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Online Eye-Robot Self-Calibration

Arnaud Tanguy'2, Abderrahmane Kheddar®? and Andrew 1. Comport!

Abstract— We present a new approach that extends the
well known Eye-Hand calibration to the online whole-body
calibration of the kinematic tree geometric parameters. Only
on-board RGB-D sensor and joint encoders are required.
Online calibration allows to estimate the state of the kinematic
tree at any time, and thus account for inaccurate models,
passive joints, mechanical wear, unexpected damages, efc. One
major challenge in achieving such an online self-calibration
procedure with the available sensors is that the observability of
the calibrated parameters cannot always be guaranteed. In this
work, we determine the effect of joint degrees of freedom on ob-
servability. From this, we propose a novel Eye-Robot calibration
method that determines the geometric transformations between
joints. Conditions on joint motion are further used to improve
upon existing kinematic tree parameters when observability is
incomplete. In practice a dense SLAM algorithm is used for
online pose estimation and the results are demonstrated with
an HRP-4 humanoid robot.

I. INTRODUCTION

Robotic systems inherently require some sort of calibration
procedure to determine parameters that are needed to perform
state-estimation, planning and control. One of the most
fundamental set of parameters is kinematics, which relates
sensors to actuators through the geometric configuration of
the robot. Whilst this model is most generally provided
by the manufacturer thanks to precision machining, some
parameters will change over time. This may be due to robot
modifications and adaptations, passive mechanisms with no
sensors, the addition of new sensors, or simply due to normal
wear and tear. The accuracy and robustness of a robotic
system is highly dependent on these calibration parameters
and a solution to this problem is to develop life-long self-
calibrating methods. In this paper a generic solution is
proposed to continuously estimate these parameters using
only encoder information and Dense Visual VSLAM, along
with the observation of the contact configuration.

We exemplify our study with humanoid robots. They
require accurate calibration to continuously interact with the
environments. They are complex systems designed to be as
versatile as humans in their interactions (e.g. locomotion
in complex cluttered and uneven terrains) and manipulation
(e.g. opening a valve, climbing a latter, drilling). They are
also modelled with a large set of parameters, including the
kinematic tree topology, link lengths, joint angles, sensor
locations, efc. Reliable planning and control of their actions
need these parameters to be determined with the accuracy
required by the tasks to be achieved.

In the literature, apart from few recent papers, kinematic
parameters are assumed to be known and unchanging, and
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Fig. 1.
parameters for HRP-4’s torso, head joints and camera (Hand-Eye). The
floating base 6D (orienation and translation) is additionally calibrated w.r1.
the environment’s point cloud.
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mechanical links to be accurately calibrated by the manufac-
turer. Our contribution is to calibrate online the kinematic
tree’s geometric pose parameters using an on-board RGB-D
sensor (for 6dof localisation and mapping) and joint encoders
(optical). Floating-base 6D configuration (translation and ro-
tation) w.z.t. to SLAM’s environment map is also determined.

II. RELATED WORK

There are several efficient methods for kinematic chain
calibration offline. In this paper, a particular focus is made
on methods suitable for online self-calibration, with minimal
requirements for both the robot and the environment.

In [1] a method based on self-touch was proposed: using
sensorized covers with thousands of tactile arrays, kinematic
loops are formed by exploiting an existing imprecise forward
kinematic model. Correspondences are established between
predicted contact points and the sensed ones, which allows
the refinement of kinematic parameters. While the idea is
interesting, the sensory requirements are considerable.

Another common approach consists of forming a virtual
closed loop between the camera and an end effector, by
exploiting self-observation. In [2, 3], each end-effector’s
motion is observed by the robot’s camera. As is the case
with the sensory skin, this creates closed-loop constraints.
Unfortunately this approach only corrects joint offsets and
link lengths. These methods also suffer from two important
drawbacks: observability issues, and the problem of robustly
localizing the end-effectors. The later is often avoided by
rigidly attaching calibration markers to the end-effectors dur-
ing calibration [4, 5]. There are also additional uncertainties



regarding the extrinsic pose of the calibration target w.r.t. the
end effector.

