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An Open-Source Architecture for Simulation, Execution
and Analysis of Real-Time Robotics Systems

Dennis Leroy Wigand1, Pouya Mohammadi2, Enrico Mingo Hoffman3

Nikos G. Tsagarakis3, Jochen J. Steil2, Sebastian Wrede1

Abstract— The specification and analysis of the timing are
an integral part of a robotics system that requires to be highly
reliable. Especially since the demand for robots, which are
applied in collaborative environments, is increasing drastically,
robots need to be even more reliable and safe. In this paper,
we propose a workflow for timing specification and analysis of
real-time sensitive component-based robotics systems. Further,
we introduce CoSiMA, a C++ based architecture that combines
technologies, which are well-known in the domain of robotics.
CoSiMA offers the ability to model, simulate, deploy, and
analyze a robotics system on different robotic platforms. In
addition to that, it offers a real-time safe mechanism to collect
execution time data of a system, run in simulation or on the
real hardware, to investigate and ensure the desired behavior
of the robot. In order to depict the proposed workflow, we
implemented an experimental system using CoSiMA, which lets
the humanoid robot COMAN perform a Zero Moment Point-
based walk on a straight line.

I. INTRODUCTION

With the current rise of collaborative robots entering
various fields of the industry, the specification and analysis
of the execution time behavior (e.g., reaction times) becomes
an even more crucial aspect in the development of robotics
systems, especially considering safety and reliability [1]. In
order to safely deploy these systems in environments, where
a (timing) error could lead to a hazard, endangering the
robot, the environment or even worse a human being, it
is mandatory to provide guarantees on the system’s behav-
ior [2], [3]. While this is already necessary for non real-
time applications, it is all the more mandatory for real-time
component-based robotics systems (CBRS) [4]. Investigating
the real-time execution behavior – although in other domains
very common [5] – has not been a major concern in robotics,
since recent research tends to address mainly functional
capabilities [6], [7]. Some work even states that violating
deadlines does not result in significant impact on their
systems [2].

To the best of our knowledge, there are currently very
few publications that point out that a timing specification
and analysis needs to be an integral part of the development
process, to identify and correct potential timing or perfor-
mance problems early on, and reduce the development costs
and person-hours for maintenance significantly [8], [9], [4].
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We argue that it is not enough to integrate the timing aspect
into the development process, but even more it is necessary
to consider the separation of roles (SoR) in the different
stages. Further, we claim that different roles have different
non-functional requirements on the analysis and associated
views.

Related work found in the literature of robotics that does
consider timing as important mostly focuses only on deter-
mining the worst-case execution time (WCET) as well as the
worst-case response time (WCRT) [2], [1], [3], [8], [9], [4],
or on verifying the schedulability [10]. There are some pub-
lications that explain the importance of using the structural
model information of a component-based system, to calculate
end-to-end latencies [11], [6]. This alone, however, is not
sufficient to clearly cover the timing behavior of a real-time
CBRS. Firstly, there is a lack of specifications for robotics-
specific non-functional requirements, such as the concept
of cause-effect chains [6]. Secondly, in the current state-of-
practice, the specification of the execution time behavior is
mostly hidden in the component implementation [1], as well
as in the hardware (interfaces), i.e., delays in the sensors
and their communication [12]. Those timing details need to
be made explicit. Domain-specific approaches exist in the
literature that try to formalize the non-functional require-
ments for extensive model-based analyses and to facilitate
the integration of existing analyzers and visualizations into
the workflow via code-generation [1]. The majority of these
requirements fail to cover essential robotics-specific aspects.

In order to address these problems, we propose a refined
workflow for timing specification and analysis, separated
along the involved roles and their associated concerns, to ex-
ploit the power of Separation of Concerns (SoC) and SoR to
enhance the development process (Sec. II). Furthermore, we
propose robotic-specific specifications that we deem neces-
sary for our compliant human-robot interaction use cases. We
introduce our CoSiMA architecture1 (Sec. III) that enables
the simulation of real-time constrained robotics systems and
the analysis of specified timing requirements (Sec. IV). In the
last part of this paper, we apply the introduced workflow to
a humanoid walking control system in CoSiMA, and present
situations in which the developer benefits from the analysis
to prevent a faulty behavior (Sec. V).

