991.

[32] Y. Lecun, U. Muller, J. Ben, and E. Cosatto, “Off-Road Obstacle
Avoidance through End-to-End Learning,” NIPS, 2005.

[33] S. Ross, N. Melik-Barkhudarov, S. K. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and H. Martial, “Learning Monocular Reactive UAV
Control in Cluttered Natural Environments,” ICRA, pp. 1765–1772,
2013.

[34] A. Giusti, J. Guzzi, D. C. Ciresan, F.-L. He, J. P. Rodriguez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza,
and L. M. Gambardella, “A Machine Learning Approach to Visual
Perception of Forest Trails for Mobile Robots,” IEEE Robotics and
Automation Letters, vol. 1, pp. 661–667, 7 2016.

[35] S. Daftry, J. A. Bagnell, and M. Hebert, “Learning Transferable Poli-
cies for Monocular Reactive MAV Control,” International Symposium
on Experimental Robotics (ISER), 8 2016.

[36] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Learning to Gen-
eralize: Meta-Learning for Domain Generalization,” AAAI Conference
on Artificial Intelligence (AAAI), 2018.

[37] G. Csurka, “Domain Adaptation for Visual Applications: A Compre-
hensive Survey,” in Domain Adaptation in Computer Vision Applica-
tions (Gabriela Csurka, ed.), Springer, 2017.

[38] R. Caruana, T. Mitchell, H. Simon, and D. Pomerleau, “Multitask
Learning Rich Caruana 23 September1997,” CMU-CS-97-203. School
of Computer Science. Carnegie Mellon University. Pittsburgh, PA
15213, 1997.

[39] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, and D. London,
“Learning To Navigate In Complex Environments,” ICLR, 2017.

[40] G. Kahn, T. Zhang, S. Levine, and P. Abbeel, “PLATO: Policy
Learning using Adaptive Trajectory Optimization,” ICRA, 2017.

[41] Open Source Robotics Foundation, “Gazebo,” 2018.


	I Introduction
	II Background
	III Related Work
	IV The DoShiCo Challenge
	V Baseline Model
	VI Experimental Results
	VII Discussion and conclusion
	References