Most recently, a generic online self-calibration algorithm
was presented in [6]. It uses information theory to identify
measurements that lead to improvements in calibration, and
automatically detects and locks unobservable directions in
parameter-space. This results in an online algorithm that
listens to incoming sensor streams and builds a minimal set
of data for estimating calibration parameters. The latter are
continuously updated when they are observable; otherwise
they are left to their initial guess. This is truly a remarkable
work, however, it does not provide any guarantee that the
parameters will eventually become observable. In calibrating
a humanoid robot, one needs to make sure that the robot
motions are suitable to guarantee full-observability of all
kinematic parameters.

In order to perform Robot-Eye calibration it is necessary
to estimate the pose of the camera. The most prominent
method for determining the camera extrinsic calibration
parameters is the Hand-Eye method. It commonly relies
on calibration patterns, either fixed to the robot or placed
within the environment, a choice mainly driven by lack of
suitable markerless tracking systems. Recently, many state of
the art dense visual simultaneous localization and mapping
approaches [7, 8, 9, 10, 11] have been made available, and
provide a robust pattern-free solution for tracking the camera
pose (either RGB-D sensor, or a stereo pair), but also for
reconstructing a 3D map of the environment, which will be of
use in our approach. Any of these prominent SLAM solution
is suitable for our proposed method. We opted for using the
SLAM system of [9].

We propose a novel online method to calibrate and esti-
mate each of the aforementioned parameter sets by making
full use of dense visual VSLAM. Removing the need for
calibration patterns and manual intervention we can achieve
online corection of the calibration parameters at any time,
including during normal robot operation. Kinematic param-
eters are determined by solving the proposed Robot-Eye
calibration procedure which has been inspired by classic
Hand-Eye calibration [12]. Similarly to [13] for hand-eye cal-
ibration, an analysis is performed on parameter observability
to show that not all robot configurations are observable in
a Robot-Eye setting. With full-observability, the kinematic
parameters are obtained without need for any initial guess,
which allows to calibrate fully unknown chains. When pa-
rameters are not fully observable, their calibration can still
be improved along the observable directions, while keeping
the remaining parameters to their inital guess. Our method
is validated in both simulation, and with real experiments
performed on and HRP-4 humanoid robot.

ITI. ROBOT-EYE CALIBRATION OF A KINEMATIC CHAIN

Our goal is to calibrate a robot’s kinematic tree, provided
that one has an estimate of the camera pose and joint
state. In order to achieve this we show that the problem is
related to that of hand-eye calibration. Yet standard hand-
eye calibration methods are not sufficient. In particular, it
assumes knowledge of the full 6dof motion of a robot
link, which pressuposes a known kinematic model, which

is exactly what we aim to determine in this work. First the
classic approach is presented, then we develop our approach
to Robot-Eye calibration that overcomes these limitations,
while providing an online calibration procedure.

A. Hand-Eye calibration

Hand-Eye calibration was first described in [12], and has
since become a standard tool for extrinsic calibration of
vision sensors. It relates [N relative sensor motions A; €
SE(3) with the corresponding motion B; € SE(3) of a robot
link to which it is rigidly attached to estimate the robot-
sensor transformation X € SE(3). To simplify notations, the
subscript ¢ will often be ommitted. Each motion forms the
following kinematic equality

A;X = XB;, (1)

e A, is typically obtained by tracking the camera w.rt.
calibration patterns [12, 14].

e B, is commonly obtained through forward kinematics,
by assuming that the robot kinematic parameters are
fully available.

; A=

Fig. 2. Hand-Eye Calibration : the relative camera motion A; and the
relative robot motion B; and the unknown extrinsic transformation X are
forming a closed kinematic loop.