1http://cogimon.github.io



II. TIMING SPECIFICATION AND ANALYSIS

When designing a real-time-constrained CBRS that
strongly relies on data-flow communication, it is not suffi-
cient to solely focus on the WCET, WCRT, or schedulability
of the components and system respectively, even though
those are very important aspects. In order to ensure that a
system is behaving as intended by the developer, two aspects
need to be considered: Firstly (II-A), to avoid overwhelming
the developers with various different tasks, the concepts
of SoC and SoR can be employed, since we argue that
each role has different functional requirements on the timing
specification and analysis, as well as on the visualizations.
This splits up the tasks, relieving the developers and offering
the possibility for a modular workflow. Secondly (II-B), the
specification needs to be enriched by non-functional robotics-
specific requirements w.r.t. the intended behavior of a robot.

A. Separation of Roles and Concerns

For the Separation of Roles, we draw on the roles de-
scribed by the RobMoSys2 project, in particular the Com-
ponent Supplier, the System Builder, and the Performance
Designer.

1) Component Supplier (CS): The Component Supplier,
aka Component Developer, offers computational units in
form of software components that provide or require specific
interfaces. A component, for instance, could be a low-level
PID controller, a high-level planning component, etc. This
role is naturally interested in determining general execution
properties, such as the WCET and the memory consump-
tion. Furthermore, this role particularly requires the ability
to investigate the variance of execution times as well as
the violations of deadlines. Apart from investigating these
concerns, the Component Supplier also needs to explicitly
specify the (desired) execution properties (i.e., WCET). This
specification is then used as ground-truth for later validation
and as base information for other roles. Suitable visualiza-
tions for the concerns of this role found in the literature are
histograms or classical one-dimensional plots.

2) System Builder (SB): The main task of the System
Builder, aka System Integrator, is to realize the system archi-
tecture designed by the Application-Domain Expert (ADE),
by drawing on the software components provided by the CS.
The SB requires to investigate the WCRT and End-2-End
latency of a (sub-)set of components respectively. Together
with the ADE, component overarching constraints need to
be specified. Depending on the desired application, different
precedence constraints [13] have to be defined (in form of
so called Precedence Task Graphs (PTG)) as a precondition
for the execution of a component and to structure the trace
of data that will be processed by a component. This way
it is specified which parts of the system can be executed
in parallel and which components need to wait for others
to finish, e.g., because they depend on previously processed
results from another component.

2https://robmosys.eu/wiki/general_principles:
ecosystem:roles

3) Performance Designer (PD): The Performance De-
signer takes care of realizing the system planned by the
SB (including the components provided by the CS) in
terms of activities that are assigned to cores. Here, the
challenge is not only to make the system schedulable, but
also to meet the different requirements, specified by the other
roles. Therefore, this role has very different concerns and
thus requires other support as compared to the previously
mentioned roles. Basically, each component needs to be
assigned to an activity, which in turn executes the containing
components sequentially. Every activity is defined by its
activation, which is either periodic or aperiodic, and by
its priority, and optional, particular scheduler. Activities are
executed in parallel and can be assigned to different cores.
Since the mapping from the requirements to the actual
schedulable system is a non-trivial task, the PD needs to be
able to investigate various aspects: The specified PTG needs
to be compared to the actual execution and data-flow of the
system. Hence, a timing diagram with data-flow information
is suitable (see Fig. 9).

To solely verify the execution order a classical timing
diagram seems to be sufficient. Further, the PD needs to
ensure that the specific parts of the PTG are actually schedu-
lable, and check if the mapping from the graph to activities
can be optimized. Otherwise, the development process needs
another iteration, triggering the SB to optimize the PTG to
hopefully enable the PD to find a schedulable solution. In
addition to that the core utilization as well as the distribution
of activities on cores and components on activities needs to
be investigated.

In addition to that, activation constraints [6] (i.e., activation
frequency/period) and the activation source [6] (e.g., event-
or timer-triggered) need to be explicitly specified.

B. Robotics-Specific Requirements

Each role has to care for different concerns and needs to
specify their non-functional properties, which are then used
by the other roles. However, the requirements mentioned
in Sec. II-A are not sufficient to cover the timing of a
CBRS completely. In the following, several robotics-specific
requirements are added and motivated per role.

Fig. 1. Static view of a simple closed-loop velocity control system. The
desired point in the task-space is detected and processed by a vision pipeline
(VTE) and afterwards send to an online trajectory generator (TG), which
sends the single points on the trajectory to a task-space velocity controller
(TSC) that ultimately controls the robot with velocity commands. While in
this example the vision pipeline is able to produce a new trajectory every
5ms, the robot needs to receive a new velocity command every millisecond
to ensure the desired behavior. Thus, the associated precedence graph of the
components, is not sufficient to capture the systems behavior including the
timing aspects (cf. II-B.1).



1) System Builder: In addition to the concerns discussed
in Sec. II-A.2, the pure specification of PTGs are not suffi-
cient to cover the needs of robotic systems, since there are
cases in which the specification of the data-flow needs to be
decoupled from the execution order. For instance, the data-
flow of the system shown in Fig. 1 can easily be described
as a PTG. However, the execution order is not modeled
correctly, since the components need to run with different
frequencies rather than in this exact sequence, to ensure a
stable control behavior of the robot. A direct consequence is
that components may process old input data, which is an as-
pect that frequently occurs in robotics. Hence, we argue that
the System Builder requires to be able to specify constraints
on the data, such as how far an input can date back in order
to be still valid to be processed (e.g., output constraints).
Another important point is the definition of control loops or
cause-effect chains as proposed by [6]. In our case, those are
sequences of components that begin with sensor data and end
with a resulting actuator command. These chains need to be
unambiguously classified into trigger- and data-chains, since
this has an impact on the End-2-End latency analysis [11]
and helps to specify the desired behavior more clearly. While
trigger-chains can realize the behavior shown in Fig. 1, data-
chains are more similar to a PTG, where a sequence of
components is executed sequentially by a data-event. As an
additional requirement for the PD, the SB (together with
the ADE) is able to specify the maximum time/minimal
frequency that the shortest/longest control cycle is allowed
to take/to be updated, in order to keep the robot stable. A
complete control cycle begins with a feedback data of the
robot and ends with the produced command that is based
on the feedback data and send to the robot. Similarly, a
short control cycle could also encompass a single controller
sending commands to the robot (as long as a stable behavior
is imposed).

2) Performance Designer: Apart from the general con-
cerns, the Performance Designer needs to also consider the
robotics-specific aspects specified by the System Builder.
This means not only the additional investigation of the End-
2-End latency of the longest and shortest control cycle, but
also to incorporate this new information in the mapping
of components to activities and cores. While these new
requirements seen individually do not seem to be overly
expensive, the entire set of requirements however, yields a
highly complex optimization problem that requires different
concern-specific views in terms of analyses and visualiza-
tions to support the role of the Performance Designer.

III. COSIMA ARCHITECTURE

Due to projects such as CogIMon3, which focus on
compliant interaction between robots and the environment,
including humans, we need to be able to develop and
simulate real-time-constrained CBRS, before deploying them
on real robotic platforms. With the major aspect of safety

3Cognitive Interaction in Motion https://www.cogimon.eu

and reliability in mind, we created CoSiMA: an architec-
ture that is specially designed to support the component-
based development of robotics systems, the analysis of
the simulated systems in terms of behavior and timing, as
well as the execution on real robotic platforms, including
fully transparent switching with minimal development effort.
CoSiMA incorporates different well-established technologies
(R.1), such as OROCOS [14], ROS [15], RSB [16], and
Gazebo [17], together with custom extensions to meet the
requirements of
R.1 providing a low entry barrier and not re-inventing the

wheel.
R.2 being as most compatible to existing software frame-

works as possible.
R.3 providing a framework with the necessary tools, inter-

faces and pre-designed components for CBRS.
R.4 supporting the execution of real-time critical systems.
R.5 keeping the implemented code agnostic to execution in

simulation or on the real robot.
R.6 maximizing the portability of controllers between dif-

ferent kinds of robotic platforms.
R.7 being able to introspect the (timing) behavior of a

system.
CoSiMA is divided into three major parts: execution,

simulation, and modeling environment. In the course of this
paper, we will only cover the first two parts. For information
on the modeling part, please refer to [18].

The Orocos Real-Time Toolkit (RTT) [14] aka OROCOS
resembles a C++ framework, which allows the implemen-
tation of real-time and non-real-time control systems in a
component-based way. OROCOS was chosen as the execu-
tion environment for CoSiMA because of two reasons: Firstly
(R.3), for offering a component-based approach for the
implementation of functional capabilities, which has proven
to be a widely adopted and effective solution [19]. Secondly
(R.4), for the support of real-time control systems and the
integration with real-time frameworks, such as Xenomai4. In
the context of this paper, we refer to a robotics system as
a real-time system, which requires a response to an event
precisely within a bounded time [20].