Several methods have been proposed to solve this equa-
tion. In [15], the rotation and translation are determined sep-
arately with standard non-linear least-square minimization.
In [14], several formulations are proposed leading to multi-
variate polynomial optimization problems, that are globally
solved using convex linear matrix inequality relaxations.
A geometric analysis for the uniqueness of a solution is
provided in [13], which shows that translation and rotation
should not be decoupled. Following these recommendations
from the literature, the solution to Equation 1 is deter-
mined by solving the following non-linear cost function
(Equation 2), with the unknown transformation X € SE(3)
parametrized using its lie algebra representation x € se(3)
such that X = elXl~, with [], being the skew symmetric
operator (see Equation 3).

N
%= argminz ||(Aie[x]Aile["]ABiH (2)
X =1

The Lie algebra representation allows simultaneously esti-
mating both rotation and translation using a minimal number
of 6 parameters (3 for rotation, 3 for translation), and
robustness can be improved by using as many measurements
as necessary to iteratively solve an over-determined system

of equations.



In this paper, we exploit the tracking capabilities of
dense visual SLAM systems to advantageously replace the
measurements needed for the computation of A. Using real-
time SLAM localization offers two main advantages over
standard methods: the dense method used is more accurate
than conventional methods, and it can also be used to acquire
data online. The Hand-Eye calibration problem can thus
be formulated as an online calibration method, by solving
Equation 1 from available robot and tracking data.

B. Calibration parameter observability

The observability of the pose X, based on the observed
movements A and B, depends on the screw congruence
theorem [13]. This theorem states that both A and B
share the same screw transformation since they undergo
the same movement. This is directly related to Mozzi-
Chasles’ theorem which states that the most general rigid
body displacement can be produced by a translation along a
line (called its screw axis) and a rotation about that line.

Here Chen’s work is reformulated using a Lie Group
representation. Consider the tangent spaces of the matrices
A and B such that [a], = logm(A) € se(3) and [B]r =
logm[B] € se(3). The tangent matrices [a], and [3], are
composed of both angular and linear components as follows:

[1n = [ ol v } 3)

The axis of rotation is given by the line [16]:
_wXwv

1= 222 i AeR (4)
|||l

the rotation angle is:

0 = ]| )
and the translation along the axis is:

T
= (6)
[l

Following the screw congruence theory [13], it can be
shown that the rotation around the screw axis and the
translation along the axis are invariant to coordinate frames
such that tu = tg and 6, = 03. In the case of a ldof
rotational joint motion (as is the case for all the robots we
consider), t!l = 0 and § = @ is measured by the joint encoder.
The relationship between the screw axis and its translation
are, however, dependant on X.

Subsequently it can be seen that the two invariant screw
parameters do not provide any constraints for estimating
the unknown calibration pose between the camera and any
link of the robot. Only four parameters are constrained and
the translation along and around the screw axis remains
unobservable unless there is another orthogonal movement
between the camera and the link (a minimum of 2dof are
required to perform hand-eye calibration). Inevitably the
hand-eye calibration of a ldof joint (such as in a large
number of robotic system) remains unobservable along those
degrees of freedom. In the following sections, we will show
how this knowledge about observability can be put into
practice to calibration robots, even in cases where not all
directions are observable.

Fig. 3. Illustration of Hand-Eye calibration for a revolute joint. The joint
is rotating around its x-axis, which generates sensor motion (A, A1, A2).
The Hand-Eye equations are not constrained along the joint’s rotation axis,
but are fully observable along the remaining directions y and z, for which
a partial solution X, can be determined. The full solution lies along a
line passing through the partial solution, with direction parallel to that of
the joint’s axis (dashed black). Translation and rotation along the joint’s
rotation axis are the only dof that cannot be determined (dashed red vector).

C. Eye-Joint calibration

As mentioned earlier, the most common use of Hand-
Eye calibration has been in systems where both A and B
have 6 degrees of freedom each. B is obtained by assuming
the kinematic tree to be known and well-calibrated and its
motion is computed by forward kinematics. As the goal
is to extend the method to the calibration of an unknown
kinematic chain, it cannot be determined this way. Given the
sensors available (camera and encoders), the only parameters
that may be fully determined are the camera motion, and the
joint’s intrinsic motion (e.g. rotation around its axis). We
thus consider the special case of a camera rigidly linked to a
single robot joint, and analyse solvability for common joint
types. In this case, B represents the joint’s intrinsic motion
instead of the usual forward kinematic solution.

The solution X is only fully determined for ball joints,
other joint types only admit a partial solution. This may at
first seem very restrictive, until common mechanical designs
for robot motions are considered. It is indeed common to find
body parts that are moved by two revolute joints sharing the
same rotation center (e.g. HRP-4’s head, torso, hips, feet). In
this case, the two joints considered together are equivalent to
a single ball joint, and thus a full solution may be determined.

For revolute joints (e.g. HRP’s knee joint), translation
and rotation along the joint’s rotation axis cannot be de-
termined. As shown in Figure 3, the solution X may lie
anywhere in both translation and rotation along the joint’s
rotation axis. The remaining parameters may however be
fully observed. Consider a joint rotating around its z-axis.



Fig. 4. Decomposed view of a kinematic chain motion between 2 postures.
A is the measured camera motion through odometry, S; represent each
joint’s intrinsic motion (the definition of S depends on the type of joint
used). X; is the rigid geometric transformation between the successive
joints and is defined w.r.t. a reference robot posture. Notice that as is the
case for Hand-Eye geometry, a closed-loop is formed, which allows for
the estimation of the parameters, even through the camera motion is not
necessarely defined w.r.t. the same reference frame as the robot motion.

Assuming a known initial guess x: = [v},0,0,w,0,0]”
along the non-observable axis x, the remaining degrees of
freedom (translation and rotation along y and z axes) can

be determined by solving 2 for x,. = [vy, v.,wy,w]T such
that
T
X = [U;a Uya Uz, W:a Wy’wz}
The solution X for Equation 2 is then given as
5 PO A AT
X = [U;avmvmwszvaz} (7

That is, only the observable DoF are obtained, and the
others are kept to their initial value, such as the known
manufacturer’s calibration if available. This makes it possible
to improve calibration of the observable degrees of freedom
online while keeping a known calibration (e.g. manufac-
turer’s) for the others.

D. Online kinematic chain calibration

In the previous sections, we described the classic Head-
Eye calibration method, and extended it to online Eye-Joint
calibration. We now wish to extend it further to the calibra-
tion of a whole kinematic chain inducing a camera motion.
Doing so first requires to define an initial reference state for
the kinematic tree structure: joint states, and the geometric
transformation between joints. Each joint is parametrized by
a known intrinsic transformation S; € SE(3), that depends
on the type of joint used: rotation along the joint axis for a
revolute joint, translation along axis for a prismatic joint, efc.
The geometric transformations between joints are defined as
the unknown parameters {X; / X; € SE(3)};=1.n (see
Figure 4), that we wish to minimize. The minimization vector
is defined as their corresponding Lie-algebra twist represen-
tation x = {x; / x; € se(3)}i=1..n. In order to solve for the
unknown parameters x of this reference kinematic pose, the
state of the robot in several postures needs to be acquired.

We exploit the same argument as for Hand-Eye calibration:
the geometric transformations between joints (X;) are rigid,
thus constant. However, each joint intrinsic state varies. The
standard Hand-Eye equation is extended by expressing the
camera motion through all kinematic chain parameters as
follows:

AXNSy...X;S; = XSy ... XS, (8)

where

o §* = {S%...S7} is the reference intrinsic joint state
taken for the first measurement.

e §={Sn...S1} is the current intrinsic joint state.

e X;S; the instrinsic motion of joint ¢, followed by the
geometric transformation of link <.

e A, is the observed camera motion corresponding in-
duced by the joints S.