As simulation environment the well-established and open-
source physics simulator Gazebo [17] was chosen. Gazebo
is maintained by the Open Source Robotics Foundation5 and
is one of the most common simulators used in the field of
robotics [21], since it also integrates smoothly with ROS [22]
(R.2).

A. The Architecture

CoSiMA supports both, non-real-time as well as real-
time sensitive implementations, but deploys them separately.
As it can be seen in Fig. 2, everything is deployed in a
global execution environment, e.g., a workstation for in-
stance. Inside that global environment, real-time-constrained
components are deployed in an OROCOS environment,

4https://www.xenomai.org
5https://www.osrfoundation.org



Fig. 2. The CoSiMA deployment structure consists of real-time as well
as non-real-time environments. Using specific data types and transports,
communications between these environments can be established. Further,
CoSiMA allows transparent switching between simulation and real hard-
ware.

whereas components such as the RViz visualization lives
in the global environment itself. In case of simulating a
system, the Gazebo Client, which performs the rendering
of the simulation, is deployed without real-time constraints,
while the Gazebo Server is instantiated as an OROCOS
component6 and thus lives inside the OROCOS environment,
which constitutes two advantages: First, other OROCOS
components in the same environment can directly access
the Gazebo API, since everything runs in the same process.
Second, using a plugin7, Gazebo is able to propagate the
simulated time into the OROCOS environment. This way,
the simulation and the control components are synced time-
wise.

B. Communication and Semantic Data Types

Inter and intra communication of the real-time and non-
real-time environments is currently supported via data types
provided by ROS and RSB/RST. In case of inter environment
communication, which here basically means inter process
communication, a special plugin for OROCOS is needed
that ensures real-time safe message exchange for a particular
transport. Since OROCOS is also shipped with ROS, an
integration containing such a plugin8 is directly provided
by ROS. In order to keep CoSiMA ROS-agnostic, a more
lightweight transport is provided by RSB and the associated
protocol-buffer based types collected in RST(RT)9. RST(RT)
contains real-time safe data types that add robotics-specific
semantics to the communication. All the necessary plugins
are available at https://www.github.com/corlab.

C. Integration of Robotic Interfaces (R.5, R.6)

CoSiMA has been designed to be able to simulate and
control any robot of any complexity: from simple ma-
nipulators to humanoid robots. The key component which
permits to interface with the simulated robot is called

6https://github.com/corlab/rtt-gazebo-embedded
forked from Institut des systmes intelligents et de robotique.

7https://github.com/corlab/rtt-gazebo-clock-plugin
extracted and improved from Johns Hopkins University LCSR.

8http://wiki.ros.org/rtt_ros_integration
9http://docs.cor-lab.org/rst-manual/trunk/html/

index.html

rtt-gazebo-robot-sim10. This component, starting
from the URDF and SRDF files, which describes the kine-
matics, dynamics, chains, controllers, and sensors arrange-
ment, automatically generates a set of ports which can be
used to send commands as well as read sensor data to and
from the simulation. Leveraging the concept of kinematic
chains, we are able to design a robot control interface that is
determined by the different kinematic chains, consisting of
a sequence of joints with available control modes. Further,
the component provides a set of operations which are used
to setup other components that need to connect with it,
providing information used to automatically connect the
necessary ports (e.g., to receive the robot’s feedback). This
automatically determines the data type (see III-B) necessary
for communication as well as the dimension of the expected
command. Finally, the component (and hence the ports) are
parametrized over the name of the robot making it possible
to instantiate and control more robots of different or the same
kind.

For the real hardware, specular components, which open
the same ports and offer the same operations, are provided.
The currently supported robots include the KUKA LWR
4+ as well as the COMAN. For this work we present the
interface component for the COMAN: rtt coman11. It
connects via a driver to the ethernet-based robot [23]. The
controllers do not know if they are connected to the real
robot or the simulated one (R.5). This way, moving from
simulated to the real hardware is simple and straightforward
solely by exchanging the robot interface component in the
configuration of the system (i.e., in the OROCOS Program
Script file).