This formulation effectively decouples the geometric cal-
ibration parameters from the intrinsic joint state, and en-
sure that the solution is always provided at identity (S =
{In...I;}), which enables the calibration procedure to be
started at any time while the robot is in motion.

Equation 8 is solved by non-linear Levenberg-Marquardt
optimization stacking the errors obtained from each indi-
vidual observed robot posture. However, as discussed in
Section III-C, Eye-Joint calibration does not always admit
a full solution, and thus the kinematic tree may only be
partially determined.

IV. RESULTS

Our method is evaluated on several kinematic chain con-
figurations meant to illustrate the wide range of calibration
results presented in this paper. First, using real data with
HRP-4, we show that using the Eye-Joint method presented
in Section III-C the extrinsic camera calibration can be
obtained. We then illustrate the use of online Eye-Robot
calibration in its full observability case by exploiting the ball-
joint equivalence of HRP-4 torso and head joints. We show
that the calibrated kinematic chain is consistent with our
observability analysis in Section III-B. All real experiments
are performed using the SLAM of [17], and the HRP-4
humanoid robot, controlled with a quadratic programming
controller [18]. This result presentation is complemented by
a video attachment showing the real-time online aspect of
our proposed method.

A. Eye-Robot calibration of HRP-4

The HRP-4 humanoid robot has many degrees of freedom,
an is fitted with very precise high-end optical encoders, and
an Asus Xtion RGB-D sensor, making it a perfect candidate
robot to test our proposed calibration techniques. All of HRP-
4 joints are revolute, and many of its joints can be assimilated
to fully-observable ball-joints, head rotates around yaw and
pitch axes, so does the torso, and the leg waist joints. Other
joints, such as the knee have only one degree of freedom.

1) Implementation: We release our open-source C++ im-
plementation' of online eye-robot calibration. The implemen-
tation relies on the opensource C++ optimization framework

"https://github.com/arntanguy/robcalib
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Fig. 5. Eye-Robot Calibration of HRP-4 waist-to-camera transformations.
A/ The transformation between the torso joint and the head joint, and that
between the head joint and the camera are initially unknown. B/ Results of
the eye-joint calibration procedure obtained from a simulated robot motion,
where both the torso and head joints are moved simultaneously. Camera pose
along with encoder values are obtained from the simulated kinematic tree.
Calibration results are continuously improved online as new data becomes
available.

Roboptim2 [19], which enables straightforward definition of
optimization problems, and is compatible with a wide range
of solvers. The cost function of Equation 8 is solved using
the Levenberg-Marquardt solver of the Eigen library.

In practice, the equivalence between two successive revo-
lute joints J; and J; 1, sharing the same rotation center and
a ball-joint is implemented by sharing the same optimization
variable X; for both joints, which removes 6 elements from
the optimization vector. We are currently unable to automat-
ically detect such joint configuration, and the responsibility
for correctly defining the shared variables is left to the user.

2) Experiments: In a first experiment performed on the
HRP-4 robot, we illustrate the equivalence between the
classic Eye-Hand calibration, and the proposed Eye-Joint
calibration to determine the camera-to-robot extrinsic cali-
bration parameters. The initial camera-to-robot transforma-
tion is randomly chosen, and a motion is performed using
both neck joints simultaneously, considered simultaneously
as a ball-joint. As predicted by screw theory, the algorithm
starts to converge with only two relative measurements, but
greater accuracy is obtained over time. The complementary
video further illustrate the online aspect of the calibration by
estimating the location of the robot w.r.z. SLAM’s map [20]
using the live calibration results. As can be seen in the video
and in Figure 1 the erroneous initial calibration results in the
environment being misplaced w.rt. the robot, while the end-
result of the calibration correctly locates the robot.

In a second experiment, we show the Eye-Robot calibra-
tion method applied to the whole kinematic chain between
the waist and the camera. In this configuration, the full
geometric transformation between the torso and head joints,

2http://roboptim.net

and head joint to the RGB-D sensor can be determined.
Figure 5 shows the initial joint configuration along with the
calibration results obtained after a few seconds of simulated
robot motion. Both the torso and head joints are exited
along their two degrees of freedom (rotation around the pitch
and yaw axes) to guarantee full observability. Camera pose
measurements are determined by forward kinematics of the
ground-truth kinematic chain.

The same experiment is then performed on a real HRP-4
humanoid robot. Here, camera motion is obtained from dense
visual SLAM [9], and joint angles from high-resolution
optical encoders. As can be observed in Figure 1, aside from
obtaining convincing calibration for the considered joints, the
pose of the robot’s floating base w.r.t. to SLAM’s real-time
map can also be determined. This is achieved by exploiting
the known pose of the RGB-D sensor within SLAM’s
map, along with the kinematic chain being refined. Once
convergence is reached, the robot attitude is determined. The
complementary video further illustrate the online aspect of
the calibration by estimating the location of the robot w.rt.
SLAM’s map [20] using the live calibration results. As can
be seen in the video and in Figure 1 the erroneous initial
calibration results in the environment being misplaced w.r.z.
the robot, while the end-result of the calibration correctly
locates the robot.

B. Discussion

Calibration feasibility depends on the type of joints and
their configuration. In particular, ball-joints parameters are
fully observable. This is the case for many robots, in partic-
ular humanoids for which a common design is to have head,
torso, and hips in a configuration akin to ball-joints. In this
case, the proposed method is a direct generalization of the
Hand-Eye calibration method to Eye-Joint calibration. For
joints with only one degree of freedom, eye-joint calibration
never admits a fully observable solution. In particular, for
revolute joints, an ambiguity remains in both the transla-
tion and rotation along the joint’s rotation axis. Such joint
configuration is commonly found and we propose two main
solutions for their calibration. The first focuses on calibrating
the 4 observable DoF, which is achieved by locking the
unobservable parameters (along the joint’s axis) to an initial
reference value, assumed to be available (Section III-C).
Obtaining an accurate estimate of this initial value is however
non-trivial, and one would most-likely fall back to using
the manufacturer’s calibration. For humanoid robots, the
compromise of using the online calibration approach for the
observable parameters, while using a known reference value
for the others (manufacturer data, external calibration...) is
best suited.

V. CONCLUSION AND FUTURE WORK

Starting from Hand-Eye calibration results, we propose a
novel method that performs online whole-body calibration
of a kinematic chain using only joint encoders, and an
RGB-D sensor. Contrary to Hand-Eye methods, no a-priori
calibration of the kinematic chain is assumed available. It
is necessary to replace the use of end-effector robot motion
by that of the joints intrinsic motion, which leads to the
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study of Eye-Joint geometry, where the robot motion is
entirely determined by its intrinsic joint motion. Hand-Eye
observability results are applied to this restricted problem,
and we demonstrate that full observability of the geometric
parameters is achieved for ball-joints, or equivalently two
or more revolute joints sharing the same rotation center. We
further consider solving Eye-Joint calibration for common
joint types for which full observability cannot be achieved. In
this case, screw theory is used to determine and calibrate the
observable directions, while keeping an initial guess for the
non-observable directions. Building upon these results, we
then reformulate Hand-Eye calibration to a full kinematic
chain calibration, denoted as Eye-Robot calibration, and
successfully apply the method with both simulated and real
experiments to the calibration of the upper-body of an HRP-4
humanoid robot. When full observability cannot be obtained,
we demonstrate the ability to still improve the remaining
degrees of freedom while keeping an initial calibration
for the unobservable directions. Future work will focus on
quantitative evaluation of the calibration results and of the
influence of uncertainties in sensor measurements.
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