We recall that the kinematic chains, defined by the config-
uration from the URDF, SRDF, and control mode, determine
the interface of the “to be controlled”-robot. Based on the
kinematic chains, it can be determined whether a controller
is suitable to control a specific robot. This is the case, only
if the interface description of such a controller matches the
kinematic chain’s interface R.6. However, whether it makes
sense to use a controller designed for robot A on robot B,
is still subject to the System Builder’s opinion.

IV. TIMING INTROSPECTION EXTENSION

In order to be sure that a real-time constrained robotics
system behaves according to the developer’s intentions, a
mechanism is needed to introspect the system’s execution
while also collecting data for further analysis and verifi-
cation of the specified timing requirements. For most of
the developers that use OROCOS or a similar framework,
the execution of their components (tasks) is inaccessible
and thus not investigatable. Since we are doing physical
human/environment-robot interaction, we need to be certain
that our systems execute and behave as intended. Otherwise,
serious issues might arise that effectively damage the envi-
ronment, the robot, or even worse hurt a human.

10https://github.com/cogimon/rtt-gazebo-robot-sim
11https://gitlab.advrcloud.iit.it/advr_humanoids/

rtt_coman/tree/master



A. OROCOS Task Execution

In OROCOS, executing a component basically means
triggering a component’s internal Execution Engine,
which in turn e.g., handles incoming data and ultimately calls
the updateHook() of a component. The updateHook()
represents the function that contains the e.g., calculations
for the (next) control signal that is going to be send to the
robot. To trigger a component’s Execution Engine, different
kinds of Activities can be used. The type of an Activity
is defined by its periodicity and priority, the core it should
be executed on, and whether it should use a real-time or
non-real-time scheduler. Note that one Activity can only
trigger one associated Execution Engine. Activities however
are triggered by Threads. There are also different kinds
of Threads, which mostly fit a specific type of Activity. In
contrast to Activities, Threads can trigger multiple Activities
sequentially in the order they are started. For more detailed
information, please refer to [14]. In the following we will use
the term Activity as a synonym for Thread and the execution
of a component as a synonym for triggering an Execution
Engine.

B. CoSiMA’s Introspection Architecture (R.7)

There are different approaches to gain insights into the
execution of a system: ranging from hardware platform
emulators [10], over just in time recompilation of x86
machine code for accurate simulation [24], to sampling-
based approaches [20]. Since modeling the entire real-time
environment, necessary for emulation, is not trivial [10], and
any overhead that slows down the execution significantly
needs to be avoided as much as possible, a sampling-based
approach was chosen. This, however, trades accuracy for
performance, enabling the introspection to work during real
runs of a system.

In light of further requirements, such as sampling with
the same synchronized (simulation) time that our OROCOS
components are executed with, and being able to easily
process (e.g., live stream) our data via a middleware of our
choice, without having I/O operations that break the real-time
constraints, we choose a “native” OROCOS implementation.

1) Introspection Mechanism: The introspection mecha-
nism consists of two parts (see 3): (1) An interface that al-
lows to turn the introspection for specific ports and lifecycle
states of a component “on” and “off”, as well as to specify
the capacity of the internal storage for the samples. This
interface specializes the OROCOS RTT::TaskContext
and acts as base-class, which components need to inherit
from to become introspectable. The mechanism covers the
instant that data is send and received through a port,
as well as the tracking of begin and end of the lifecy-
cle states. The implementation itself is real-time safe and
tested on Xenomai. (2) A real-time safe logging component
IntrospectionReporter will then collect all the sam-
ples from the introspectable components and either writes
them into a file, or sends them out using a specific transport,
depending on the marshallers that are used.

Fig. 3. A system containing three introspectable components that are
registered with the Introspection Reporter component, which collects the
execution samples and publishes them via the available marshallers.

Fig. 4. Component architecture of the COMAN experiment.

2) Visualization and Analysis: Furthermore, CoSiMA
comes with a light-weight visualization and analysis tool (see
Fig. 9), which is inspired by the work of [25]. It offers an en-
hanced timing diagram enriched with data-flow information,
which allows the analysis of the shortest and longest control
cycle as well as the detection of misalignments related to
the frequency or starting order of components. Apart from
that, it allows the introspection of the distribution of compo-
nents inside activities, to investigate deadline violations and
potential for reorganization.

V. CASE STUDY

In this section, the workflow presented in Sec. II is applied
using CoSiMA to a timing-sensitive use-case involving the
humanoid robot COMAN (see Fig. 5), which was devel-
oped at the Italian Institute of Technology (IIT) during the
AMARSi Project12. The structure of the section first presents
the use-case and then discusses the workflow along the
introduced roles analogous to Sec. II.

A. COMAN experiment

In this experiment, the COMAN should perform a straight
walking motion. To achieve this, a system comprising the
following five components is used:
FloatingBase (base) is responsible to compute the position

and orientation of the robot’s floating base. Its inputs
are the current robot configuration as well as the active
support foot.

CoMPrimitive (com) provides reference trajectories for the
center of mass (CoM) and feet (swing/support) of the

12http://www.amarsi-project.eu



Fig. 5. Walking experiments with the COMAN robot. The top row
demonstrate the case when all components meet their timing requirements
according to the specification. In the second row, CoMPrimitive has an
intentionally slower activation frequency, which leads to a faulty behavior.

robot to the inverse kinematics component (Whole-
BodyIK). For this test, the robot should perform a walk
on a straight line. The other output of this component is
an indicator for the current swing foot (left/right) which
is needed by the FloatingBase component.

WholeBodyIK (ik) solves the inverse kinematics of the
humanoid robot. Given a desired Cartesian velocity,
current body configuration, null-space choice, and pose
of the floating base, it solves the IK using a closed loop
inverse kinematic (CLIK) method and sends the results
to the robot.

RedundancyResolution (rr) provides a null-space joint
motion behaviour that allows the WholeBodyIK com-
ponent to use different solutions among infinite possible
ones. For this particular case, we try to find joint values
that keep the robot’s torso near its upright configuration.

rtt-gazebo-robot-sim (robot gazebo) resembles the inter-
face to the robot. It provides the robot’s feedback in
terms of joint position, velocity and torques to the
components and forwards control commands to the
robot or – in case of Fig. 5 – the simulation model
in Gazebo.

Fig. 4 depicts the interconnections between these compo-
nents. The most important and computationally demanding
component is WholeBodyIK. It relies on the feedback from
the robot, as well as the input from all other components. An
example of a timing failure is when the reference trajectories
from CoMPrimitive are delayed and not match the feedback
from the robot anymore. In that case, there is an abnormally
large error between the desired and real values for different
poses of the robot. This is depicted in the bottom row of
Fig. 5, where the robot diverges from its designated path
immediately after initiating a Zero Moment Point-based [26]
walk on a straight line. Another case, which is excluded in
this setup in order to keep the notations light, is when there
is a stabilizer, which corrects the desired CoM trajectories.
In case of an unexpected delay, the stabilizer would attempt
to fix an “old” trajectory that was executed by the robot.

B. Workflow: Component Supplier

As described in Sec. II-A.1, the Component Supplier pro-
vides the necessary functional capabilities in form of compo-
nents and associated execution properties. For this case study,
we focus on the individual WCET (see Fig. 6), which were
approximated through multiple runs. More accurate results
can be achieved by using methods such as [27]. However,
since the focus here is on the workflow and specification, it
is sufficient to take the maximum execution time of multiple
runs. Fig. 8 shows a JSON13-based specification for the
FloatingBasePose component.

Fig. 6. Sample-based execution time of the involved components of the
COMAN experiment. The approximated WCET is indicated by the red line.

C. Workflow: System Builder

The System Builder enriches the specification from the
Component Supplier with application-specific information:
As introduced in Sec. II-A.2, constraints on the data are
added in form of output constraints (see Fig. 8 (orange part))
that determine if received data is valid to be processed based
on the cycle (time) it was received. These constraints can
also be seen in the precedence task graph (PTG) in Fig. 7
(green numbers). The PTG is realized as an annotated DOT14

graph, which includes the starting order as well. Here, we
see that the ComanWholeBodyIK instance ik demands all its
input data to be from the same and current cycle, whereas
the FloatingBasePose instance base only constraints one of
its inputs to be from the current cycle, namely the feedback
from the robot.

To further add the robotics-specific aspects (see Sec. II-
B.1) to the specification, generally the longest and shortest

13http://json.org
14http://www.graphviz.org/doc/info/lang.html



cause-effect chain should be described. However, in this
example the longest is also the shortest chain, since there
is no shorter one than the chain, depicted in Fig. 7, which
would be able to impose a stable behavior on the robot.

Fig. 7. Data-flow specification in form of a PTG, including the starting
order of the components (blue circle), the critical path (red arrows), and
data constraints (0 =̂ data from current cycle; negative numbers =̂ previous
cycles).

Fig. 8. Excerpt of the specification for the COMAN experiment, depicting
the definition of the WCET, the data constraints of a component, as well as
the control chain.

D. Workflow: Performance Designer

The following set of periodic activities is chosen to meet
the requirements defined by the timing specification.
Activity 1 (period 1.0ms, core 1) robot gazebo
Activity 2 (period 1.3ms, core 0) com, base, and ik
Activity 3 (period 1.3ms, core 0) rr
Activity 4 (period 0.0ms, core 2) IntrospectionReporter ir
The rationale to combine com, base, and ik in one activity,
is based on the data constraints of ik, which demand the
synchronicity of the received data. Using the activity to
represent a data-chain between the three components ensures
a valid data-flow (see Fig. 9). The robot interface is assigned
to an empty core to avoid preemption and to ensure stable
communication with the robot. Although the Redundan-
cyResolution component is a part of the control system of
the robot, it resembles a secondary task with lower priority.
Therefore, it does not lead to a huge error, if the component
is misaligned and sends data based on a previous cycle. To
not add any kind of delay, it runs in a separate activity

in parallel to the main control activity (2). The activity
containing the introspection component is an exception. It
is not periodically updated, but event-triggered. In this case,
it activates on every incoming introspection sample. Apart
from that, it needs to be verified that the End-2-End Latency
( 1.3 ms) is not greater than the specification (1.5 ms) allows
(see Fig. 9). The resulting behavior is displayed in Fig. 5.

Fig. 9. Time diagram with data-flow information of the correct speci-
fication, which results in the behavior of Fig. 5 (top row). For the sake
of readability, the RedundancyResolution component was neglected. com,
base, and ik are deployed in the same activity (indicated by the colored line
next to the names). As it can be seen, the components are executed in the
right order and ik only receives input data that is based on the current cycle.
Short vertical lines represent output (black) and input ports with (green =̂
new, cyan =̂ old, red =̂ no) data.

Fig. 10. This diagram shows a wrong specification, in which com is running
in a separate activity and is slightly misaligned to base and ik. Here, com is
executed after ik, so it sends its data to the next iteration of ik. This means
that ik operates on “old” data, which causes the behavior seen in Fig. 5
(bottom row). The green lines indicate the correct data-flow, whereas the
red lines indicate the actual but wrong data transfer.

E. Consequences of Neglecting Robotics-Specific Aspects

In the case the robotics-specific timing aspects are ne-
glected for this experiment, one activity could be used
containing a sequence of all involved components. This, how-
ever, would corrupt the robot’s behavior, since the minimal
update frequency to keep the robot stable cannot be met.
In contrast to that, without the constraints on valid data, the
Performance Designer would have no clue, which component
can be paralleled and how, in order to ensure the desired
behavior. Fig. 10 displays the case where com runs slightly
misaligned in parallel to the sequence of base and ik. It can
be clearly seen that the ik component is operating on data



from com, which is based on a previous cycle. The resulting
faulty behavior is expressed by the bottom row of Fig. 5.

VI. CONCLUSION

This paper proposed an extension to the development pro-
cess of component-based systems in the domain of robotics,
which focuses on the integration of robotics-specific timing
aspects as well as the Separation of Roles and Concerns.
This offers the developers a way to define more fine-grained
requirements on real-time sensitive systems, which can be
evaluated in preface or in simulation, and thus, increases the
reliability and safety. To not only specify but to also create,
simulate and evaluate a component-based robotics system,
we introduced CoSiMA, which is based on well-known
technologies and offers transparent development as well as
support for interchangeability between real-time controller
systems and robotic platforms. The presented development
process was evaluated using an experimental system with the
humanoid robot COMAN.

As future work, we will target the integration of the
specification requirements into the modeling environment of
CoSiMA, which was published in [18]. This will include
a model-driven formalization in form of a domain-specific
language, to increase the readability and to enable model-
based verification. Further, we would like to evaluate the
suitability of LTTng [20] as alternative to the current sam-
pling mechanism.
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